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When computer software succeeds—when it meets the needs of the people who use it, 
when it performs flawlessly over a long period of time, when it is easy to modify and 
even easier to use—it can and does change things for the better. But when software fails—
when its users are dissatisfied, when it is error prone, when it is difficult to change and 
even harder to use—bad things can and do happen. We all want to build software that 
makes things better, avoiding the bad things that lurk in the shadow of failed efforts. To 
succeed, we need discipline when software is designed and built. We need an engineering 
approach.
 It has been nearly four decades since the first edition of this book was written. Dur-
ing that time, software engineering has evolved from an obscure idea practiced by a 
relatively small number of zealots to a legitimate engineering discipline. Today, it is 
recognized as a subject worthy of serious research, conscientious study, and tumultuous 
debate. Throughout the industry, software engineer has replaced programmer or coder 
as the job title of preference. Software process models, software engineering methods, 
and software tools have been adopted successfully across a broad spectrum of industry 
segments.
 Although managers and practitioners alike recognize the need for a more disciplined 
approach to software, they continue to debate the manner in which discipline is to be 
applied. Many individuals and companies still develop software haphazardly, even as they 
build systems to service today’s most advanced technologies. Many professionals and 
students are unaware of modern methods. And as a result, the quality of the software that 
we produce suffers, and bad things happen. In addition, debate, and controversy about the 
true nature of the software engineering approach continue. The status of software engineer-
ing is a study in contrasts. Attitudes have changed, progress has been made, but much 
remains to be done before the discipline reaches full maturity.

Ne w to t h e Ni N t h ed i t i o N

The ninth edition of Software Engineering: A Practitioner’s Approach is intended to serve 
as a guide to a maturing engineering discipline. The ninth edition, like the eight editions 
that preceded it, is intended for both students and practitioners, retaining its appeal as a 
guide for the industry professional and a comprehensive introduction to the student at the 
upper-level undergraduate or first-year graduate level.

Preface
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 The ninth edition is considerably more than a simple update. The book has been revised 
and restructured to improve pedagogical flow and emphasize new and important software 
engineering processes and practices. In addition, we have further enhanced the popular 
“support system” for the book, providing a comprehensive set of student, instructor, and 
professional resources to complement the content of the book.
 Readers of the past few editions of Software Engineering: A Practitioner’s Approach 
will note that the ninth edition has actually been reduced in page length. Our goal was 
concision, making the book stronger from a pedagogical viewpoint and less daunting for 
the reader who desires to journey through the entire book. An anecdote, attributed to Blaise 
Pascal, the famous mathematician and physicist, goes like this: In writing a overly long 
letter to a friend, Pascal ended with this sentence. “I wanted to write you a shorter letter, 
but I didn’t have the time.” As we worked on concision for the ninth edition, we came to 
appreciate Pascal’s words.
 The 30 chapters of the ninth edition are organized into five parts. This organization 
better compartmentalizes topics and assists instructors who may not have the time to 
complete the entire book in one term.
 Part 1, The Software Process, presents a variety of different views of software 
process, considering several important process models and frameworks that allow us 
to address the debate between prescriptive and agile process philosophies. Part 2, 
Modeling, presents analysis and design methods with an emphasis on object-oriented 
techniques and UML modeling. Pattern-based design and design for mobility comput-
ing applications are also considered. The coverage of user experience design has been 
expanded in this section. Part 3, Quality and Security, presents the concepts, proce-
dures, techniques, and methods that enable a software team to assess software quality, 
review software engineering work products, conduct SQA procedures, and apply an 
effective testing strategy and tactics. In addition, we present software security practices 
that can be inserted into incremental software development models. Part 4, Managing 
Software Projects, presents topics that are relevant to those who plan, manage, and 
control a software development project. Part 5, Advanced Topics, considers software 
process improvement and software engineering trends. Boxed features are included 
throughout the book to present the trials and tribulations of a (fictional) software team 
and to provide supplementary materials about methods and tools that are relevant to 
chapter topics.
 The five-part organization of the ninth edition enables an instructor to “cluster” top-
ics based on available time and student need. An entire one-term course can be built 
around one or more of the five parts. A software engineering survey course would select 
chapters from all five parts. A software engineering course that emphasizes analysis and 
design would select topics from Parts 1 and 2. A testing-oriented software engineering 
course would select topics from Parts 1 and 3, with a brief foray into Part 2. A “man-
agement course” would stress Parts 1 and 4. By organizing the ninth edition in this way, 
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we have attempted to provide an instructor with a number of teaching options. In every 
case the content of the ninth edition is complemented by the following elements of the 
SEPA, 9/e Support System.

Additional Resources
A wide variety of resources can be accessed through the instructor website, including an 
extensive online learning center encompassing problem solutions, a variety of Web-based 
resources with software engineering checklists, an evolving collection of “tiny tools,” 
and comprehensive case studies. Professional Resources provide several hundred 
categorized web references which allow students to explore software engineering in greater 
detail, along with a reference library with links to several hundred downloadable references 
providing an in-depth source of advanced software engineering information. Additionally, 
a complete online Instructor’s Guide and supplementary teaching materials along with 
several hundred PowerPoint slides that may be used for lectures are included.
 The Instructor’s Guide for Software Engineering: A Practitioner’s Approach presents 
suggestions for conducting various types of software engineering courses, recommenda-
tions for a variety of software projects to be conducted in conjunction with a course, 
solutions to selected problems, and a number of useful teaching aids.
 When coupled with its online support system, the ninth edition of Software Engineering: 
A Practitioner’s Approach provides flexibility and depth of content that cannot be achieved 
by a textbook alone.
 Bruce Maxim has taken the lead in developing new content for the ninth edition of 
Software Engineering: A Practitioner’s Approach, while Roger Pressman has served as 
editor-in-chief as well as providing contributions in select circumstances.
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What is it? Computer software is a work prod-
uct that software professionals build and then 
support over many years. These work prod-
ucts include programs that execute within 
computers of any size and architecture. Soft-
ware engineering encompasses a process, a 
collection of methods (practice), and an array 
of tools that allow professionals to build high-
quality computer software.

Who does it? Software engineers build and 
support software, and virtually everyone in  
the industrialized world uses it. Software 
engineers apply the software engineering 
process.

Why is it important? Software engineering is 
important because it enables us to build com-
plex systems in a timely manner and with high 
quality. It imposes discipline to work that can 
become quite chaotic, but it also allows the 

people who build computer software to adapt 
their approach in a manner that best suits their 
needs.

What are the steps? You build computer soft-
ware like you build any successful product, by 
applying an agile, adaptable process that 
leads to a high-quality result that meets the 
needs of the people who will use the product.

What is the work product? From the software 
engineer’s point of view, the work product is 
the set of programs, content (data), and other 
work products that support computer soft-
ware. But from the user’s point of view, the 
work product is a tool or product that some-
how makes the user’s world better.

How do I ensure that I’ve done it right? Read 
the remainder of this book, select those ideas 
that are applicable to the software that you 
build, and apply them to your work.

Q u i c k  L o o k

C H A P T E R

1
As he finished showing me the latest build of one of the world’s most popular 
first-person shooter video games, the young developer laughed.

“You’re not a gamer, are you?” he asked.
I smiled. “How’d you guess?”
The young man was dressed in shorts and a tee shirt. His leg bounced up and 

down like a piston, burning the nervous energy that seemed to be commonplace 
among his co-workers.
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2 CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

“Because if you were,” he said, “you’d be a lot more excited. You’ve gotten a peek 
at our next generation product and that’s something that our customers would kill 
for  .  .  . no pun intended.”

We sat in a development area at one of the most successful game developers on 
the planet. Over the years, earlier generations of the game he demoed sold over 
50 million copies and generated billions of dollars in revenue.

“So, when will this version be on the market?” I asked.
He shrugged. “In about five months, and we’ve still got a lot of work to do.”
He had responsibility for game play and artificial intelligence functionality in an 

application that encompassed more than three million lines of code.
“Do you guys use any software engineering techniques?” I asked, half-expecting 

that he’d laugh and shake his head.
He paused and thought for a moment. Then he slowly nodded. “We adapt them to 

our needs, but sure, we use them.”
“Where?” I asked, probing.
“Our problem is often translating the requirements the creatives give us.”
“The creatives?” I interrupted.
“You know, the guys who design the story, the characters, all the stuff that make 

the game a hit. We have to take what they give us and produce a set of technical 
requirements that allow us to build the game.”

“And after the requirements are established?”
He shrugged. “We have to extend and adapt the architecture of the previous version 

of the game and create a new product. We have to create code from the requirements, 
test the code with daily builds, and do lots of things that your book recommends.”

“You know my book?” I was honestly surprised.
“Sure, used it in school. There’s a lot there.”
“I’ve talked to some of your buddies here, and they’re more skeptical about the 

stuff in my book.”
He frowned. “Look, we’re not an IT department or an aerospace company, so we 

have to customize what you advocate. But the bottom line is the same—we need to 
produce a high-quality product, and the only way we can accomplish that in a repeat-
able fashion is to adapt our own subset of software engineering techniques.”

“And how will your subset change as the years pass?”
He paused as if to ponder the future. “Games will become bigger and more com-

plex, that’s for sure. And our development timelines will shrink as more competition 
emerges. Slowly, the games themselves will force us to apply a bit more development 
discipline. If we don’t, we’re dead.”

*****

Computer software continues to be the single most important technology on the world 
stage. And it’s also a prime example of the law of unintended consequences. Sixty 
years ago no one could have predicted that software would become an indispensable 
technology for business, science, and engineering; that software would enable the 
creation of new technologies (e.g., genetic engineering and nanotechnology), the 
extension of existing technologies (e.g., telecommunications), and the radical change 
in older technologies (e.g., the media); that software would be the driving force behind 
the personal computer revolution; that software applications would be purchased by 
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consumers using their mobile devices; that software would slowly evolve from a prod-
uct to a service as “on-demand” software companies deliver just-in-time functionality 
via a Web browser; that a software company would become larger and more influen-
tial than all industrial-era companies; or that a vast software-driven network would 
evolve and change everything from library research to consumer shopping to political 
discourse to the dating habits of young (and not so young) adults.

As software’s importance has grown, the software community has continually 
attempted to develop technologies that will make it easier, faster, and less expensive 
to build and support high-quality computer programs. Some of these technologies are 
targeted at a specific application domain (e.g., website design and implementation); 
others focus on a technology domain (e.g., object-oriented systems or aspect-oriented 
programming); and still others are broad based (e.g., operating systems such as Linux). 
However, we have yet to develop a software technology that does it all, and the likeli-
hood of one arising in the future is small. And yet, people bet their jobs, their com-
forts, their safety, their entertainment, their decisions, and their very lives on computer 
software. It better be right.

This book presents a framework that can be used by those who build computer 
software—people who must get it right. The framework encompasses a process, a set 
of methods, and an array of tools that we call software engineering.

To build software that is ready to meet the challenges of the twenty-first century, 
you must recognize a few simple realities:

∙ Software has become deeply embedded in virtually every aspect of our lives. The 
number of people who have an interest in the features and functions provided by 
a specific application1 has grown dramatically. A concerted effort should be made 
to understand the problem before a software solution is developed.

∙ The information technology requirements demanded by individuals, businesses, 
and governments grow increasingly complex with each passing year. Large 
teams of people now create computer programs. Sophisticated software that 
was once implemented in a predictable, self-contained computing environment 
is now embedded inside everything from consumer electronics to medical 
devices to autonomous vehicles. Design has become a pivotal activity.

∙ Individuals, businesses, and governments increasingly rely on software for 
strategic and tactical decision making as well as day-to-day operations and 
control. If the software fails, people and major enterprises can experience 
anything from minor inconvenience to catastrophic consequences. Software 
should exhibit high quality.

∙ As the perceived value of a specific application grows, the likelihood is that 
its user base and longevity will also grow. As its user base and time in use 
increase, demands for adaptation and enhancement will also grow. Software 
should be maintainable.

These simple realities lead to one conclusion: Software in all its forms and across 
all its application domains should be engineered. And that leads us to the topic of 
this book—software engineering.

1 We will call these people “stakeholders” later in this book.
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 1 .1  th e nat u r e o f so f t wa r e

Today, software takes on a dual role. It is a product, and the vehicle for delivering a 
product. As a product, it delivers the computing potential embodied by computer 
hardware or, more broadly, by a network of computers that are accessible by local 
hardware. Whether it resides within a mobile device, on the desktop, in the cloud, or 
within a mainframe computer or autonomous machine, software is an information 
transformer—producing, managing, acquiring, modifying, displaying, or transmitting 
information that can be as simple as a single bit or as complex as an augmented-
reality representation derived from data acquired from dozens of independent sources 
and then overlaid on the real world. As the vehicle used to deliver a product, software 
acts as the basis for the control of the computer (operating systems), the communica-
tion of information (networks), and the creation and control of other programs (soft-
ware tools and environments).

Software delivers the most important product of our time—information. It trans-
forms personal data (e.g., an individual’s financial transactions) so that the data can 
be more useful in a local context; it manages business information to enhance com-
petitiveness; it provides a gateway to worldwide information networks (e.g., the Inter-
net); and provides the means for acquiring information in all its forms. It also provides 
a vehicle that can threaten personal privacy and a gateway that enables those with 
malicious intent to commit criminal acts.

The role of computer software has undergone significant change over the last 
60 years. Dramatic improvements in hardware performance, profound changes in com-
puting architectures, vast increases in memory and storage capacity, and a wide vari-
ety of exotic input and output options have all precipitated more sophisticated and 
complex computer-based systems. Sophistication and complexity can produce dazzling 
results when a system succeeds, but they can also pose huge problems for those who 
must build and protect complex systems.

Today, a huge software industry has become a dominant factor in the economies of 
the industrialized world. Teams of software specialists, each focusing on one part of the 
technology required to deliver a complex application, have replaced the lone program-
mer of an earlier era. And yet, the questions that were asked of the lone programmer 
are the same questions that are asked when modern computer-based systems are built:2

∙ Why does it take so long to get software finished?
∙ Why are development costs so high?
∙ Why can’t we find all errors before we give the software to our customers?
∙ Why do we spend so much time and effort maintaining existing programs?
∙ Why do we continue to have difficulty in measuring progress as software is 

being developed and maintained?

2 In an excellent book of essays on the software business, Tom DeMarco [DeM95] argues the 
counterpoint. He states: “Instead of asking why software costs so much, we need to begin 
asking ‘What have we done to make it possible for today’s software to cost so little?’ The 
answer to that question will help us continue the extraordinary level of achievement that has 
always distinguished the software industry.”
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These, and many other questions, are a manifestation of the concern about software 
and how it is developed—a concern that has led to the adoption of software engineer-
ing practice.

1.1.1 Defining Software
Today, most professionals and many members of the public at large feel that they 
understand software. But do they?

A textbook description of software might take the following form:

Software is: (1) instructions (computer programs) that when executed provide desired 
features, function, and performance; (2) data structures that enable the programs to ade-
quately manipulate information; and (3) descriptive information in both hard copy and 
virtual forms that describes the operation and use of the programs.

There is no question that other more complete definitions could be offered. But a 
more formal definition probably won’t measurably improve your understanding. To 
accomplish that, it’s important to examine the characteristics of software that make it 
different from other things that human beings build. Software is a logical rather than 
a physical system element. Therefore, software has one fundamental characteristic that 
makes it considerably different from hardware: Software doesn’t “wear out.”

Figure 1.1 depicts failure rate as a function of time for hardware. The relationship, 
often called the “bathtub curve,” indicates that hardware exhibits relatively high fail-
ure rates early in its life (these failures are often attributable to design or manufactur-
ing defects); defects are corrected, and the failure rate drops to a steady-state level 
(hopefully, quite low) for some period of time. As time passes, however, the failure 
rate rises again as hardware components suffer from the cumulative effects of dust, 

Figure 1.1
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vibration, abuse, temperature extremes, and many other environmental maladies. 
Stated simply, the hardware begins to wear out.

Software is not susceptible to the environmental maladies that cause hardware to 
wear out. In theory, therefore, the failure rate curve for software should take the form 
of the “idealized curve” shown in Figure 1.2. Undiscovered defects will cause high 
failure rates early in the life of a program. However, these are corrected and the curve 
flattens as shown. The idealized curve is a gross oversimplification of actual failure 
models for software. However, the implication is clear—software doesn’t wear out. 
But it does deteriorate!

This seeming contradiction can best be explained by considering the actual curve 
in Figure 1.2. During its life,3 software will undergo change. As changes are made, it 
is likely that errors will be introduced, causing the failure rate curve to spike as shown 
in the “actual curve” (Figure 1.2). Before the curve can return to the original steady-
state failure rate, another change is requested, causing the curve to spike again. Slowly, 
the minimum failure rate level begins to rise—the software is deteriorating due to 
change.

Another aspect of wear illustrates the difference between hardware and software. 
When a hardware component wears out, it is replaced by a spare part. There are no 
software spare parts. Every software failure indicates an error in design or in the 
process through which design was translated into machine executable code. Therefore, 
the software maintenance tasks that accommodate requests for change involve consid-
erably more complexity than hardware maintenance.

Figure 1.2
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1.1.2 Software Application Domains
Today, seven broad categories of computer software present continuing challenges for 
software engineers:

System software. A collection of programs written to service other programs. 
Some system software (e.g., compilers, editors, and file management utilities) pro-
cesses complex, but determinate,4 information structures. Other systems applications 
(e.g., operating system components, drivers, networking software, telecommuni-
cations processors) process largely indeterminate data.

Application software. Stand-alone programs that solve a specific business need. 
Applications in this area process business or technical data in a way that facilitates 
business operations or management/technical decision making.

Engineering/scientific software. A broad array of “number-crunching” or data 
science programs that range from astronomy to volcanology, from automotive stress 
analysis to orbital dynamics, from computer-aided design to consumer spending 
habits, and from genetic analysis to meteorology.

Embedded software. Resides within a product or system and is used to implement 
and control features and functions for the end user and for the system itself. Embedded 
software can perform limited and esoteric functions (e.g., key pad control for a micro-
wave oven) or provide significant function and control capability (e.g., digital functions 
in an automobile such as fuel control, dashboard displays, and braking systems).

Product-line software. Composed of reusable components and designed to 
provide specific capabilities for use by many different customers. It may focus 
on a limited and esoteric marketplace (e.g., inventory control products) or attempt 
to address the mass consumer market.

Web/mobile applications. This network-centric software category spans a wide 
array of applications and encompasses browser-based apps, cloud computing,  
service-based computing, and software that resides on mobile devices.

Artificial intelligence software. Makes use of heuristics5 to solve complex prob-
lems that are not amenable to regular computation or straightforward analysis. 
Applications within this area include robotics, decision-making systems, pattern rec-
ognition (image and voice), machine learning, theorem proving, and game playing.

Millions of software engineers worldwide are hard at work on software projects in 
one or more of these categories. In some cases, new systems are being built, but in 
many others, existing applications are being corrected, adapted, and enhanced. It is 
not uncommon for a young software engineer to work on a program that is older than 
she is! Past generations of software people have left a legacy in each of the categories 
we have discussed. Hopefully, the legacy to be left behind by this generation will ease 
the burden on future software engineers.

4 Software is determinate if the order and timing of inputs, processing, and outputs is predict-
able. Software is indeterminate if the order and timing of inputs, processing, and outputs 
cannot be predicted in advance.

5 The use of heuristics is an approach to problem solving that employs a practical method or 
“rule of thumb” not guaranteed to be perfect, but sufficient for the task at hand.
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1.1.3 Legacy Software
Hundreds of thousands of computer programs fall into one of the seven broad appli-
cation domains discussed in the preceding subsection. Some of these are state-of-the-
art software. But other programs are older, in some cases much older.

These older programs—often referred to as legacy software—have been the focus 
of continuous attention and concern since the 1960s. Dayani-Fard and his colleagues 
[Day99] describe legacy software in the following way:

Legacy software systems  .  .  . were developed decades ago and have been continually 
modified to meet changes in business requirements and computing platforms. The pro-
liferation of such systems is causing headaches for large organizations who find them 
costly to maintain and risky to evolve.

These changes may create an additional side effect that is often present in legacy 
software—poor quality.6 Legacy systems sometimes have inextensible designs, convoluted 
code, poor or nonexistent documentation, test cases and results that were never archived, 
and a poorly managed change history. The list can be quite long. And yet, these systems 
often support “core functions and are indispensable to the business.” What to do?

The only reasonable answer may be: Do nothing, at least until the legacy system 
must undergo some significant change. If the legacy software meets the needs of its 
users and runs reliably, it isn’t broken and does not need to be fixed. However, as 
time passes, legacy systems often evolve for one or more of the following reasons:

∙ The software must be adapted to meet the needs of new computing environ-
ments or technology.

∙ The software must be enhanced to implement new business requirements.
∙ The software must be extended to make it work with other more modern 

systems or databases.
∙ The software must be re-architected to make it viable within an evolving 

computing environment.

When these modes of evolution occur, a legacy system must be reengineered so 
that it remains viable in the future. The goal of modern software engineering is to 
“devise methodologies that are founded on the notion of evolution; that is, the notion 
that software systems change continually, new software systems can be built from the 
old ones, and  .  .  . all must interact and cooperate with each other” [Day99].

 1 .2  De f i n i ng t h e Di s c i p L i n e

The IEEE [IEE17] has developed the following definition for software engineering:

Software Engineering: The application of a systematic, disciplined, quantifiable approach 
to the development, operation, and maintenance of software; that is, the application of 
engineering to software.

6 In this case, quality is judged based on modern software engineering thinking—a somewhat 
unfair criterion since some modern software engineering concepts and principles may not 
have been well understood at the time that the legacy software was developed.
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And yet, a “systematic, disciplined, and quantifiable” approach applied by one 
software team may be burdensome to another. We need discipline, but we also need 
adaptability and agility.

Software engineering is a layered technology. Referring to Figure 1.3, any engi-
neering approach (including software engineering) must rest on an organizational 
commitment to quality. You may have heard of total quality management (TQM) or 
Six Sigma, and similar philosophies7 that foster a culture of continuous process 
improvement. It is this culture that ultimately leads to more effective approaches to 
software engineering. The bedrock that supports software engineering is a quality 
focus.

The foundation for software engineering is the process layer. The software engi-
neering process is the glue that holds the technology layers together and enables 
rational and timely development of computer software. Process defines a framework 
that must be established for effective delivery of software engineering technology. The 
software process forms the basis for management control of software projects and 
establishes the context in which technical methods are applied, work products (mod-
els, documents, data, reports, forms, etc.) are produced, milestones are established, 
quality is ensured, and change is properly managed.

Software engineering methods provide the technical how-to’s for building software. 
Methods encompass a broad array of tasks that include communication, requirements 
analysis, design modeling, program construction, testing, and support. Software engi-
neering methods rely on a set of basic principles that govern each area of the technol-
ogy and include modeling activities and other descriptive techniques.

Software engineering tools provide automated or semi-automated support for the 
process and the methods. When tools are integrated so that information created by 
one tool can be used by another, a system for the support of software development, 
called computer-aided software engineering, is established.

 1 .3  th e so f t wa r e pro c e s s

A process is a collection of activities, actions, and tasks that are performed when 
some work product is to be created. An activity strives to achieve a broad objective 
(e.g., communication with stakeholders) and is applied regardless of the application 
domain, size of the project, complexity of the effort, or degree of rigor with which 

7 Quality management and related approaches are discussed throughout Part Three of this book.

Figure 1.3

Tools

Methods
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Software 
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layers
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software engineering is to be applied. An action (e.g., architectural design) encom-
passes a set of tasks that produce a major work product (e.g., an architectural model). 
A task focuses on a small, but well-defined objective (e.g., conducting a unit test) that 
produces a tangible outcome.

In the context of software engineering, a process is not a rigid prescription for how 
to build computer software. Rather, it is an adaptable approach that enables the peo-
ple doing the work (the software team) to pick and choose the appropriate set of work 
actions and tasks. The intent is always to deliver software in a timely manner and 
with sufficient quality to satisfy those who have sponsored its creation and those who 
will use it.

1.3.1 The Process Framework
A process framework establishes the foundation for a complete software engineering 
process by identifying a small number of framework activities that are applicable to 
all software projects, regardless of their size or complexity. In addition, the process 
framework encompasses a set of umbrella activities that are applicable across the 
entire software process. A generic process framework for software engineering encom-
passes five activities:

Communication. Before any technical work can commence, it is critically important 
to communicate and collaborate with the customer (and other stakeholders).8 The 
intent is to understand stakeholders’ objectives for the project and to gather require-
ments that help define software features and functions.

Planning. Any complicated journey can be simplified if a map exists. A software 
project is a complicated journey, and the planning activity creates a “map” that helps 
guide the team as it makes the journey. The map—called a software project plan—
defines the software engineering work by describing the technical tasks to be con-
ducted, the risks that are likely, the resources that will be required, the work products 
to be produced, and a work schedule.

Modeling. Whether you’re a landscaper, a bridge builder, an aeronautical engineer, 
a carpenter, or an architect, you work with models every day. You create a “sketch” 
of the thing so that you’ll understand the big picture—what it will look like architec-
turally, how the constituent parts fit together, and many other characteristics. If 
required, you refine the sketch into greater and greater detail in an effort to better 
understand the problem and how you’re going to solve it. A software engineer does 
the same thing by creating models to better understand software requirements and the 
design that will achieve those requirements.

Construction. What you design must be built. This activity combines code genera-
tion (either manual or automated) and the testing that is required to uncover errors in 
the code.

8 A stakeholder is anyone who has a stake in the successful outcome of the project—business 
managers, end users, software engineers, support people, and so forth. Rob Thomsett jokes 
that, “a stakeholder is a person holding a large and sharp stake.  .  .  . If you don’t look after 
your stakeholders, you know where the stake will end up.”
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Deployment. The software (as a complete entity or as a partially completed incre-
ment) is delivered to the customer who evaluates the delivered product and provides 
feedback based on the evaluation.

These five generic framework activities can be used during the development of small, 
simple programs; the creation of Web applications; and for the engineering of large, 
complex computer-based systems. The details of the software process will be quite 
different in each case, but the framework activities remain the same.

For many software projects, framework activities are applied iteratively as a project 
progresses. That is, communication, planning, modeling, construction, and deploy-
ment are applied repeatedly through a number of project iterations. Each iteration 
produces a software increment that provides stakeholders with a subset of overall 
software features and functionality. As each increment is produced, the software 
becomes more and more complete.

1.3.2 Umbrella Activities
Software engineering process framework activities are complemented by a number of 
umbrella activities. In general, umbrella activities are applied throughout a software 
project and help a software team manage and control progress, quality, change, and 
risk. Typical umbrella activities include:

Software project tracking and control. Allows the software team to assess 
progress against the project plan and take any necessary action to maintain the 
schedule.

Risk management. Assesses risks that may affect the outcome of the project or 
the quality of the product.

Software quality assurance. Defines and conducts the activities required to 
ensure software quality.

Technical reviews. Assess software engineering work products in an effort to 
uncover and remove errors before they are propagated to the next activity.

Measurement. Defines and collects process, project, and product measures that 
assist the team in delivering software that meets stakeholders’ needs; can be used in 
conjunction with all other framework and umbrella activities.

Software configuration management. Manages the effects of change throughout 
the software process.

Reusability management. Defines criteria for work product reuse (including 
software components) and establishes mechanisms to achieve reusable components.

Work product preparation and production. Encompasses the activities 
required to create work products such as models, documents, logs, forms, and lists.

Each of these umbrella activities is discussed in detail later in this book.

1.3.3 Process Adaptation
Previously in this section, we noted that the software engineering process is not a rigid 
prescription that must be followed dogmatically by a software team. Rather, it should be 
agile and adaptable (to the problem, to the project, to the team, and to the organizational 



12 CHAPTER 1 SOFTWARE AND SOFTWARE ENGINEERING

culture). Therefore, a process adopted for one project might be significantly different than 
a process adopted for another project. Among the differences are:

∙ Overall flow of activities, actions, and tasks and the interdependencies among 
them

∙ Degree to which actions and tasks are defined within each framework activity
∙ Degree to which work products are identified and required
∙ Manner in which quality assurance activities are applied
∙ Manner in which project tracking and control activities are applied
∙ Overall degree of detail and rigor with which the process is described
∙ Degree to which the customer and other stakeholders are involved with the 

project
∙ Level of autonomy given to the software team
∙ Degree to which team organization and roles are prescribed

In Part One of this book, we examine software process in considerable detail.

 1 .4  so f t wa r e eng i n e e r i ng pr ac t i c e

In Section 1.3, we introduced a generic software process model composed of a set of 
activities that establish a framework for software engineering practice. Generic frame-
work activities—communication, planning, modeling, construction, and 
deployment—and umbrella activities establish a skeleton architecture for software 
engineering work. But how does the practice of software engineering fit in? In the 
sections that follow, you’ll gain a basic understanding of the generic concepts and 
principles that apply to framework activities.9

1.4.1 The Essence of Practice
In the classic book How to Solve It, written before modern computers existed, George 
Polya [Pol45] outlined the essence of problem solving, and consequently, the essence 
of software engineering practice:

 1. Understand the problem (communication and analysis).
 2. Plan a solution (modeling and software design).
 3. Carry out the plan (code generation).
 4. Examine the result for accuracy (testing and quality assurance).

In the context of software engineering, these commonsense steps lead to a series 
of essential questions [adapted from Pol45]:

Understand the Problem. It’s sometimes difficult to admit, but most of us suffer 
from hubris when we’re presented with a problem. We listen for a few seconds and 

9 You should revisit relevant sections within this chapter as we discuss specific software 
engineering methods and umbrella activities later in this book.
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then think, Oh yeah, I understand, let’s get on with solving this thing. Unfortunately, 
understanding isn’t always that easy. It’s worth spending a little time answering a few 
simple questions:

∙ Who has a stake in the solution to the problem? That is, who are the stake-
holders?

∙ What are the unknowns? What data, functions, and features are required to 
properly solve the problem?

∙ Can the problem be compartmentalized? Is it possible to represent smaller 
problems that may be easier to understand?

∙ Can the problem be represented graphically? Can an analysis model be created?

Plan the Solution. Now you understand the problem (or so you think), and you 
can’t wait to begin coding. Before you do, slow down just a bit and do a little design:

∙ Have you seen similar problems before? Are there patterns that are recogniz-
able in a potential solution? Is there existing software that implements the 
data, functions, and features that are required?

∙ Has a similar problem been solved? If so, are elements of the solution reusable?
∙ Can subproblems be defined? If so, are solutions readily apparent for the 

subproblems?
∙ Can you represent a solution in a manner that leads to effective implementation? 

Can a design model be created?

Carry Out the Plan. The design you’ve created serves as a road map for the system 
you want to build. There may be unexpected detours, and it’s possible that you’ll 
discover an even better route as you go, but the “plan” will allow you to proceed 
without getting lost.

∙ Does the solution conform to the plan? Is source code traceable to the design 
model?

∙ Is each component part of the solution provably correct? Has the design and 
code been reviewed, or better, have correctness proofs been applied to the 
algorithm?

Examine the Result. You can’t be sure that your solution is perfect, but you can 
be sure that you’ve designed a sufficient number of tests to uncover as many errors 
as possible.

∙ Is it possible to test each component part of the solution? Has a reasonable 
testing strategy been implemented?

∙ Does the solution produce results that conform to the data, functions, and 
features that are required? Has the software been validated against all stake-
holder requirements?

It shouldn’t surprise you that much of this approach is common sense. In fact, it’s 
reasonable to state that a commonsense approach to software engineering will never 
lead you astray.
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1.4.2 General Principles
The dictionary defines the word principle as “an important underlying law or assump-
tion required in a system of thought.” Throughout this book we’ll discuss principles 
at many different levels of abstraction. Some focus on software engineering as a 
whole, others consider a specific generic framework activity (e.g., communication), 
and still others focus on software engineering actions (e.g., architectural design) or 
technical tasks (e.g., creating a usage scenario). Regardless of their level of focus, 
principles help you establish a mind-set for solid software engineering practice. They 
are important for that reason.

David Hooker [Hoo96] has proposed seven principles that focus on software engi-
neering practice as a whole. They are reproduced in the following paragraphs:10

The First Principle: The Reason It All Exists

A software system exists for one reason: to provide value to its users. All deci-
sions should be made with this in mind. Before specifying a system requirement, 
before noting a piece of system functionality, before determining the hardware plat-
forms or development processes, ask yourself questions such as: “Does this add real 
value to the system?” If the answer is no, don’t do it. All other principles support 
this one.

The Second Principle: KISS (Keep It Simple, Stupid!)

There are many factors to consider in any design effort. All design should be as 
simple as possible, but no simpler. This facilitates having a more easily understood 
and easily maintained system. This is not to say that features should be discarded in 
the name of simplicity. Indeed, the more elegant designs are usually the simpler 
ones. Simple does not mean “quick and dirty.” It often takes a lot of thought and 
work over multiple iterations to simplify the design. The payoff is software that is 
more maintainable and less error-prone.

The Third Principle: Maintain the Vision

A clear vision is essential to the success of a software project. Without concep-
tual integrity, a system threatens to become a patchwork of incompatible designs, 
held together by the wrong kind of screws  .  .  . Compromising the architectural 
vision of a software system weakens and will eventually break even the well-
designed systems. Having an empowered architect who can hold the vision and 
enforce compliance helps ensure a very successful software project.

The Fourth Principle: What You Produce, Others Will Consume

Always specify, design, document, and implement knowing someone else will 
have to understand what you are doing. The audience for any product of software 
development is potentially large. Specify with an eye to the users. Design, keeping 
the implementers in mind. Code with concern for those that must maintain and 
extend the system. Someone may have to debug the code you write, and that makes 
them a user of your code. Making their job easier adds value to the system.

10 Reproduced with permission of the author [Hoo96]. Hooker defines patterns for these prin-
ciples at http://c2.com/cgi/wiki?SevenPrinciplesOfSoftwareDevelopment.
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The Fifth Principle: Be Open to the Future

In today’s computing environments, where specifications change on a moment’s 
notice and hardware platforms are obsolete just a few months old, software lifetimes 
are typically measured in months instead of years. However, true “industrial-
strength” software systems must endure far longer. To do this, systems must be 
ready to adapt to these and other changes. Systems that do this successfully have 
been designed this way from the start. Never design yourself into a corner. Always 
ask “what if,” and prepare for all possible answers by creating systems that solve 
the general problem, not just the specific one.11

The Sixth Principle: Plan Ahead for Reuse

Reuse saves time and effort.12 Achieving a high level of reuse is arguably the 
hardest goal to accomplish in developing a software system. The reuse of code and 
designs has been proclaimed as a major benefit of using object-oriented technolo-
gies. However, the return on this investment is not automatic. Planning ahead for 
reuse reduces the cost and increases the value of both the reusable components and 
the systems into which they are incorporated.

The Seventh Principle: Think!

This last principle is probably the most overlooked. Placing clear, complete 
thought before action almost always produces better results. When you think 
about something, you are more likely to do it right. You also gain knowledge 
about how to do it right again. If you do think about something and still do it 
wrong, it becomes a valuable experience. A side effect of thinking is learning to 
recognize when you don’t know something, at which point you can research the 
answer. When clear thought has gone into a system, value comes out. Applying 
the first six principles requires intense thought, for which the potential rewards 
are enormous.

If every software engineer and every software team simply followed Hooker’s seven 
principles, many of the difficulties we experience in building complex computer-based 
systems would be eliminated.

 1 .5  how it aL L sta rt s

Every software project is precipitated by some business need—the need to correct a 
defect in an existing application; the need to adapt a “legacy system” to a changing 
business environment; the need to extend the functions and features of an existing 
application; or the need to create a new product, service, or system.

11 This advice can be dangerous if it is taken to extremes. Designing for the “general problem” 
sometimes requires performance compromises and can make specific solutions inefficient.

12 Although this is true for those who reuse the software on future projects, reuse can be 
expensive for those who must design and build reusable components. Studies indicate that 
designing and building reusable components can cost between 25 to 200 percent more than 
building targeted software. In some cases, the cost differential cannot be justified.
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At the beginning of a software project, the business need is often expressed informally 
as part of a simple conversation. The conversation presented in the sidebar is typical.

How a Project Starts

The scene: Meeting room at 
CPI Corporation, a (fictional) 

company that makes consumer products for 
home and commercial use.

The players: Mal Golden, senior manager, 
product development; Lisa Perez, marketing 
manager; Lee Warren, engineering manager; 
Joe Camalleri, executive vice president, 
business development

The conversation:
Joe: Okay, Lee, what’s this I hear about your 
folks developing a what? A generic universal 
wireless box?

Lee: It’s pretty cool . . . about the size of a 
small matchbook . . . we can attach it to sen-
sors of all kinds, a digital camera, just about 
anything. Using the 802.11n wireless protocol. 
It allows us to access the device’s output 
without wires. We think it’ll lead to a whole 
new generation of products.

Joe: You agree, Mal?

Mal: I do. In fact, with sales as flat as they’ve 
been this year, we need something new. Lisa 
and I have been doing a little market research, 
and we think we’ve got a line of products that 
could be big.

Joe: How big . . . bottom line big?

Mal (avoiding a direct commitment): Tell him 
about our idea, Lisa.

Lisa: It’s a whole new generation of what we 
call “home management products.” We call 
‘em SafeHome. They use the new wireless 
interface, provide homeowners or small- 
businesspeople with a system that’s controlled 
by their PC—home security, home surveillance, 
appliance and device control—you know, turn 
down the home air conditioner while you’re 
driving home, that sort of thing.

Lee (jumping in): Engineering’s done a techni-
cal feasibility study of this idea, Joe. It’s doable 
at low manufacturing cost. Most hardware is 
off the shelf. Software is an issue, but it’s 
nothing that we can’t do.

Joe: Interesting. Now, I asked about the 
bottom line.

Mal: PCs and tablets have penetrated over 
70 percent of all households in the USA. If we 
could price this thing right, it could be a killer 
app. Nobody else has our wireless box . . . it’s 
proprietary. We’ll have a 2-year jump on the 
competition. Revenue? Maybe as much as $30 
to $40 million in the second year.

Joe (smiling): Let’s take this to the next level. 
I’m interested.

safehome13

13 SafeHome will be used throughout this book to illustrate the inner workings of project teams 
as they build a software product. The company, the project, and the people are purely ficti-
tious, but the situations and problems are real.

With the exception of a passing reference, software was hardly mentioned as part 
of the conversation. And yet, software will make or break the SafeHome product line. 
The engineering effort will succeed only if SafeHome software succeeds. The market 
will accept the product only if the software embedded within it properly meets the 
customer’s (as yet unstated) needs. We’ll follow the progression of SafeHome software 
engineering in many of the chapters that follow.
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 1 .6  Su m m a ry

Software is the key element in the evolution of computer-based systems and products 
and one of the most important technologies on the world stage. Over the past 60 years, 
software has evolved from a specialized problem-solving and information analysis tool 
to an industry in itself. Yet we still have trouble developing high-quality software on 
time and within budget.

Software—programs, data, and descriptive information—addresses a wide array of 
technology and application areas. Legacy software continues to present special chal-
lenges to those who must maintain it.

Software engineering encompasses process, methods, and tools that enable com-
plex computer-based systems to be built in a timely manner with quality. The software 
process incorporates five framework activities—communication, planning, modeling, 
construction, and deployment—that are applicable to all software projects. Software 
engineering practice is a problem-solving activity that follows a set of core principles. 
As you learn more about software engineering, you’ll begin to understand why these 
principles should be considered when beginning any software project.

  Pro b l e m S a n d Po i n t S to Po n d e r

1.1. Provide at least five additional examples of how the law of unintended consequences 
applies to computer software.

1.2. Provide a number of examples (both positive and negative) that indicate the impact of 
software on our society.

1.3. Develop your own answers to the five questions asked at the beginning of Section 1.1. 
Discuss them with your fellow students.

1.4. Many modern applications change frequently—before they are presented to the end user 
and then after the first version has been put into use. Suggest a few ways to build software to 
stop deterioration due to change.

1.5. Consider the seven software categories presented in Section 1.1.2. Do you think that the 
same approach to software engineering can be applied for each? Explain your answer.

1.6. As software becomes more pervasive, risks to the public (due to faulty programs) become 
an increasingly significant concern. Develop a doomsday but realistic scenario in which the 
failure of a computer program could do great harm, either economic or human.

1.7. Describe a process framework in your own words. When we say that framework activities 
are applicable to all projects, does this mean that the same work tasks are applied for all proj-
ects, regardless of size and complexity? Explain.

1.8. Umbrella activities occur throughout the software process. Do you think they are applied 
evenly across the process, or are some concentrated in one or more framework activities?

Design element: Quick Look icon magnifying glass: © Roger Pressman
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In this part of Software Engineering: A Practitioner’s Approach, you’ll 
learn about the process that provides a framework for software engineering 
practice. These questions are addressed in the chapters that follow:

∙ What is a software process?
∙ What are the generic framework activities that are present in every 

software process?
∙ How are processes modeled, and what are process patterns?
∙ What are the prescriptive process models, and what are their strengths 

and weaknesses?
∙ Why is agility a watchword in modern software engineering work?
∙ What is agile software development, and how does it differ from more 

traditional process models?

Once these questions are answered, you’ll be better prepared to understand 
the context in which software engineering practice is applied.

The Software Process

One
P A R T
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What is it? When you work to build a product or 
system, it’s important to follow a series of pre-
dictable steps (a road map) that helps you de-
liver a high-quality product on time. This road 
map is called a “software process.”

Who does it? Software engineers adapt a pro-
cess to their needs and then follow it. The 
people who have requested the software also 
have a role to play in the process of defining, 
building, and testing it.

Why is it important? A process provides stabil-
ity, control, and organization to an activity so 
that it does not become chaotic. However, a 
modern software engineering process must be 
“agile.” It must include only those activities, 
controls, and work products that are appropriate 

for the project team and the product that is to 
be produced.

What are the steps? The process that you 
adopt depends on the software that you’re 
building. A process might be appropriate for 
creating software for an aircraft avionics sys-
tem but may not work well for the creation of a 
mobile app or video game.

What is the work product? The work prod-
ucts are the programs, documents, and data 
produced by the engineering activities and 
tasks included in the process.

How do I ensure that I’ve done it right? The 
quality, timeliness, and long-term viability of 
the product built are the best indicators of the 
success of the process used.
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k e y 
c o n c e p t s

Process  
Models

Building computer software is an iterative social learning process, and the out-
come, something that Baetjer [Bae98] would call “software capital,” is an 
embodiment of knowledge collected, distilled, and organized as the process is 
conducted.

But what exactly is a software process from a technical point of view? Within 
the context of this book, we define a software process as a framework for the 
activities, actions, and tasks required to build high-quality software. Is “process” 
synonymous with “software engineering”? The answer is yes and no. A software 
process defines the approach that is taken as software is engineered. But software 
engineering also encompasses technologies that populate the process—technical 
methods and automated tools.

More important, software engineering is performed by creative, knowledge-
able people who should adapt a mature software process so that it is appropriate 
for the products that they build and the demands of their marketplace.

2
C H A P T E R
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 2 .1  A Ge n e r i c pro c e s s Mo d e L

In Chapter 1, a process was defined as a collection of activities, actions, and tasks 
that are performed when some work product is to be created. Each of these activities, 
actions, and tasks resides within a framework or model that defines their relationship 
with the process and with one another.

The software process is represented schematically in Figure 2.1. Referring to the 
figure, each framework activity is populated by a set of software engineering actions. 
Each software engineering action is defined by a task set that identifies the work tasks 
that are to be completed, the work products that will be produced, the quality assur-
ance points that will be required, and the milestones that will be used to indicate 
progress.

As we discussed in Chapter 1, a generic process framework for software engineering 
defines five framework activities—communication, planning, modeling, construction, 
and deployment. In addition, a set of umbrella activities—project tracking and control, 

...
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risk management, quality assurance, configuration management, technical reviews, and 
others—are applied throughout the process.

You should note that one important aspect of the software process has not been 
discussed yet. This aspect—called process flow—describes how the framework activ-
ities and the actions and tasks that occur within each framework activity are organized 
with respect to sequence and time. It is illustrated in Figure 2.2.
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A linear process flow executes each of the five framework activities in sequence, 
beginning with communication and culminating with deployment (Figure 2.2a). An 
iterative process flow repeats one or more of the activities before proceeding to the 
next (Figure 2.2b). An evolutionary process flow executes the activities in a “cir-
cular” manner. Each circuit through the five activities leads to a more complete 
version of the software (Figure 2.2c). A parallel process flow (Figure 2.2d) executes 
one or more activities in parallel with other activities (e.g., modeling for one aspect 
of the software might be executed in parallel with construction of another aspect of 
the software).

 2 .2  de f i n i nG A fr A M e wo r k Ac t i v i t y

Although we have described five framework activities and provided a basic definition 
of each in Chapter 1, a software team would need significantly more information 
before it could properly execute any one of these activities as part of the software 
process. Therefore, you are faced with a key question: What actions are appropriate 
for a framework activity, given the nature of the problem to be solved, the character-
istics of the people doing the work, and the stakeholders who are sponsoring the 
project?

For a small software project requested by one person (at a remote location) with 
simple, straightforward requirements, the communication activity might encompass 
little more than a phone call or e-mail with the appropriate stakeholder. Therefore, 
the only necessary action is phone conversation, and the work tasks (the task set) that 
this action encompasses are:

 1. Make contact with stakeholder via telephone.
 2. Discuss requirements and develop notes.
 3. Organize notes into a brief written statement of requirements.
 4. E-mail to stakeholder for review and approval.

If the project was considerably more complex with lots of stakeholders, each with 
a different set of (sometimes conflicting) requirements, the communication activity 
might have six distinct actions: inception, elicitation, elaboration, negotiation, speci-
fication, and validation. Each of these software engineering actions might have many 
work tasks and in some cases a number of distinct work products.

 2 .3  id e n t i f y i nG A tA s k se t

Referring again to Figure 2.1, each software engineering action (e.g., elicitation, an 
action associated with the communication activity) can be represented by a number 
of different task sets—each a collection of software engineering work tasks, related 
work products, quality assurance points, and project milestones. Different projects 
demand different task sets. You should choose a task set that best accommodates the 
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needs of the project and the characteristics of your team. This implies that a software 
engineering action should be adapted to the specific needs of the software project and 
the characteristics of the project team.

 2 .4  pro c e s s As s e s s M e n t A n d iM p rov e M e n t

The existence of a software process is no guarantee that software will be delivered on 
time, that it will meet the customer’s needs, or that it will exhibit the technical charac-
teristics that will lead to long-term quality characteristics (Chapter 15). Process patterns 
must be coupled with solid software engineering practice (Part Two of this book). In 
addition, the process itself can be assessed to ensure that it meets a set of basic process 
criteria that have been shown to be essential for successful software engineering.1

The current thinking among most engineers is that software processes and activities 
should be assessed using numeric measures or software analytics (metrics). The 

A task set defines the actual work that 
needs to be done to accomplish the 
 objectives of a software engineering 

 action. For example, elicitation (more commonly 
called “requirements gathering”) is an important 
software engineering action that occurs during the 
communication activity. The goal of requirements 
gathering is to understand what various stakehold-
ers want from the software that is to be built.

For a small, relatively simple project, the task 
set for requirements gathering might look like this:

 1. Make a list of stakeholders for the project.
 2. Invite all stakeholders to an informal meeting.
 3. Ask each stakeholder to make a list of 

 features and functions required.
 4. Discuss requirements and build a final list.
 5. Prioritize requirements.
 6. Note areas of uncertainty.

For a larger, more complex software project, a dif-
ferent task set would be required. It might 
 encompass the following work tasks:

 1. Make a list of stakeholders for the project.
 2. Interview each stakeholder separately to 

 determine overall wants and needs.

 3. Build a preliminary list of functions and 
 features based on stakeholder input.

 4. Schedule a series of facilitated application 
specification meetings.

 5. Conduct meetings.
 6. Produce informal user scenarios as part of 

each meeting.
 7. Refine user scenarios based on stakeholder 

feedback.
 8. Build a revised list of stakeholder 

 requirements.
 9. Use quality function deployment techniques 

to prioritize requirements.
10. Package requirements so that they can be 

delivered incrementally.
11. Note constraints and restrictions that will be 

placed on the system.
12. Discuss methods for validating the system.

Both of these task sets achieve “requirements 
gathering,” but they are quite different in their 
depth and level of formality. The software team 
chooses the task set that allows it to achieve 
the goal for each action and still maintain quality 
and agility.

tAsk set

1 The SEI’s CMMI-DEV [CMM07] describes the characteristics of a software process and 
the criteria for a successful process in voluminous detail.
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progress you have made in a journey toward an effective software process will define 
the degree to which you can measure improvement in a meaningful way. The use of 
software process metrics to assess process quality is introduced in Chapter 17. A more 
detailed discussion of process assessment and improvement methods is presented in 
Chapter 28.

 2 .5  pr e s c r i p t i v e pro c e s s Mo d e L s

Prescriptive process models define a predefined set of process elements and a predict-
able process work flow. Prescriptive process models2 strive for structure and order in 
software development. Activities and tasks occur sequentially with defined guidelines 
for progress. But are prescriptive models appropriate for a software world that thrives 
on change? If we reject traditional process models (and the order they imply) and 
replace them with something less structured, do we make it impossible to achieve 
coordination and coherence in software work?

There are no easy answers to these questions, but there are alternatives available 
to software engineers. In the sections that follow, we provide an overview of the 
prescriptive process approach in which order and project consistency are dominant 
issues. We call them “prescriptive” because they prescribe a set of process elements—
framework activities, software engineering actions, tasks, work products, quality 
assurance, and change control mechanisms for each project. Each process model also 
prescribes a process flow (also called a work flow)—that is, the manner in which the 
process elements are interrelated to one another.

All software process models can accommodate the generic framework activities 
described in Chapter 1, but each applies a different emphasis to these activities and 
defines a process flow that invokes each framework activity (as well as software 
engineering actions and tasks) in a different manner. In Chapters 3 and 4 we will 
discuss software engineering practices that strive to accommodate the changes that 
are inevitable during the development of many software projects.

2.5.1 The Waterfall Model
There are times when the requirements for a problem are well understood—when work 
flows from communication through deployment in a reasonably linear fashion. This 
situation is sometimes encountered when well-defined adaptations or enhancements 
to an existing system must be made (e.g., an adaptation to accounting software because 
it needs to accommodate changes to mandated government regulations). It may also 
occur in a limited number of new development efforts, but only when requirements 
are well defined and reasonably stable.

The waterfall model, sometimes called the linear sequential model, suggests a 
systematic, sequential approach3 to software development that begins with  customer 

2 Prescriptive process models are sometimes referred to as “traditional” process models.
3 Although the original waterfall model proposed by Winston Royce [Roy70] made provision 

for “feedback loops,” the vast majority of organizations that apply this process model treat 
it as if it were strictly linear.
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specification of requirements and progresses through planning, modeling, construc-
tion, and deployment, culminating in ongoing support of the completed software 
(Figure 2.3).

The waterfall model is the oldest paradigm for software engineering. However, over 
the past five decades, criticism of this process model has caused even ardent support-
ers to question its efficacy. Among the problems that are sometimes encountered when 
the waterfall model is applied are:

 1. Real projects rarely follow the sequential work flow that the model proposes.
 2. It is often difficult for the customer to state all requirements explicitly at the 

beginning of most projects.
 3. The customer must have patience because a working version of the 

program(s) will not be available until late in the project time span.
 4. Major blunders may not be detected until the working program is reviewed.

Today, software work is fast paced and subject to a never-ending stream of changes 
(to features, functions, and information content). The waterfall model is often inap-
propriate for such work.

2.5.2 Prototyping Process Model
Often, a customer defines a set of general objectives for software but does not 
identify detailed requirements for functions and features. In other cases, the 
 developer may be unsure of the efficiency of an algorithm, the adaptability of an 
operating system, or the form that human-machine interaction should take. In 
these, and many other situations, a prototyping paradigm may offer the best 
approach.

Although prototyping can be used as a stand-alone process model, it is more com-
monly used as a technique that can be implemented within the context of any one of 
the process models noted in this chapter. Regardless of the manner in which it is 
applied, the prototyping paradigm assists you and other stakeholders to better under-
stand what is to be built when requirements are fuzzy.

For example, a fitness app developed using incremental prototypes might deliver 
the basic user interface screens needed to sync a mobile phone with the fitness device 
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and display the current data; the ability to set goals and store the fitness device data 
on the cloud might be included in the second prototype, creating and modifying the 
user interface screens based on customers feedback; and a third prototype might 
include social media integration to allow users to set fitness goals and share progress 
toward them with a set of friends.

The prototyping paradigm (Figure 2.4) begins with communication. You meet with 
other stakeholders to define the overall objectives for the software, identify whatever 
requirements are known, and outline areas where further definition is mandatory. A 
prototyping iteration is planned quickly, and modeling (in the form of a “quick 
design”) occurs. A quick design focuses on a representation of those aspects of the 
software that will be visible to end users (e.g., human interface layout or output dis-
play formats). The quick design leads to the construction of a prototype. The prototype 
is deployed and evaluated by stakeholders, who provide feedback that is used to 
further refine requirements. Iteration occurs as the prototype is tuned to satisfy the 
needs of various stakeholders, while at the same time enabling you to better under-
stand what needs to be done.

Ideally, the prototype serves as a mechanism for identifying software requirements. 
If a working prototype is to be built, you can make use of existing program fragments 
or apply tools that enable working programs to be generated quickly.

Figure 2.4

Quick planQuQu

ngdelinModde
k designickQuiui

struction ofConstrnstru
prototype

Deployymentoyy t
Delivevery &veve & feedbabackba

Commmmmunication

The 
prototyping 
paradigm



28 PART ONE THE SOFTWARE PROCESS

Both stakeholders and software engineers like the prototyping paradigm. Users get 
a feel for the actual system, and developers get to build something immediately. Yet, 
prototyping can be problematic for the following reasons:

 1. Stakeholders see what appears to be a working version of the software. They 
may be unaware that the prototype architecture (program structure) is also 
evolving. This means that the developers may not have considered the overall 
software quality or long-term maintainability.

 2. As a software engineer, you may be tempted to make implementation com-
promises to get a prototype working quickly. If you are not careful, these less-
than-ideal choices have now become an integral part of the evolving system.

Selecting a Process Model, Part 1

The scene: Meeting room for 
the software engineering group 

at CPI Corporation, a (fictional) company that 
makes consumer products for home and 
 commercial use.

The players: Lee Warren, engineering man-
ager; Doug Miller, software engineering man-
ager; Jamie Lazar, software team member; 
Vinod Raman, software team member; and 
Ed Robbins, software team member.

The conversation:
Lee: So let’s recapitulate. I’ve spent some time 
discussing the SafeHome product line as we 
see it at the moment. No doubt, we’ve got a lot 
of work to do to simply define the thing, but I’d 
like you guys to begin thinking about how 
you’re going to approach the software part of 
this project.

Doug: Seems like we’ve been pretty disorga-
nized in our approach to software in the past.

Ed: I don’t know, Doug, we always got product 
out the door.

Doug: True, but not without a lot of grief, and 
this project looks like it’s bigger and more 
complex than anything we’ve done in the past.

Jamie: Doesn’t look that hard, but I agree . . . 
our ad hoc approach to past projects won’t 
work here, particularly if we have a very tight 
time line.

Doug (smiling): I want to be a bit more profes-
sional in our approach. I went to a short course 
last week and learned a lot about software 
 engineering . . . good stuff. We need a process 
here.

Jamie (with a frown): My job is to build com-
puter programs, not push paper around.

Doug: Give it a chance before you go nega-
tive on me. Here’s what I mean. (Doug pro-
ceeds to describe the process framework 
described in Chapter 1 and the prescriptive 
process models presented to this point.)

Doug: So anyway, it seems to me that a linear 
model is not for us . . . assumes we have all re-
quirements up front and, knowing this place, 
that’s not likely.

Vinod: Yeah, and it sounds way too 
 IT-oriented . . . probably good for building an 
inventory control system or something, but 
it’s just not right for SafeHome.

Doug: I agree.

Ed: That prototyping approach seems okay. 
A lot like what we do here anyway.

Vinod: That’s a problem. I’m worried that it 
doesn’t provide us with enough structure.

Doug: Not to worry. We’ve got plenty of 
other options, and I want you guys to pick 
what’s best for the team and best for the 
project.

sAfeHoMe
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Although problems can occur, prototyping can be an effective paradigm for soft-
ware engineering. The key is to define the rules of the game at the beginning; that 
is, all stakeholders should agree that the prototype is built in part to serve as a 
mechanism for defining requirements. It is often desirable to design a prototype so it 
can be evolved into the final product. The reality is developers may need to discard 
(at least in part) a prototype to better meet the customer’s evolving needs.

2.5.3 Evolutionary Process Model
Software, like all complex systems, evolves over time. Business and product require-
ments often change as development proceeds, making a straight-line path to an end 
product unrealistic. Tight market deadlines may make completion of a comprehensive 
software product impossible. It might be possible to create a limited version of a 
product to meet competitive or business pressure and release a refined version once 
all system features are better understood. In a situation like this you need a process 
model that has been explicitly designed to accommodate a product that grows and 
changes.

Originally proposed by Barry Boehm [Boe88], the spiral model is an evolutionary 
software process model that couples the iterative nature of prototyping with the con-
trolled and systematic aspects of the waterfall model. It provides the potential for rapid 
development of increasingly more complete versions of the software.

Using the spiral model, software is developed in a series of evolutionary releases. 
During early iterations, the release might be a model or prototype. During later itera-
tions, increasingly more complete versions of the engineered system are produced.

A spiral model is divided into a set of framework activities defined by the soft-
ware engineering team. For illustrative purposes, we use the generic framework 
activities discussed earlier.4 Each of the framework activities represent one segment 
of the spiral path illustrated in Figure 2.5. As this evolutionary process begins, the 
software team performs activities that are implied by a circuit around the spiral in 
a clockwise direction, beginning at the center. Risk (Chapter 26) is considered as 
each revolution is made. Anchor point milestones—a combination of work products 
and conditions that are attained along the path of the spiral—are noted for each 
evolutionary pass.

The first circuit around the spiral (beginning at the inside streamline nearest the 
center, as shown in Figure 2.5) might result in the development of a product specifi-
cation; subsequent passes around the spiral might be used to develop a prototype and 
then progressively more sophisticated versions of the software. Each pass through the 
planning region results in adjustments to the project plan. Cost and schedule are 
adjusted based on feedback derived from the customer after delivery. In addition, 
the project manager adjusts the planned number of iterations required to complete 
the software.

Unlike other process models that end when software is delivered, the spiral model 
can be adapted to apply throughout the life of the computer software. The spiral model 

4 The spiral model discussed in this section is a variation on the model proposed by Boehm. 
For further information on the original spiral model, see [Boe88]. More recent discussion 
of Boehm’s spiral model can be found in [Boe98] and [Boe01a].
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is a realistic approach to the development of large-scale systems and software. It uses 
prototyping as a risk reduction mechanism. The spiral model demands a direct con-
sideration of technical risks at all stages of the project and, if properly applied, should 
reduce risks before they become problematic.

But like other paradigms, the spiral model is not a panacea. It may be difficult to 
convince customers (particularly in contract situations) that the evolutionary approach 
is controllable. It demands considerable risk assessment expertise and relies on this 
expertise for success. If a major risk is not uncovered and managed, problems will 
undoubtedly occur.

We have already noted that modern computer software is characterized by con-
tinual change, by very tight time lines, and by an emphatic need for customer-user 
satisfaction. In many cases, time to market is the most important management 
requirement. If a market window is missed, the software project itself may be 
 meaningless.5

The intent of evolutionary models is to develop high-quality software6 in an itera-
tive or incremental manner. However, it is possible to use an evolutionary process to 
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5 It is important to note, however, that being the first to reach a market is no guarantee of 
success. In fact, many very successful software products have been second or even third to 
reach the market (learning from the mistakes of their predecessors).

6 In this context, software quality is defined quite broadly to encompass not only customer 
satisfaction, but also a variety of technical criteria discussed in Part Two of this book.
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emphasize flexibility, extensibility, and speed of development. The challenge for 
 software teams and their managers is to establish a proper balance between these 
critical project and product parameters and customer satisfaction (the ultimate arbiter 
of software quality).

2.5.4 Unified Process Model
In some ways the Unified Process (UP) [Jac99] is an attempt to draw on the best 
features and characteristics of traditional software process models but characterize 
them in a way that implements many of the best principles of agile software devel-
opment (Chapter 3). The Unified Process recognizes the importance of customer 
communication and streamlined methods for describing the customer’s view of a 
system (the use case).7 It emphasizes the important role of software architecture and 
“helps the architect focus on the right goals, such as understandability, reliance to 
future changes, and reuse” [Jac99]. It suggests a process flow that is iterative and 
incremental, providing the evolutionary feel that is essential in modern software 
development.

Selecting a Process Model, Part 2

The scene: Meeting room for 
the software engineering group 

at CPI Corporation, a company that makes con-
sumer products for home and commercial use.

The players: Lee Warren, engineering man-
ager; Doug Miller, software engineering 
 manager; Vinod and Jamie, members of the 
software engineering team.

The conversation: (Doug describes evolution-
ary process options.)

Jamie: Now I see something I like. An incre-
mental approach makes sense, and I really like 
the flow of that spiral model thing. That’s 
 keepin’ it real.

Vinod: I agree. We deliver an increment, learn 
from customer feedback, re-plan, and then de-
liver another increment. It also fits into the na-
ture of the product. We can have something on 

the market fast and then add functionality with 
each version, er, increment.

Lee: Wait a minute. Did you say that we re-
generate the plan with each tour around the 
spiral, Doug? That’s not so great; we need 
one plan, one schedule, and we’ve got to 
stick to it.

Doug: That’s old-school thinking, Lee. Like the 
guys said, we’ve got to keep it real. I submit 
that it’s better to tweak the plan as we learn 
more and as changes are requested. It’s way 
more realistic. What’s the point of a plan if it 
doesn’t reflect reality?

Lee (frowning): I suppose so, but . . . senior 
management’s not going to like this . . . they 
want a fixed plan.

Doug (smiling): Then you’ll have to reeducate 
them, buddy.

sAfeHoMe

7 A use case (Chapter 7) is a text narrative or template that describes a system function or 
feature from the user’s point of view. A use case is written by the user and serves as a basis 
for the creation of a more comprehensive analysis model.
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UML, the unified modeling language, was developed to support their work. UML 
contains a robust notation for the modeling and development of object-oriented 
systems and has became a de facto industry standard for modeling software of all 
types. UML is used throughout Part Two of this book to represent both requirements 
and design models. Appendix 1 presents an introductory tutorial and a list of recom-
mended books for those who are unfamiliar with basic UML notation and modeling 
rules.

Figure 2.6 depicts the “phases” of the Unified Process and relates them to the 
generic activities that were discussed in Section 2.1.

The inception phase of the UP is where customer communication and planning 
takes place. Fundamental business requirements are described through a set of pre-
liminary use cases (Chapter 7) that describe which features and functions each major 
class of users desires that will become realized in the software architecture. Planning 
identifies resources, assesses major risks, and defines a preliminary schedule for the 
software increments.

Figure 2.6
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The elaboration phase encompasses the planning and modeling activities of the 
generic process model (Figure 2.6). Elaboration refines and expands the preliminary 
use cases and creates an architectural baseline that includes five different views of the 
software—the use case model, the analysis model, the design model, the implementa-
tion model, and the deployment model.8 Modifications to the plan are often made at 
this time.

The construction phase of the UP is identical to the construction activity defined 
for the generic software process. All necessary and required features and functions 
for the software increment (i.e., the release) are then implemented in source code. As 
components are being implemented, unit tests9 are designed and executed for each. In 
addition, integration activities (component assembly and integration testing) are con-
ducted. Use cases are used to derive a suite of acceptance tests that are executed prior 
to the initiation of the next UP phase.

The transition phase of the UP encompasses the latter stages of the generic 
construction activity and the first part of the generic deployment (delivery and 
feedback) activity. Software and supporting documentation is given to end users 
for beta testing, and user feedback reports both defects and necessary changes. At 
the conclusion of the transition phase, the software increment becomes a usable 
software release.

The production phase of the UP coincides with the deployment activity of the 
generic process. During this phase, the ongoing use of the software is monitored, 
support for the operating environment (infrastructure) is provided, and defect reports 
and requests for changes are submitted and evaluated.

It is likely that at the same time the construction, transition, and production phases 
are being conducted, work may have already begun on the next software increment. 
This means that the five UP phases do not occur in a sequence, but rather with stag-
gered concurrency.

It should be noted that not every task identified for a UP workflow is conducted 
for every software project. The team adapts the process (actions, tasks, subtasks, and 
work products) to meet its needs.

 2 .6  pro d u c t A n d pro c e s s

Some of the strengths and weaknesses of the process models we have discussed 
are summarized in Table 2.1. In previous editions of this book we have discussed 
many others. The reality is that no process is perfect for every project. Usually the 
software team adapts one or more of the process models discussed in 2.5 or the 
agile process models discussed in Chapter 3 to meet their needs for the project 
at hand.

8 It is important to note that the architectural baseline is not a prototype in that it is not thrown 
away. Rather, the baseline is fleshed out during the next UP phase.

9 A comprehensive discussion of software testing (including unit tests) is presented in   
Chapters 19 through 21).
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Table 2.1
Waterfall pros It is easy to understand and plan.
 It works for well-understood small projects.
 Analysis and testing are straightfoward.

Waterfall cons It does not accommodate change well.
 Testing occurs late in the process.
 Customer approval is at the end.

Prototyping pros There is a reduced impact of requirement changes.
 The customer is involved early and often.
 It works well for small projects.
 There is reduced likelihood of product rejection.

Prototyping cons Customer involvement may cause delays.
 There may be a temptation to “ship” a prototype.
 Work is lost in a throwaway prototype.
 It is hard to plan and manage.

Spiral pros There is continuous customer involvement.
 Development risks are managed.
 It is suitable for large, complex projects.
 It works well for extensible products.

Spiral cons Risk analysis failures can doom the project.
 The project may be hard to manage.
 It requires an expert development team.

Unified Process pros Quality documentation is emphasized.
 There is continuous customer involvement.
 It accommodates requirements changes.
 It works well for maintenance projects.

Unified Process cons Use cases are not always precise.
 It has tricky software increment integration.
 Overlapping phases can cause problems.
 It requires an expert development team.

If the process is weak, the end product will undoubtedly suffer. But an obsessive 
overreliance on process is also dangerous. In a brief essay written many years ago, 
Margaret Davis [Dav95a] makes timeless comments on the duality of product and 
process:

About every ten years give or take five, the software community redefines “the problem” 
by shifting its focus from product issues to process issues.  .  .  .

While the natural tendency of a pendulum is to come to rest at a point midway 
between two extremes, the software community’s focus constantly shifts because new 
force is applied when the last swing fails. These swings are harmful in and of themselves 
because they confuse the average software practitioner by radically changing what it 
means to perform the job let alone perform it well. The swings also do not solve “the 
problem” for they are doomed to fail as long as product and process are treated as form-
ing a dichotomy instead of a duality.

.  .  . You can never derive or understand the full artifact, its context, use, meaning, 
and worth if you view it as only a process or only a product.

All of human activity may be a process, but each of us derives a sense of self-worth 
from those activities that result in a representation or instance that can be used or 

Comparing 
process 
models
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appreciated either by more than one person, used over and over, or used in some other 
context not considered. That is, we derive feelings of satisfaction from reuse of our 
products by ourselves or others.

Thus, while the rapid assimilation of reuse goals into software development poten-
tially increases the satisfaction software practitioners derive from their work, it also 
increases the urgency for acceptance of the duality of product and process.  .  .  .

People derive as much (or more) satisfaction from the creative process as they do 
from the end product. An artist enjoys the brush strokes as much as the framed result. 
A writer enjoys the search for the proper metaphor as much as the finished book. As 
a creative software professional, you should also derive as much satisfaction from the 
process as the end product. The duality of product and process is one important ele-
ment in keeping creative people engaged as software engineering continues to evolve.

 2 .7  su M M A ry

A generic process model for software engineering encompasses a set of framework and 
umbrella activities, actions, and work tasks. Each of a variety of process models can be 
described by a different process flow—a description of how the framework activities, 
actions, and tasks are organized sequentially and chronologically. Process patterns can 
be used to solve common problems that are encountered as part of the software process.

Prescriptive process models have been applied for many years in an effort to bring 
order and structure to software development. Each of these models suggests a some-
what different process flow, but all perform the same set of generic framework 
activities: communication, planning, modeling, construction, and deployment.

Sequential process models, such as the waterfall model, are the oldest software 
engineering paradigms. They suggest a linear process flow that is often inconsistent 
with modern realities (e.g., continuous change, evolving systems, tight time lines) in 
the software world. They do, however, have applicability in situations where require-
ments are well defined and stable.

Incremental process models are iterative in nature and produce working versions 
of software quite rapidly. Evolutionary process models recognize the iterative, incre-
mental nature of most software engineering projects and are designed to accommodate 
change. Evolutionary models, such as prototyping and the spiral model, produce incre-
mental work products (or working versions of the software) quickly. These models 
can be adopted to apply across all software engineering activities—from concept 
development to long-term system maintenance.

The Unified Process is a “use case driven, architecture-centric, iterative and incre-
mental” software process designed as a framework for UML methods and tools.

pro b L e M s A n d po i n t s to po n d e r

2.1. Baetjer [Bae98] notes: “The process provides interaction between users and designers, 
between users and evolving tools, and between designers and evolving tools [technology].” List 
five questions that (1) designers should ask users, (2) users should ask designers, (3) users 
should ask themselves about the software product that is to be built, and (4) designers should 
ask themselves about the software  product that is to be built and the process that will be used 
to build it.
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2.2. Discuss the differences among the various process flows described in Section 2.1. Identify 
the types of problems that might be applicable to each of the generic flows described.

2.3. Try to develop a set of actions for the communication activity. Select one action, and 
define a task set for it.

2.4. A common problem during communication occurs when you encounter two stakeholders 
who have conflicting ideas about what the software should be. That is, they have mutually 
conflicting requirements. Develop a process pattern that addresses this problem and suggest an 
effective approach to it.

2.5. Provide three examples of software projects that would be amenable to the waterfall model. 
Be specific.

2.6. Provide three examples of software projects that would be amenable to the prototyping 
model. Be specific.

2.7. As you move outward along the spiral process flow, what can you say about the software 
that is being developed or maintained?

2.8. Is it possible to combine process models? If so, provide an example.

2.9. What are the advantages and disadvantages of developing software in which quality is 
“good enough”? That is, what happens when we emphasize development speed over product 
quality?

2.10. It is possible to prove that a software component and even an entire program is correct? 
So why doesn’t everyone do this?

2.11. Are the Unified Process and UML the same thing? Explain your answer.

Design element: Quick Look icon magnifying glass: © Roger Pressman
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What is it? Agile software engineering com-
bines a philosophy and a set of development 
guidelines. The philosophy encourages 
 customer satisfaction and early incremental de-
livery of software; small, highly motivated 
 project teams; informal methods; minimal 
software engineering work products; and 
overall  development simplicity. The develop-
ment guidelines stress delivery over analysis 
and design (although these activities are not 
 discouraged).

Who does it? Software engineers and other 
project stakeholders (managers, customers, 
end users) work together on an agile team—a 
team that is self-organizing and in control of its 
own destiny. An agile team fosters communi-
cation and collaboration among all who serve 
on it.

Why is it important? Modern business envi-
ronments that spawn computer-based sys-
tems and software products are fast paced 
and ever changing. Agile software engineering 

represents a reasonable alternative to con-
ventional software engineering. It has been 
demonstrated to deliver successful systems 
quickly.

What are the steps? Agile development might 
best be termed “software engineering lite.” 
The basic framework activities—communica-
tion, planning, modeling, construction, and 
 deployment—remain. But they morph into a 
minimal task set that pushes the project team 
toward construction and delivery.

What is the work product? The most impor-
tant work product is an operational “software 
increment” that is delivered to the customer 
on the appropriate commitment date. The most 
important documents created are the use sto-
ries and their associated test cases.

How do I ensure that I’ve done it right? If 
the agile team agrees that the process works, 
and the team produces deliverable software 
increments that satisfy the customer, you’ve 
done it right.

Q u i c k  L o o k
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k e y 
c o n c e p t s

In 2001, a group of noted software developers, writers, and consultants [Bec01] 
signed the “Manifesto for Agile Software Development” in which they argued in 
favor of “individuals and interactions over processes and tools, working software 
over comprehensive documentation, customer collaboration over contract nego-
tiation, and responding to change over following a plan.”
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 3 .1  Wh at is  ag i L i t y?
Just what is agility in the context of software engineering work? Ivar Jacobson [Jac02a] 
argues that the pervasiveness of change is the primary driver for agility. Software 
engineers must be quick on their feet if they are to accommodate the rapid changes 
that Jacobson describes.

But agility is more than an effective response to change. It also encompasses the 
philosophy espoused in the manifesto noted at the beginning of this chapter. It encour-
ages team structures and attitudes that make communication (among team members, 
between technologists and business people, and between software engineers and their 
managers) more facile. It emphasizes rapid delivery of operational software and deem-
phasizes the importance of intermediate work products (not always a good thing); it 
adopts the customer as a part of the development team and works to eliminate the “us 
and them” attitude that continues to pervade many software projects; it recognizes that 
planning in an uncertain world has its limits and that a project plan must be flexible.

Agility can be applied to any software process. However, to accomplish this, it is 
essential that the process be designed in a way that allows the project team to adapt tasks 
and to streamline them, conduct planning in a way that understands the fluidity of an 

The underlying ideas that guide agile development led to the development of agile1 
methods designed to overcome perceived and actual weaknesses in  conventional soft-
ware engineering. Agile development can provide important benefits, but it may not 
be applicable to all projects, all products, all people, and all situations. It is also not 
antithetical to solid software engineering practice and can be applied as an overriding 
philosophy for all software work.

In the modern economy, it is often difficult or impossible to predict how a computer-
based system (e.g., a mobile application) will evolve as time passes. Market condi-
tions change rapidly, end-user needs evolve, and new competitive threats emerge 
without warning. In many situations, you won’t be able to define requirements fully 
before the project begins. You must be agile enough to respond to a fluid business 
environment.

Fluidity implies change, and change is expensive—particularly if it is uncontrolled 
or poorly managed. One of the most compelling characteristics of the agile approach 
is its ability to reduce the costs of change through the software process.

In a thought-provoking book on agile software development, Alistair Cockburn 
[Coc02] argues that the prescriptive process models introduced in Chapter 2 have a 
major failing: they forget the frailties of the people who build computer software. 
Software engineers are not robots. They exhibit great variation in working styles and 
significant differences in skill level, creativity, orderliness, consistency, and spontane-
ity. Some communicate well in written form, others do not. If process models are to 
work, they must provide a realistic mechanism for encouraging the discipline that is 
necessary, or they must be characterized in a manner that shows “tolerance” for the 
people who do software engineering work.

1 Agile methods are sometimes referred to as light methods or lean methods.
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agile development approach, eliminate all but the most essential work products and keep 
them lean, and emphasize an incremental delivery strategy that gets working software to 
the customer as rapidly as feasible for the product type and operational environment.

 3 .2  ag i L i t y a n d t h e co st o f ch a ng e

The conventional wisdom in software development (supported by decades of experience) 
is that the cost of change increases nonlinearly as a project progresses (Figure 3.1, solid 
black curve). It is relatively easy to accommodate a change when a software team is 
gathering requirements (early in a project). A usage scenario might have to be modified, 
a list of functions may be extended, or a written specification can be edited. The costs 
of doing this work are minimal, and the time required will not adversely affect the 
outcome of the project. But what if we fast-forward a number of months? The team is 
in the middle of validation testing (something that occurs relatively late in the project), 
and an important stakeholder is requesting a major functional change. The change 
requires a modification to the architectural design of the software, the design and con-
struction of three new components, modifications to another five components, the design 
of new tests, and so on. Costs escalate quickly, and the time and effort required to ensure 
that the change is made without unintended side effects are nontrivial.

Proponents of agility (e.g., [Bec99], [Amb04]) argue that a well-designed agile 
process “flattens” the cost of change curve (Figure 3.1, shaded, solid curve), allowing 
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a software team to accommodate changes late in a software project without dramatic 
cost and time impact. You’ve already learned that the agile process encompasses 
incremental delivery. When incremental delivery is coupled with other agile practices 
such as continuous unit testing and pair programming (discussed briefly in Section 3.5.1 
and in more detail in Chapter 20), the cost of making a change is attenuated. Although 
debate about the degree to which the cost curve flattens is ongoing, there is evidence 
[Coc01a] to suggest that a significant reduction in the cost of change can be achieved.

 3 .3  Wh at is  a n ag i L e pro c e s s?
Any agile software process is characterized in a manner that addresses a number of key 
assumptions [Fow02] about the majority of software projects:

 1. It is difficult to predict in advance which software requirements will persist 
and which will change. It is equally difficult to predict how customer priorities 
will change as the project proceeds.

 2. For many types of software, design and construction are interleaved. That is, 
both activities should be performed in tandem so that design models are 
proven as they are created. It is difficult to predict how much design is 
 necessary before construction is used to prove the design.

 3. Analysis, design, construction, and testing are not as predictable (from a 
 planning point of view) as we might like.

Given these three assumptions, an important question arises: How do we create a 
process that can manage unpredictability? The answer, as we have already noted, lies 
in process adaptability (to rapidly changing project and technical conditions). An agile 
process, therefore, must be adaptable.

But continual adaptation without forward progress accomplishes little. Therefore, an 
agile software process must adapt incrementally. To accomplish incremental adaptation, 
an agile team requires customer feedback (so that the appropriate adaptations can be 
made). An effective catalyst for customer feedback is an operational prototype or a 
portion of an operational system. Hence, an incremental development strategy should 
be instituted. Software increments (executable prototypes or portions of an operational 
system) must be delivered in short time periods so that adaptation keeps pace with 
change (unpredictability). This iterative approach enables the customer to evaluate the 
software increment regularly, provide necessary feedback to the software team, and 
influence the process adaptations that are made to accommodate the feedback.

3.3.1 Agility Principles
The Agile Alliance [Agi17]2 defines 12 principles for those software organizations that 
want to achieve agility. These principles are summarized in the paragraphs that follow.

Customer satisfaction is achieved by providing value through software that is 
delivered to the customer as rapidly as possible. To achieve this, agile developers 

2 The Agile Alliance home page contains much useful information: https://www.agilealliance.org/.
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recognize that requirements will change. They deliver software increments frequently 
and work together with all stakeholders so that feedback on their deliveries is rapid 
and meaningful.

An agile team is populated by motivated individuals, who communicate face-to face 
and work in an environment that is conducive to high quality software development. 
The team follows a process that encourages technical excellence and good design, 
emphasizing simplicity—“the art of maximized the amount of work not done” [Agi17]. 
Working software that meets customer needs is their primary goal, and the pace and 
direction of the team’s work must be “sustainable,” enabling them to work effectively 
for long periods of time.

An agile team is a “self-organizing team”—one that can develop well-structured 
architectures that lead to solid designs and customer satisfaction. Part of the team 
culture is to consider its work introspectively, always with the intent of improving the 
manner in which it addresses its primary goal.

Not every agile process model applies characteristics described in this section with 
equal weight, and some models choose to ignore (or at least downplay) the importance 
of one or more agile principles. However, these principles define an agile spirit that 
is maintained in each of the process models presented in this chapter.

3.3.2 The Politics of Agile Development
There is considerable debate (sometimes strident) about the benefits and applicability 
of agile software development as opposed to more conventional software engineering 
processes. Jim Highsmith [Hig02a] (facetiously) states the extremes when he charac-
terizes the feeling of the pro-agility camp (“agilists”): “Traditional methodologists are 
a bunch of stick-in-the-muds who’d rather produce flawless documentation than a 
working system that meets business needs.” As a counterpoint, he states (again, face-
tiously) the position of the traditional software engineering camp: “Lightweight, er, 
‘agile’ methodologists are a bunch of glorified hackers who are going to be in for a 
heck of a surprise when they try to scale up their toys into enterprise-wide software.”

Like all software technology arguments, this methodology debate risks degenerat-
ing into a religious war. If warfare breaks out, rational thought disappears and beliefs 
rather than facts guide decision making.

No one is against agility. The real question is: What is the best way to achieve it? 
Keep in mind that working software is important, but don’t forget that it must also 
exhibit a variety of quality attributes including reliability, usability, and maintainabil-
ity. How do you build software that meets customers’ needs today and exhibits the 
quality characteristics that will enable it to be extended and scaled to meet customers’ 
needs over the long term?

There are no absolute answers to either of these questions. Even within the agile 
school itself, there are many proposed framework models (Sections 3.4 and 3.5), each 
with a subtly different approach to the agility problem. Within each model there is a 
set of “ideas” (agilists are loath to call them “work tasks”) that represent a significant 
departure from traditional software engineering. And yet, many agile concepts are 
simply adaptations of good software engineering concepts. The bottom line is there 
is much that can be gained by considering the best of both schools and virtually noth-
ing to be gained by denigrating either approach.
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 3 .4  sc ru m

Scrum (the name is derived from an activity that occurs during a rugby match)3 is a 
very popular agile software development method that was conceived by Jeff  Sutherland 
and his development team in the early 1990s. Further development on the Scrum 
methods was performed by Schwaber and Beedle [Sch01b].

Scrum principles are consistent with the agile manifesto and are used to guide 
development activities within a process that incorporates the following framework 
activities: requirements, analysis, design, evolution, and delivery. Within each 
framework activity, work tasks take place in a relatively short time-boxed4 period 
called a sprint. The work conducted within a sprint (the number of sprints required 
for each framework activity will vary depending on size of the product and its 
complexity) is adapted to the problem at hand and is defined and often modified in 
real time by the Scrum team. The overall flow of the Scrum process is illustrated 
in Figure 3.2. Much of our description of the Scrum framework appears in Fowler 
and Sutherland [Fow16].5

3 A group of players forms around the ball, and the teammates work together (sometimes 
violently!) to move the ball downfield.

4 A time-box is a project management term (see Part Four of this book) that indicates a period 
of time that has been allocated to accomplish some task.

5 The Scrum Guide is available at: https://www.Scrum.org/resources/what-is-Scrum.
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Considering Agile Software Development

The scene: Doug Miller’s office.

The players: Doug Miller, software engineering 
manager; Jamie Lazar, software team member; 
Vinod Raman, software team member.

The conversation: (A knock on the door, 
Jamie and Vinod enter Doug’s office.)

Jamie: Doug, you got a minute?

Doug: Sure Jamie, what’s up?

Jamie: We’ve been thinking about our pro-
cess discussion yesterday . . . you know, what 
process we’re going to choose for this new 
SafeHome project.

Doug: And?

Vinod: I was talking to a friend at another 
company, and he was telling me about Scrum. 
It’s an agile process model . . . heard of it?

Doug: Yeah, some good, some bad.

Jamie: Well, it sounds pretty good to us. Lets 
you develop software really fast, uses some-
thing called sprints to deliver software incre-
ments when the team decides the product is 
done . . . it’s pretty cool, I think.

Doug: It does have a lot of really good 
ideas. I like the sprint concept, the emphasis 
on early test case creation, and the idea that 
the process owner should be part of the 
team.

Jamie: Huh? You mean that marketing will 
work on the project team with us?

Doug (nodding): They’re stakeholders but 
not really the product owner. That would be 
Marg.

Jamie: Good. She will filter the changes 
marketing will want to send every 5 minutes.

Vinod: Even so, my friend said that there are 
ways to “embrace” changes during an agile 
project.

Doug: So you guys think we should use 
Scrum?

Jamie: It’s definitely worth considering.

Doug: I agree. And even if we choose an 
 incremental model as our approach, there’s 
no reason why we can’t incorporate much of 
what Scrum has to offer.

Vinod: Doug, before you said “some good, 
some bad.” What was the bad?

Doug: The thing I don’t like is the way Scrum 
downplays analysis and design . . . sort of says 
that writing code is where the action is . . .

(The team members look at one another and 
smile.)

Doug: So you agree with the Scrum ap-
proach?

Jamie (speaking for both): It can be adapted 
to fit our needs. Besides, writing code is what 
we do, Boss!

Doug (laughing): True, but I’d like to see you 
spend a little less time coding and then recod-
ing and a little more time analyzing what needs 
to be done and designing a solution that 
works.

Vinod: Maybe we can have it both ways, 
 agility with a little discipline.

Doug: I think we can, Vinod. In fact, I’m sure of it.

safehome

3.4.1 Scrum Teams and Artifacts
The Scrum team is a self-organizing interdisciplinary team consisting of a product 
owner, a Scrum master, and a small (three to six people) development team. The 
principle Scrum artifacts are the product backlog, the sprint backlog, and the code 
increment. Development proceeds by breaking the project into a series of incremental 
prototype development periods 2 to 4 weeks in length called sprints.
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The product backlog is a prioritized list of product requirements or features that 
provide business value for the customer. Items can be added to the backlog at any 
time with the approval of the product owner and the consent of the development team. 
The product owner orders the items in the product backlog to meet the most important 
goals of all stakeholders. The product backlog is never complete while the product is 
evolving to meet stakeholder needs. The product owner is the only person who decides 
whether to end a sprint prematurely or extend the sprint if the increment is not 
accepted.

The sprint backlog is the subset of product backlog items selected by the product 
team to be completed as the code increment during the current active sprint. The 
increment is the union of all product backlog items completed in previous sprints and 
all backlog items to be completed in the current sprints. The development team creates 
a plan for delivering a software increment containing the selected features intended 
to meet an important goal as negotiated with the product owner in the current sprint. 
Most sprints are time-boxed to be completed in 3 to 4 weeks. How the development 
team completes the increment is left up to the team to decide. The development team 
also decides when the increment is done and ready to demonstrate to the product 
owner. No new features can be added to the sprint backlog unless the sprint is can-
celled and restarted.

The Scrum master serves as facilitator to all members of the Scrum team. She runs 
the daily Scrum meeting and is responsible for removing obstacles identified by team 
members during the meeting. She coaches the development team members to help 
each other complete sprint tasks when they have time available. She helps the product 
owner find techniques for managing the product backlog items and helps ensure that 
backlog items are stated in clear and concise terms.

3.4.2 Sprint Planning Meeting
Prior to beginning, any development team works with the product owner and all 
other stakeholders to develop the items in the product backlog. Techniques for gath-
ering these requirements are discussed in Chapter 7. The product owner and the 
development team rank the items in the product backlog by the importance of the 
owner’s business needs and the complexity of the software engineering tasks (pro-
gramming and testing) required to complete each of them. Sometimes this results 
in the identification of missing features needed to deliver the required functionality 
to the end users.

Prior to starting each sprint, the product owner states her development goal for the 
increment to be completed in the upcoming sprint. The Scrum master and the devel-
opment team select the items to move from to the sprint backlog. The development 
team determines what can be delivered in the increment within the constraints of the 
time-box allocated for the sprint and, with the Scrum master, what work will be 
needed to deliver the increment. The development team decides which roles are 
needed and how they will need to be filled.

3.4.3 Daily Scrum Meeting
The daily Scrum meeting is a 15-minute event scheduled at the start of each workday 
to allow team members to synchronize their activities and make plans for the next 
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24 hours. The Scrum master and the development team always attend the daily Scrum. 
Some teams allow the product owner to attend occasionally.

Three key questions are asked and answered by all team members:

∙ What did you do since the last team meeting?
∙ What obstacles are you encountering?
∙ What do you plan to accomplish by the next team meeting?

The Scrum master leads the meeting and assesses the responses from each person. 
The Scrum meeting helps the team to uncover potential problems as early as possible. 
It is the Scrum master’s task to clear obstacles presented before the next Scrum 
meeting if possible. These are not problem-solving meetings, those occur off-line and 
only involve the affected parties. Also, these daily meetings lead to “knowledge 
socialization” [Bee99] and thereby promote a self-organizing team structure.

Some teams use these meetings to declare sprint backlog items complete or 
done. When the team considers all sprint backlog items complete, the team may 
decide to schedule a demo and review of the completed increment with the product 
owner.

3.4.4 Sprint Review Meeting
The sprint review occurs at the end of the sprint when the development team has 
judged the increment complete. The sprint review is often time-boxed as a 4-hour 
meeting for a 4-week sprint. The Scrum master, the development team, the product 
owner, and selected stakeholders attend this review. The primary activity is a demo 
of the software increment completed during the sprint. It is important to note that the 
demo may not contain all planned functionality, but rather those functions that were 
to be delivered within the time-box defined for the sprint.

The product owner may accept the increment as complete or not. If it is not 
accepted, the product owner and the stakeholders provide feedback to allow a new 
round of sprint planning to take place. This is the time when new features may be 
added or removed from the product backlog. The new features may affect the nature 
of the increment developed in the next sprint.

3.4.5 Sprint Retrospective
Ideally, before beginning another sprint planning meeting, the Scrum master will 
schedule a 3-hour meeting (for a 4-week sprint) with the development team called a 
sprint retrospective. During this meeting the team discusses:

∙ What went well in the sprint
∙ What could be improved
∙ What the team will commit to improving in the next sprint

The Scrum master leads the meeting and encourages the team to improve its 
development practices to become more effective for the next sprint. The team plans 
ways to improve product quality by adapting its definition of “done.” At the end of 
this meeting, the team should have a good idea about the improvements needed in the 
next sprint and be ready to plan the increment at the next sprint planning meeting.
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 3 .5  ot h e r ag i L e fr a m e Wo r k s

The history of software engineering is littered with dozens of obsolete process descrip-
tions and methodologies, modeling methods and notations, tools, and technology. Each 
flared in notoriety and was then eclipsed by something new and (purportedly) better. 
With the introduction of a wide array of agile process frameworks—each contending 
for acceptance within the software development community—the agile movement has 
followed the same historical path.6

As we noted in the last section, one of the most widely used of all agile frameworks 
is Scrum. But many other agile frameworks have been proposed and are in use across 
the industry. In this section, we present a brief overview of three popular agile meth-
ods: Extreme Programming (XP), Kanban, and DevOps.

3.5.1 The XP Framework
In this section we provide a brief overview of Extreme Programming (XP), one of 
the most widely used approaches to agile software development. Kent Beck [Bec04a] 
wrote the seminal work on XP.

Extreme Programming encompasses a set of rules and practices that occur within 
the context of four framework activities: planning, design, coding, and testing. Figure 3.3 
illustrates the XP process and notes some of the key ideas and tasks that are associ-
ated with each framework activity. The key XP activities are summarized in the para-
graphs that follow.

Planning. The planning activity (also called the planning game) begins with a 
requirements activity called listening. Listening leads to the creation of a set of “stories” 
(also called user stories) that describe required output, features, and functionality for 
software to be built. Each user story (described in Chapter 7) is written by the cus-
tomer and is placed on an index card. The customer assigns a value (i.e., a priority) 
to the story based on the overall business value of the feature or function.7 Members 
of the XP team then assess each story and assign a cost—measured in development 
weeks—to it. It is important to note that new stories can be written at any time.

Customers and developers work together to decide how to group stories into the 
next release (the next software increment) to be developed by the XP team. Once a 
basic commitment (agreement on stories to be included, delivery date, and other proj-
ect matters) is made for a release, the XP team orders the stories that will be developed 
in one of three ways: (1) all stories will be implemented immediately (within a few 
weeks), (2) the stories with highest value will be moved up in the schedule and 
implemented first, or (3) the riskiest stories will be moved up in the schedule and 
implemented first.

6 This is not a bad thing. Before one or more models or methods are accepted as a de facto 
standard, all must contend for the hearts and minds of software engineers. The “winners” 
evolve into best practice, while the “losers” either disappear or merge with the winning 
models.

7 The value of a story may also be dependent on the presence of another story.
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After the first project release (also called a software increment) has been delivered, 
the XP team computes project velocity. Stated simply, project velocity is the number 
of customer stories implemented during the first release. Project velocity can then be 
used to help estimate delivery dates and schedule for subsequent releases. The XP 
team modifies its plans accordingly.

Design. XP design rigorously follows the KIS (keep it simple) principle. The design 
of extra functionality (because the developer assumes it will be required later) is 
discouraged.8

XP encourages the use of CRC cards (Chapter 8) as an effective mechanism for 
thinking about the software in an object-oriented context. CRC (class-responsibility-
collaborator) cards identify and organize the object-oriented classes9 that are relevant 
to the current software increment. CRC cards are the only design work product pro-
duced as part of the XP process.

If a difficult design problem is encountered as part of the design of a story, XP 
recommends the immediate creation of an operational prototype of that portion of the 

8 These design guidelines should be followed in every software engineering method, although 
there are times when sophisticated design notation and terminology may get in the way of 
simplicity.

9 Object-oriented classes are discussed throughout Part Two of this book.
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design. A central notion in XP is that design occurs both before and after coding 
commences. Refactoring—modifying/optimizing the code in a way that does not 
change the external behavior of the software [Fow00]—means that design occurs 
continuously as the system is constructed. In fact, the construction activity itself will 
provide the XP team with guidance on how to improve the design.

Coding. After user stories are developed and preliminary design work is done, the 
team does not move to code, but rather develops a series of unit tests that will 
exercise each of the stories that is to be included in the current release (software 
increment).10 Once the unit test11 has been created, the developer is better able to 
focus on what must be implemented to pass the test. Once the code is complete, it 
can be unit-tested immediately, thereby providing instantaneous feedback to the 
developers.

A key concept during the coding activity (and one of the most talked-about aspects 
of XP) is pair programming. XP recommends that two people work together at one 
computer to create code for a story. This provides a mechanism for real-time problem 
solving (two heads are often better than one) and real-time quality assurance (the code 
is reviewed as it is created).12

As pair programmers complete their work, the code they develop is integrated with 
the work of others. This “continuous integration” strategy helps uncover compatibility 
and interfacing errors early.

Testing. The unit tests that are created should be implemented using a framework 
that enables them to be automated (hence, they can be executed easily and repeat-
edly). This encourages implementing a regression testing strategy (Chapter 20) when-
ever code is modified (which is often, given the XP refactoring philosophy). XP 
acceptance tests, also called customer tests, are specified by the customer and focus 
on overall system features and functionality that are visible and reviewable by the 
customer. They are derived from user stories that have been implemented as part of 
a software release.

3.5.2 Kanban
The Kanban method [And16] is a lean methodology that describes methods for 
improving any process or workflow. Kanban is focused on change management and 
service delivery. Change management defines the process through which a requested 
change is integrated into a software-based system. Service delivery is encouraged by 
focusing on understanding customer needs and expectations. The team members man-
age the work and are given the freedom to organize themselves to complete it. Policies 
evolve as needed to improve outcomes.

10 This approach is analogous to knowing the exam questions before you begin to study. It 
makes studying much easier by focusing attention only on the questions that will be asked.

11 Unit testing, discussed in detail in Chapter 20, focuses on an individual software component, 
exercising the component’s interface, data structures, and functionality in an effort to uncover 
errors that are local to the component.

12 Pair programming has become so widespread throughout the software community that The 
Wall Street Journal [Wal12] ran a front-page story about the subject.
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13 The use of process metrics is discussed in Chapter 23.
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Kanban originated at Toyota as a set of industrial engineering practices and was 
adapted to software development by David Anderson [And16]. Kanban itself depends 
on six core practices:

 1. Visualizing workflow using a Kanban board (an example is shown in  
Figure 3.4). The Kanban board is organized into columns representing the 
development stage for each element of software functionality. The cards on 
the board might contain single user stories or recently discovered defects on 
sticky notes and the team would advance them from “to do,” to “doing,” and 
“done” as the project progresses.

 2. Limiting the amount of work in progress (WIP) at any given time. Developers 
are encouraged to complete their current task before starting another. This 
reduces lead time, improves work quality, and increases the team’s ability to 
deliver software functionality frequently to their stakeholders.

 3. Managing workflow to reduce waste by understanding the current value flow, 
analyzing places where it is stalled, defining changes, and then implementing 
the changes.

 4. Making process policies explicit (e.g., write down your reasons for selecting 
items to work on and the criteria used to define “done”).

 5. Focusing on continuous improvement by creating feedback loops where 
changes are introduced based on process data and the effects of the change on 
the process are measured after the changes are made.13

 6. Make process changes collaboratively and involve all team members and other 
stakeholders as needed.
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The team meetings for Kanban are like those in the Scrum framework. If Kanban 
is being introduced to an existing project, not all items will start in the backlog column. 
Developers need to place their cards in the team process column by asking themselves: 
Where are they now? Where did they come from? Where are they going?

The basis of the daily Kanban standup meeting is a task called “walking the board.” 
Leadership of this meeting rotates daily. The team members identify any items missing 
from the board that are being worked on and add them to the board. The team tries 
to advance any items they can to “done.” The goal is to advance the high business 
value items first. The team looks at the flow and tries to identify any impediments to 
completion by looking at workload and risks.

During the weekly retrospective meeting, process measurements are examined. The 
team considers where process improvements may be needed and proposes changes to 
be implemented. Kanban can easily be combined with other agile development prac-
tices to add a little more process discipline.

3.5.3 DevOps
DevOps was created by Patrick DeBois [Kim16a] to combine Development and Oper-
ations. DevOps attempts to apply agile and lean development principles across the 
entire software supply chain. Figure 3.5 presents an overview of the DevOps work-
flow. The DevOps approach involves several stages that loop continuously until the 
desired product exists:

∙ Continuous development. Software deliverables are broken down and 
 developed in multiple sprints with the increments delivered to the quality 
assurance14 members of the development team for testing

∙ Continuous testing. Automated testing tools15 are used to help team members 
test multiple code increments at the same time to ensure they are free of 
defects prior to integration.

∙ Continuous integration. The code pieces with new functionality are added  
to the existing code and to the run-time environment and then checked to 
ensure there are no errors after deployment.

∙ Continuous deployment. At this stage the integrated code is deployed 
(installed) to the production environment, which might include multiple sites 
globally that need to be prepared to receive the new functionality.

∙ Continuous monitoring. Operations staff who are members of the develop-
ment team help to improve software quality by monitoring its performance  
in the production environment and proactively looking for possible problems 
before users find them.

DevOps enhances customers’ experiences by reacting quickly to changes in their 
needs or desires. This can increase brand loyalty and increase market share. Lean 
approaches like DevOps can provide organizations with increased capacity to innovate 

14 The quality assurance is discussed in Chapter 17.
15 Automated testing tools are discussed in Chapter 19.
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by reducing rework and allowing shifts to higher business value activities. Products 
do not make money until consumers have access to them, and DevOps can provide 
faster deployment time to production platforms [Sha17].

 3 .6  Su m m a ry

In a modern economy, market conditions change rapidly, customer and end-user needs 
evolve, and new competitive threats emerge without warning. Practitioners must 
approach software engineering in a manner that allows them to remain agile—to 
define maneuverable, adaptive, lean processes that can accommodate the needs of 
modern business.

An agile philosophy for software engineering stresses four key issues: the impor-
tance of self-organizing teams that have control over the work they perform, com-
munication and collaboration between team members and between practitioners and 
their customers, a recognition that change represents an opportunity, and an emphasis 
on rapid delivery of software that satisfies the customer. Agile process models have 
been designed to address each of these issues.

Some of the strengths and weaknesses of the agile methods we discussed are sum-
marized in Table 3.1. In previous editions of this book we have discussed many others. 
The reality is that no agile method is perfect for every project. Agile developers work 
on self-directed teams and are empowered to create their own process models.

Scrum emphasizes the use of a set of software process patterns that have proven 
effective for projects with tight time lines, changing requirements, and business criti-
cality. There is no reason why a Scrum team could not adopt the use of a Kanban 
chart to help organize its daily planning meeting.

Plan
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Deploy
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Monitor

ateratatatIntegeggegraatraaaeggggegrat

Figure 3.5
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Extreme programming (XP) is organized around four framework activities—
planning, design, coding, and testing—XP suggests a number of innovative and 
powerful techniques that allow an agile team to create frequent software releases 
that deliver features and functionality that have been described and then prioritized 
by stakeholders. There is nothing preventing them from using DevOps techniques 
to decrease their time to deployment.

  pro b L e m s a n d po i n t s to po n d e r

3.1. Read the “Manifesto of Agile Software Development” [Bec01] noted at the beginning of 
this chapter. Can you think of a situation in which one or more of the four “values” could get 
a software team into trouble?

Table 3.1

Comparing  
agile 
 techniques

Scrum pros The product owner sets priorities.
 The team owns decision making.
 Documentation is lightweight.
 It supports frequent updating.

Scrum cons It is difficult to control the cost of changes.
 It may not be suitable for large teams.
 It requires expert team members.

XP pros It emphasizes customer involvement.
 It establishes rational plans and schedules.
 There is high developer commitment to the project.
 There is reduced likelihood of product rejection.

XP cons There is temptation to “ship” a prototype.
 It requires frequent meetings about increasing costs.
 It may allow for excessive changes.
 There is a dependence on highly skilled team members.

Kanban pros It has lower budget and time requirements.
 It allows for early product delivery.
 Process policies are written down.
 There is continuous process improvement.

Kanban cons Team collaboration skills determine success.
 Poor business analysis can doom the project.
 Flexibility can cause developers to lose focus.
 Developer reluctance to use measurement.

DevOps pros There is reduced time to code deployment.
 The team has developers and operations staff.
 The team has end-to-end project ownership.
 There is proactive monitoring of deployed product.

DevOps cons There is pressure to work on both old and new code.
 There is heavy reliance on automated tools to be effective.
 Deployment may affect the production environment.
 It requires an expert development team.
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3.2. Describe agility (for software projects) in your own words.

3.3. Why does an iterative process make it easier to manage change? Is every agile process 
discussed in this chapter iterative? Is it possible to complete a project in just one iteration and 
still be agile? Explain your answers.

3.4. Try to come up with one more “agility principle” that would help a software engineering 
team become even more maneuverable.

3.5. Why do requirements change so much? After all, don’t people know what they want?

3.6. Most agile process models recommend face-to-face communication. Yet today, members 
of a software team and their customers may be geographically separated from one another. Do 
you think this implies that geographical separation is something to avoid? Can you think of 
ways to overcome this problem?

3.7. Write a user story that describes the “favorite places” or “favorites” feature available on 
most Web browsers.

3.8. Describe the XP concepts of refactoring and pair programming in your own words.

Design element: Quick Look icon magnifying glass: © Roger Pressman
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What is it? Every software product needs a 
“road map” or “generic software process” of 
some kind. It doesn’t have to be complete be-
fore you start, but you need to know where 
you’re headed before you begin. Any road 
map or generic process should be based on 
best industry practices.

Who does it? Software engineers and their 
product stakeholders collaborate to adapt a 
generic software process model to meet the 
needs of team and then either follow it di-
rectly, or more likely, adapt as needed. Every 
software team should be disciplined but flexi-
ble and self-empowered when needed.

Why is it important? Software development 
can easily become chaotic without the control 
and organization offered by a defined pro-
cess. As we stated in Chapter 3, a modern 
software engineering approach must be “agile” 
and embrace changes that are needed to 
 satisfy the stakeholders’ requirements. It is 
 important not to be too focused on documents 
and rituals. The process should only include 
those activities, controls, and work products 

that are appropriate for the project team and 
the product that is to be produced.

What are the steps? Even if a generic process 
must be adapted to meet the needs of the 
specific products being built, you need to be 
sure that all stakeholders have a role to play in 
defining, building, and testing the evolving 
software. There is likely to be substantial over-
lap among the basic framework activities 
(communication, planning, modeling, con-
struction, and deployment). Design a little, 
build a little, test a little, repeat is a better ap-
proach than creating rigid project plans and 
documents for most software projects.

What is the work product? From the point of 
view of a software team, the work products 
are working program increments, useful docu-
ments, and data that are produced by the pro-
cess activities.

How do I ensure that I’ve done it right? The 
timeliness, levels of stakeholder satisfaction, 
overall quality, and long-term viability of the 
product increments built are the best indica-
tors that your process is working.
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4
In Chapters 2 and 3, we provided brief descriptions of several software process 
models and software engineering frameworks. Every project is different, and 
every team is different. There is no single software engineering framework that 
is appropriate for every software product. In this chapter, we’ll share our thoughts 
on using an adaptable process that can be tailored to fit the needs of software 
developers working on many types of products.

Recommended  
Process Model



CHAPTER 4 RECOMMENDED PROCESS MODEL  55

A paper by Rajagoplan [Raj14] reviews the general weaknesses of prescriptive 
software life-cycle approaches (e.g., the waterfall model) and contains several sugges-
tions that should be considered when organizing a modern software development 
project.

 1. It is risky to use a linear process model without ample feedback.
 2. It is never possible nor desirable to plan big up-front requirements gathering.
 3. Up-front requirements gathering may not reduce costs or prevent time slippage.
 4. Appropriate project management is integral to software development.
 5. Documents should evolve with the software and should not delay the start of 

construction.
 6. Involve stakeholders early and frequently in the development process.
 7. Testers need to become involved in the process prior to software construction.

In Section 2.6, we listed the pros and cons of several prescriptive process models. 
The waterfall model is not amenable to changes that may need to be introduced once 
developers start coding. Stakeholder feedback is therefore limited to the beginning 
and end of the project. Part of the reason for this is the waterfall model suggests that 
all analysis and design work products be completed before any programming or 
testing occurs. This makes it hard to adapt to projects with evolving requirements.

One temptation is to switch to an incremental model (Figure 4.1) like the prototyp-
ing model or Scrum. Incremental process models involve customers early and often 
and therefore reduce the risk of creating product that is not accepted by the customers. 
There is a temptation to encourage lots of changes as stakeholders view each prototype 
and realize that functions and features they now realize they need are missing. Often, 
developers do not plan for prototype evolution and create throwaway prototypes. 

Figure 4.1
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Recall  that the goal of software engineering is to reduce unnecessary effort, so proto-
types need to be designed with reuse in mind. Incremental models do provide a better 
basis for creating an adaptable process if changes can be managed wisely.

In Section 3.5, we discussed the pros and cons of several agile process models 
other than Scrum. Agile process models are very good at accommodating the uncer-
tain knowledge about the stakeholders’ real needs and problems. Key characteristics 
of agile process models are:

∙ Prototypes created are designed to be extended in future software increments.
∙ Stakeholders are involved throughout the development process.
∙ Documentation requirements are lightweight, and documentation should 

evolve along with the software.
∙ Testing is planned and executed early.

Scrum and Kanban extend these characteristics. Scrum is sometimes criticized for 
requiring too many meetings. But daily meetings make it hard for developers to stray 
too far from building products that stakeholders find useful. Kanban (Section 3.5.2) 
provides a good lightweight tracking system for managing the status and priorities of 
user stories.

Both Scrum and Kanban allow for controlled introduction of new requirements 
(user stories). Agile teams are small by design and may not be suitable for projects 
requiring large numbers of developers, unless the project can be partitioned into small 
and independently assignable components. Still, agile process models offer many good 
features that can be incorporated into an adaptable process model.

The spiral model (Figure 4.2) can be thought of as an evolutionary prototyping 
model with a risk assessment element. The spiral model relies on moderate stakeholder 

Figure 4.2
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Creative, knowledgeable people perform software engineering. They adapt software 
processes to make them appropriate for the products that they build and to meet the 
demands of the marketplace. We think that using a spiral-like approach that has agil-
ity built into every cycle is a good place to start for many software projects. Develop-
ers learn many things as they proceed in the development process. That’s why it is 
important for developers to be able to adapt their process as quickly as practical to 
accommodate this new knowledge.

 4 .1  Re Q u i R e m e n t s De f i n i t i o n

Every software project begins with the team trying to understand the problem to be 
solved and determining what outcomes are important to the stakeholders. This includes 
understanding the business needs motivating the project and the technical issues which 
constrain it. This process is called requirements engineering and will be discussed in 

involvement and was designed for large teams and large projects. Its goal is to create 
extensible prototypes each time the process is iterated. Early testing is essential. Doc-
umentation evolves with the creation of each new prototype. The spiral model is 
somewhat unique in that formal risk assessment is built in and used as the basis for 
deciding whether to invest the resources needed to create the next prototype. Some 
people argue that it may be hard to manage a project using the spiral model, because 
the project scope may not be known at the start of the project. This is typical of most 
incremental process models. The spiral is a good basis for building an adaptable 
process model.

How do agile process models compare to evolutionary models? We’ve summarized 
some of the key characteristics in a sidebar.

Agile
 1. Not suitable for large high-risk or mission 

critical projects.
 2. Minimal rules and minimal documentation
 3. Continuous involvement of testers
 4. Easy to accommodate product changes
 5. Depends heavily on stakeholder  

interaction
 6. Easy to manage
 7. Early delivery of partial solutions
 8. Informal risk management
 9. Built-in continuous process  

improvement

Spiral
 1. Not suitable for small, low-risk projects
 2. Several steps required, along with documen-

tation done up front
 3. Early involvement of testers (might be done 

by outside team)
 4. Hard to accommodate product changes until 

prototype completed
 5. Continuous stakeholder involvement in 

planning and risk assessment
 6. Requires formal project management and 

coordination
 7. Project end not always obvious
 8. Good risk management
 9. Process improvement handled at end of project

chaRacteRistics of agiLe moDeLs
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more detail in Chapter 7. Teams that fail to spend a reasonable amount of time on 
this task will find that their project contains expensive rework, cost overruns, poor 
product quality, late delivery times, dissatisfied customers, and poor team morale. 
Requirements engineering cannot be neglected, nor can it be allowed to iterate end-
lessly before proceeding to product construction.

It’s reasonable to ask what best practices should be followed to achieve thorough 
and agile requirements engineering. Scott Ambler [Amb12] suggests several best prac-
tices for agile requirements definition:

 1. Encourage active stakeholder participation by matching their availability and 
valuing their input.

 2. Use simple models (e.g., Post-it notes, fast sketches, user stories) to reduce 
barriers to participation.

 3. Take time to explain your requirement representation techniques before using 
them.

 4. Adopt stakeholder terminology, and avoid technical jargon whenever possible.
 5. Use a breadth-first approach to get the big picture of the project done before 

getting bogged down in details.
 6. Allow the development team to refine (with stakeholder input) requirement 

details “just in time” as user stories are scheduled to be implemented.
 7. Treat the list of features to be implemented like a prioritized list, and imple-

ment the most important user stories first.
 8. Collaborate closely with your stakeholders and only document requirements at 

a level that is useful to all when creating the next prototype.
 9. Question the need to maintain models and documents that will not be referred 

to in the future.
 10. Make sure you have management support to ensure stakeholder and resource 

availability during requirements definition.

It is important to recognize two realities: (1) it is impossible for stakeholders to 
describe an entire system before seeing the working software, and (2) it is difficult for 
stakeholders to describe quality requirements needed for the software before seeing it 
in action. Developers must recognize that requirements will be added and refined as 
the software increments are created. Capturing stakeholders’ descriptions about what 
the system needs to do in their own words in a user story is a good place to begin.

If you can get stakeholders to define acceptance criteria for each user story, your 
team is off to a great start. It is likely that stakeholders will need to see a user story 
coded and running to know whether it has been implemented correctly or not. There-
fore, requirements definition needs to be done iteratively and include the development 
of prototypes for stakeholder review.

Prototypes are tangible realizations of project plans that can be easily referenced 
by stakeholders when trying to describe desired changes. Stakeholders are motivated 
to discuss requirements changes in more concrete terms, which improves communica-
tion. It’s important to recognize that prototypes allow developers to focus on short-
term goals by only focusing on users’ visible behaviors. It will be important to review 
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prototypes with an eye to the quality. Developers need to be aware that using proto-
types may increase the volatility of the requirements if stakeholders are not focused 
on getting things right the first time. There is also the risk that creating prototypes 
before the software architectural requirements are well understood may result in pro-
totypes that must be discarded, wasting time and resources [Kap15].

 4 .2  pR e L i m i na Ry aRc h i t e c t u R a L De s i g n

The decisions required to develop a solid architectural design are discussed in Chapter 10, 
but preliminary design decisions must often be made as requirements are defined. As 
shown in Figure 4.3, at some point in time, architectural decisions will need to be 
allocated to product increments. According to Bellomo and her colleagues [Bel14], 
early understanding of requirements and architecture choices is key to managing the 
development of large or complex software products.

Figure 4.3
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Requirements can be used to inform architecture design. Exploring the architecture 
as the prototype is developed facilitates the process of detailing the requirements. It 
is best to conduct these activities concurrently to achieve the right balance. There are 
four key elements to agile architectural design:

 1. Focus on key quality attributes, and incorporate them into prototypes as they 
are constructed.

 2. When planning prototypes, keep in mind that successful software products 
combine customer-visible features and the infrastructure to enable them.

 3. Recognize that an agile architecture enables code maintainability and evolv-
ability if sufficient attention is paid to architectural decisions and related 
 quality issues.

 4. Continuously managing and synchronizing dependencies between the functional 
and architectural requirements is needed to ensure the evolving architectural 
foundation will be ready just in time for future increments.

Software architecture decision making is critical to the success of a software 
system. The architecture of a software system determines its qualities and impacts 
the system throughout its life cycle. Dasanayake et al. [Das15] found that software 
architects are prone to making errors when their decisions are made under levels 
of uncertainty. Architects make fewer bad decisions if they can reduce this uncer-
tainty through better architectural knowledge management. Despite the fact that 
agile approaches discourage heavy documentation, failing to record design deci-
sions and their rationale early in the design process makes it hard to revisit them 
when creating future prototypes. Documenting the right things can assist with pro-
cess improvement activities. Documenting your lessons learned is one of the rea-
sons that retrospectives should be conducted after evaluating the delivered prototype 
and before beginning the next program increment. Reuse of previously successful 
solutions to architectural problems is also helpful and will be discussed in 
Chapter 14.

 4 .3  Re s o u Rc e est i m at i o n

One of the more controversial aspects of using spiral or agile prototyping is estimat-
ing the time it will take to complete a project when it cannot be defined completely. 
It is important to understand before you begin whether you have a reasonable chance 
of delivering software products on time and with acceptable costs before you agree 
to take on the project. Early estimates run the risk of being incorrect because the 
project scope is not well defined and is likely to change once development starts. 
Estimates made when the project is almost finished do not provide any project man-
agement guidance. The trick is to estimate the software development time early based 
on what is known at the time and revise your estimates on a regular basis as require-
ments are added or after software increments are delivered. We discuss methods of 
estimating project scope in Chapter 25.

Let’s examine how an experienced software project manager might estimate a proj-
ect using the agile spiral model we have proposed. The estimates produced by this 
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method would need to be adjusted for the number of developers and the number of 
user stories that can be completed simultaneously.

 1. Use historic data (Chapter 23), and work as a team to develop an estimate of 
how many days it will take to complete each of the user stories known at the 
start of the project.

 2. Loosely organize the user stories into the sets that will make up each sprint1 
(Section 3.4) planned to complete a prototype.

 3. Sum the number of days to complete each sprint to provide an estimate for 
the duration of the total project.

 4. Revise the estimate as requirements are added to the project or prototypes are 
delivered and accepted by the stakeholders.

Keep in mind that doubling the number of developers almost never cuts the devel-
opment time in half.

Rosa and Wallshein [Ros17] found that knowing initial software requirements at 
the start of a project provides an adequate but not always accurate estimate of project 
completion times. To get more accurate estimates, it is also important to know the 
type of project and the experience of the team. We will describe more detailed estima-
tion techniques (e.g., function points or use case points) in Part Four of this book.

 4 .4  fi R st pRotot y p e co n st Ru c t i o n

In Section 2.5.2 we described the creation of prototypes as a means of helping the 
stakeholders move from statements of general objectives and user stories to the level 
of detail that developers will need to implement this functionality. Developers may 
use the first prototype to prove that their initial architectural design is a feasible 
approach to delivering the required functionality while satisfying the customer’s per-
formance constraints. To create an operational prototype suggests that requirements 
engineering, software design, and construction all proceed in parallel. This process is 
shown in Figure 4.1. This section describes steps that will be used to create the first 
prototypes. Details of best practices for software design and construction appear later 
in this book.

Your first task is to identify the features and functions that are most important to 
the stakeholders. These will help define the objectives for the first prototype. If the 
stakeholders and developers have created a prioritized list of user stories, it should be 
easy to confirm which are the most important.

Next, decide how much time will be allowed to create the first prototype. Some 
teams may choose a fixed time, such as a 4-week sprint, to deliver each prototype. In 
this case, the developers will look at their time and resource estimate and determine 
which of the high-priority user stories can be finished in 4 weeks. The team would 
then confirm with the stakeholders that the selected user stories are the best ones to 
include in the first prototype. An alternative approach would be to have the  stakeholders 

1 Sprint was described (Section 3.4) as a time period in which a subset of the system user 
stories will be delivered to the product owner.
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and developers jointly choose a small number of high-priority user stories to include 
in the first prototype and use their time and resource estimates to develop the sched-
ule to complete the first prototype.

The engineers working at National Instruments published a white paper that out-
lines their process for creation of a first functional prototype [Nat15]. These steps can 
be applied to a variety of software projects:

 1. Transition from paper prototype to software design
 2. Prototype a user interface
 3. Create a virtual prototype
 4. Add input and output to your prototype
 5. Engineer your algorithms
 6. Test your prototype
 7. Prototype with deployment in mind

Referring to these seven steps, creating a paper prototype for a system is very 
inexpensive and can be done early in the development process. Customers and 
stakeholders are not usually experienced developers. Nontechnical users can often 
recognize what they like or do not like about a user interface very quickly once they 
see it sketched out. Communications between people are often filled with misunder-
standings. People forget to tell each other what they really need to know or assume 
that everyone has the same understanding. Creating a paper prototype and reviewing 
it with the customer before doing any programming can help avoid wasted time build-
ing the wrong prototype. We will talk about several diagrams that can be used to 
model a system in Chapter 8.

Creating a prototype user interface as part of the first functional prototype is a 
wise idea. Many systems are implemented on the Web or as mobile applications and 
rely heavily on touch user interfaces. Computer games and virtual reality applications 
require a great deal of communication with end users to operate correctly. If custom-
ers find a software product easy to learn and use, they are more likely to use it.

Many misunderstandings between developers and stakeholders can be alleviated by 
beginning with a paper prototype of the user interface. Sometimes stakeholders need to 
see the basics of the user interface in action to be able to explain what they really like 
and dislike about it. It is less expensive to throw away an early user interface design 
than to finish the prototype and try to put a new user interface on top of it. Designing 
user interfaces that provide good user experiences is discussed in Chapter 12.

Adding input and output to your user interface prototype provides an easy way to 
begin testing the evolving prototype. Testing software component interfaces should be 
accomplished before testing the code that makes up the component’s algorithms. To 
test the algorithms themselves, developers often use a “test frame” to ensure their 
implemented algorithms are working as intended. Creating a separate test frame and 
throwing it away is often a poor use of project resources. If properly designed, the 
user interface can serve as the test frame for component algorithms, thereby eliminat-
ing the effort required to build separate test frames.

Engineering your algorithms refers to the process of transforming your ideas and 
sketches into programming language code. You need to consider both the functional 
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requirements stated in the user story and the performance constraints (both explicit 
and implicit) when designing the necessary algorithms. This is the point where addi-
tional support functionality is likely to be identified and added to the project scope, 
if it does not already exist in a code library.

Testing your prototype demonstrates required functionality and identifies yet undis-
covered defects before demonstrating it to the customer. Sometimes it is wise to 
involve the customer in the testing process before the prototype is finished to avoid 
developing the wrong functionality. The best time to create test cases is during require-
ments gathering or when use cases have been selected for implementation. Testing 
strategies and tactics are discussed in Chapters 19 through 21.

Prototyping with deployment in mind is very important because it helps you to 
avoid taking shortcuts that lead to creating software that will be hard to maintain in 
the future. This is not saying that every line of code will make it to the final software 
product. Like many creative tasks, developing a prototype is iterative. Drafts and revi-
sions are to be expected.

As prototype development occurs, you should carefully consider the software archi-
tectural choices you make. It is relatively inexpensive to change a few lines of code 
if you catch errors before deployment. It is very expensive to change the architecture 
of a software application once it has been released to end users around the globe.

Room Designer
Considering First Prototype

The scene: Doug Miller’s office.

The players: Doug Miller, software engineer-
ing manager; Jamie Lazar, software team mem-
ber; Vinod Raman, software team member.

The conversation: (A knock on the door. 
Jamie and Vinod enter Doug’s office.)

Jamie: Doug, you got a minute?

Doug: Sure, Jamie, what’s up?

Jamie: We’ve been thinking about the scope 
of this SafeHome room design tool.

Doug: And?

Vinod: There’s a lot of work that needs to be 
done on the back end of the project before 
people can start dropping alarm sensors and 
trying furniture layouts.

Jamie: We don’t want to work on the back 
end for months and then have the project can-
celled when the marketing folks decide they 
hate the product.

Doug: Have you tried to work out a paper 
prototype and review it with the marketing 
group?

Vinod: Well, no. We thought it was important 
to get a working computer prototype quickly 
and did not want to take the time to do one.

Doug: My experience is that people need to 
see something before they know whether they 
like it or not.

Jamie: Maybe we should step back and cre-
ate a paper prototype of the user interface and 
get them to work with it and see if they like the 
concept at all.

Vinod: I suppose it wouldn’t be too hard to 
program an executable user interface using 
the game engine we were considering using 
for the virtual reality version of the app.

Doug: Sounds like a plan. Try that approach, 
and see if you have the confidence you need 
to start evolving your prototype.

safehome
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 4 .5  pRotot y p e eva Luat i o n

Testing is conducted by the developers as the prototype is being built and becomes 
an important part of prototype evaluation. Testing demonstrates that prototype com-
ponents are operational, but it’s unlikely that test cases will have found all the defects. 
In the spiral model, the results of evaluation allow the stakeholders and developers to 
assess whether it is desirable to continue development and create the next prototype. 
Part of this decision is based on user and stakeholder satisfaction, and part is derived 
from an assessment of the risks of cost overruns and failure to deliver a working 
product when the project is finished. Dam and Siang [Dam17] suggest several best-
practice tips for gathering feedback on your prototype.

 1. Provide scaffolding when asking for prototype feedback.
 2. Test your prototype on the right people.
 3. Ask the right questions.
 4. Be neutral when presenting alternatives to users.
 5. Adapt while testing.
 6. Allow the user to contribute ideas.

Providing scaffolding is a mechanism for allowing the user to offer feedback that 
is not confrontational. Users are often reluctant to tell developers that they hate the 
product they are using. To avoid this, it is often easier to ask the user to provide 
feedback using a framework such as “I like, I wish, What if” as a means of providing 
open and honest feedback. I like statements encourage users to provide positive feed-
back on the prototype. I wish statements prompt users to share ideas about how the 
prototype can be improved. These statements can provide negative feedback and con-
structive criticism. What if statements encourage users to suggest ideas for your team 
to explore when creating prototypes in future iterations.

Getting the right people to evaluate the prototype is essential to reduce the risk of 
developing the wrong product. Having development team members do all the testing 
is not wise because they are not likely to be the representative of the intended user 
population. It’s important to have the right mix of users (e.g., novice, typical, and 
advanced) to give you feedback on the prototype.

Asking the right questions implies that all stakeholders agree on prototype objec-
tives. As a developer, it’s important to keep an open mind and do your best to 
convince users that their feedback is valuable. Feedback drives the prototyping 
process as you plan for future product development activities. In addition to general 
feedback, try to ask specific questions about any new features included in the 
prototype.

Be neutral when presenting alternatives allows the software team to avoid mak-
ing users feel they are being “sold” on one way to do things. If you want honest 
feedback, let the users know that you have not already made up your mind that 
there is only one right way to do things. Egoless programming is a development 
philosophy that focuses on producing the best product the team can create for the 
intended users. Although it is not desirable to create throwaway prototypes, egoless 
programming suggests that things that are not working need to be fixed or 
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discarded. So try not to become too attached to your ideas when creating early 
prototypes.

Adapt while testing means that you need a flexible mind-set while users are work-
ing with the prototype. This might mean altering your test plan or making quick 
changes to the prototype and then restarting the testing. The goal is to get the best 
feedback you can from users, including direct observation of them as they interact 
with the prototype. The important thing is that you get the feedback you need to help 
decide whether to build the next prototype or not.

Allow users to contribute ideas means what it says. Make sure you have a way of 
recording their suggestions and questions (electronically or otherwise). We will dis-
cuss additional ways of conducting user testing in Chapter 12.

Room Designer
Evaluating First Prototype

The scene: Doug Miller’s office.

The players: Doug Miller, software engineer-
ing manager; Jamie Lazar, software team mem-
ber; Vinod Raman, software team member.

The conversation: (A knock on the door.  
Jamie and Vinod enter Doug’s office.)

Jamie: Doug, you got a minute?

Doug: Sure, Jamie, what’s up?

Jamie: We completed the evaluation of the 
SafeHome room design tool working with our 
marketing stakeholders.

Doug: How did things go?

Vinod: We mostly focused on the user 
interface that will allow users to place alarm 
sensors in the room.

Jamie: I am glad we let them review a paper 
prototype before we created the PC prototype.

Doug: Why is that?

Vinod: We made some changes, and the 
marketing people liked the new design better, 
so that’s the design we used when we started 
programming it.

Doug: Good. What’s the next step?

Jamie: We completed the risk analysis and 
since we did not pick up any new user stories, 
we think it is reasonable to work on creating 
the next incremental prototype since we are 
still on time and within budget.

Vinod: So, if you agree, we’ll get the 
developers and stakeholders together and 
begin planning the next software increment.

Doug: I agree. Keep me in the loop and try to 
keep the development time on the next 
prototype to 6 weeks or less.

safehome

 4.6 go,  no-go De c i s i o n

After the prototype is evaluated, project stakeholders decide whether to continue 
development of the software product. If you refer to Figure 4.4, a slightly different 
decision based on the prototype evaluation might be to release the prototype to the 
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end users and begin the maintenance process. Sections 4.8 and 4.9 discuss this deci-
sion in more detail. We discussed the use of risk assessment in the spiral model as 
part of the prototype assessment process in Section 2.5.3. The first circuit around the 
spiral might be used to solidify project requirements. But it really should be more. In 
the method we are proposing here, each trip around the spiral develops a meaningful 
increment of the final software product. You can work with the project user story or 
feature backlog to identify an important subset of the final product to include in the 
first prototype and repeat this for each subsequent prototype.

A pass through the planning region follows the evaluation process. Revised cost 
estimates and schedule changes are proposed based on what was discovered when 
evaluating the current software prototype. This may involve adding new user stories 
or features to the project backlog as the prototype is evaluated. The risk of exceeding 
the budget and missing the project delivery date is assessed by comparing new cost 
and time estimates against old ones. The risk of failing to satisfy user expectations is 
also considered and discussed with the stakeholders and sometimes senior manage-
ment before deciding to create another prototype.

The goal of the risk assessment process is to get the commitment of all 
 stakeholders and company management to provide the resources needed to create 
the next prototype. If the commitment is not there because the risk of project 
failure is too great, then the project can be terminated. In the Scrum framework 
(Section 3.4), the go, no-go decision might be made during the Scrum retrospective 
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 meeting held between the prototype demonstration and the new sprint planning 
meeting. In all cases, the development team lays out the case for the product 
 owners and lets them decide whether to continue product development or not. A 
more detailed discussion of software risk assessment methods is presented in 
Chapter 26.

 4 .7  pRotot y p e evo Lu t i o n

Once a prototype has been developed and reviewed by the development team and 
other stakeholders, it’s time to consider the development of the next prototype. The 
first step is to collect all feedback and data from the evaluation of the current proto-
type. The developers and stakeholders then begin negotiations to plan the creation of 
another prototype. Once the desired features for the new prototype have been agreed 
upon, consideration is given to any known time and budget constraints as well as the 
technical feasibility of implementing the prototype. If the development risks are 
deemed to be acceptable, the work continues.

The evolutionary prototyping process model is used to accommodate changes that 
inevitably occur as software is developed. Each prototype should be designed to allow 
for future changes to avoid throwing it away and creating the next prototype from 
scratch. This suggests favoring both well-understood and important features when 
setting the goals for each prototype. As always, the customer’s needs should be given 
great importance in this process.

4.7.1 New Prototype Scope
The process of determining the scope of a new prototype is like the process of 
determining the scope of the initial prototype. Developers would either: (1) select 
features to develop within the time allocated to a sprint, or (2) allocate sufficient 
time to implement the features needed to satisfy the goals set by the developers 
with stakeholder input. Either approach requires the developers to maintain a 
 prioritized list of features or user stories. The priorities used to order the list 
should be determined by the goals set for the prototype by the stakeholders and 
developers.

In XP (Section 3.5.1), the stakeholders and developers work together to group the 
most important user stories into a prototype that will become the next release of the 
software and determine its completion date. In Kanban (Section 3.5.2), developers and 
stakeholders make use of a board that allows them to focus on the completion status 
of each user story. This is a visual reference that can be used to assist developers 
using any incremental prototype process model to plan and monitor the progress of 
the software development. Stakeholders can easily see the feature backlog and help 
the developers order it to identify the most useful stories needed in the next prototype. 
It is probably easier to estimate the time required to complete the selected user stories 
than to find the user stories that need to fit into a fixed time block. But the advice to 
keep prototype development time to 4 to 6 weeks should be followed to ensure ade-
quate stakeholder involvement and feedback.
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4.7.2 Constructing New Prototypes
A user story should contain both a description of how the customer plans to interact 
with the system to achieve a specific goal and a description of what the customer’s 
definition of acceptance is. The development team’s task is to create additional 
software components to implement the user stories selected for inclusion in the new 
prototype along with the necessary test cases. Developers need to continue commu-
nication with all stakeholders as they create the new prototype.

What makes this new prototype trickier to build is that software components cre-
ated to implement new features in the evolving prototype need to work with the 
components used to implement the features included in the previous prototype. It gets 
even trickier if developers need to remove components or modify those that were 
included in the previous prototype because requirements have changed. Strategies for 
managing these types of software changes are discussed in Chapter 22.

It is important for the developers to make design decisions that will make the 
software prototype more easily extensible in the future. Developers need to document 
design decisions in a way that will make it easier to understand the software when 
making the next prototype. The goal is to be agile in both development and documen-
tation. Developers need to resist the temptation to overdesign the software to accom-
modate features that may or may not be included in the final product. They also should 
limit their documentation to that which they need to refer to during development or 
when changes need to be made in the future.

4.7.3 Testing New Prototypes
Testing the new prototype should be relatively straightforward if the development team 
created test cases as part of the design process before the programming was com-
pleted. Each user story should have had acceptance criteria attached to it as it was 
created. These acceptance statements should guide the creation of the test cases 
intended to help verify that the prototype meets customer needs. The prototype will 
need to be tested for defects and performance issues as well.

One additional testing concern for evolutionary prototypes is to ensure that adding 
new features does not accidentally break features that were working correctly in the 
previous prototype. Regression testing is the process of verifying that software that 
was previously developed and tested still performs the same way after it has been 
changed. It is important to use your testing time wisely and make use of the test cases 
that are designed to detect defects in the components most likely to be affected by 
the new features. Regression testing is discussed in more detail in Chapter 20.

 4 .8  pRotot y p e Re L e a s e

When an evolutionary prototyping process is applied, it can be difficult for developers to 
know when a product is finished and ready for release to the customers. Software devel-
opers do not want to release a buggy software product to the end users and have them 
decide the software has poor quality. A prototype being considered as a release candidate 
must be subjected to user acceptance testing in addition to functional and nonfunctional 
(performance) testing that would have been conducted during prototype construction.

User acceptance tests are based on the agreed-upon acceptance criteria that were 
recorded as each user story was created and added to the product backlog. This allows 



CHAPTER 4 RECOMMENDED PROCESS MODEL  69

user representatives to verify that the software behaves as expected and collect 
suggestions for future improvements. David Nielsen [Nie10] has several suggestions 
for conducting prototype testing in industrial settings.

When testing a release candidate, functional and nonfunctional tests should be 
repeated using the test cases that were developed during the construction phases of 
the incremental prototypes. Additional nonfunctional tests should be created to verify 
that the performance of the prototype is consistent with the agreed-upon benchmarks 
for the final product. Typical performance benchmarks may deal with system response 
time, data capacity, or usability. One of the most important nonfunctional requirements 
to verify is ensuring that the release candidate will run in all planned run-time envi-
ronments and on all targeted devices. The process should be focused on testing limited 
to the acceptance criteria established before the prototype was created. Testing cannot 
prove a software product is bug free, only that the test cases ran correctly.

User feedback during acceptance testing should be organized by user-visible func-
tions as portrayed via the user interface. Developers should examine the device in 
question and make changes to the user interface screen if implementing these changes 
will not delay the release of the prototype. If changes are made, they need to be 
verified in a second round of testing before moving on. You should not plan for more 
than two iterations of user acceptance testing.

It is important, even for projects using agile process models, to use an issue track-
ing or bug reporting system (e.g., Bugzilla2 or Jira3) to capture the testing results. 
This allows developers to record test failures and makes it easier to identify the test 
cases that will need to be run again to verify that a repair properly corrects the prob-
lem that was uncovered. In each case the developers need to assess whether the 
changes can be made to the software without causing a cost overrun or late product 
delivery. The implications of not fixing a problem need to be documented and shared 
with both the customer and senior managers who may decide to cancel the project 
rather than committing the resources needed to deliver the final project.

The issues and lessons learned from creating the release candidate should be doc-
umented and considered by the developers and stakeholders as part of the project 
postmortem. This information should be considered before deciding to undertake 
future development of a software product following its release to the user community. 
The lessons learned from the current product can help developers make better cost 
and time estimates for similar projects in the future.

Techniques for conducting user acceptance testing are discussed in Chapters 12 and 20. 
A more detailed discussion on software quality assurance is presented in Chapter 17.

 4 .9  ma i n ta i n Re L e a s e so f t wa R e

Maintenance is defined as the activities needed to keep software operational after it has 
been accepted and delivered (released) in the end-user environment. Maintenance will 
continue for the life of the software product. Some software engineers believe that the 
majority of the money spent on a software product will be spent on maintenance activ-
ities. Corrective maintenance is the reactive modification of software to repair problems 

2 https://www.bugzilla.org/.
3 https://www.atlassian.com/software/jira.
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discovered after the software has been delivered to a customer’s end user. Adaptive 
maintenance is reactive modification of software after delivery to keep the software 
usable in a changing end-user environment. Perfective maintenance is the proactive 
modification of the software after delivery to provide new user features, better program 
code structure, or improved documentation. Preventive maintenance is the proactive 
modification of the software after delivery to detect and correct product faults before 
they are discovered by users in the field [SWEBOK4]. Proactive maintenance can be 
scheduled and planned for. Reactive maintenance is often described as firefighting 
because it cannot be planned for and must be attended immediately for software systems 
that are critical to the success of the end-users’ activities. Figure 4.5 shows that only 
21 percent of the developers’ time is typically spent on corrective maintenance.

For an agile evolutionary process model like the one described in this chapter, 
developers release working partial solutions with the creation of each incremental 
prototype. Much of the engineering work done is preventive or perfective maintenance 
as new features are added to the evolving software system. It is tempting to think that 
maintenance is handled simply by planning to make another trip around the spiral. 
But software problems cannot always be anticipated, so repairs may need to be made 
quickly and developers may be tempted to cut corners when trying to repair the broken 

4 SWEBOK refers to the Software Engineering Body of Knowledge, which can be accessed 
using the following link: https://www.computer.org/web/swebok/v3.
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software. Developers may not want to spend time on risk assessment or planning. Yet, 
developers cannot afford to make changes to software without considering the pos-
sibility that the changes required to fix one problem will cause new problems to other 
portions of the program.

It is important to understand the program code before making changes to it. If 
developers have documented the code, it will be easier to understand if other people 
need to do the maintenance work. If the software is designed to be extended, main-
tenance may also be accomplished more easily, other than emergency defect repairs. 
It is essential to test the modified software carefully to ensure software changes have 
their intended effect and do not break the software in other places.

The task of creating software products that are easy to support and easy to main-
tain requires careful and thoughtful engineering. A more detailed discussion on the 
task of maintaining and supporting software after delivery is presented in Chapter 27.

 1. Requirements engineering
∙ Gather user stories from all stakeholders.
∙ Have stakeholders describe acceptance 

criteria user stories.
 2. Preliminary architectural design

∙ Make use of paper prototypes and models.
∙ Assess alternatives using nonfunctional 

requirements.
∙ Document architecture design decisions.

 3. Estimate required project resources
∙ Use historic data to estimate time to 

complete each user story.
∙ Organize the user stories into sprints.
∙ Determine the number of sprints needed 

to complete the product.
∙ Revise the time estimates as use stories 

are added or deleted.
 4. Construct first prototype

∙ Select subset of user stories most 
important to stakeholders.

∙ Create paper prototype as part of the 
design process.

∙ Design a user interface prototype with 
inputs and outputs.

∙ Engineer the algorithms needed for first 
prototypes.

∙ Prototype with deployment in mind.
 5. Evaluate prototype

∙ Create test cases while prototype is being 
designed.

∙ Test prototype using appropriate users.
∙ Capture stakeholder feedback for use in 

revision process.
 6. Go, no-go decision

∙ Determine the quality of the current 
prototype.

∙ Revise time and cost estimates for 
completing development.

∙ Determine the risk of failing to meet 
stakeholder expectations.

∙ Get commitment to continue  
development.

 7. Evolve system
∙ Define new prototype scope.
∙ Construct new prototype.
∙ Evaluate new prototype and include 

regression testing.
∙ Assess risks associated with continuing 

evolution.
 8. Release prototype

∙ Perform acceptance testing.
∙ Document defects identified.
∙ Share quality risks with management.

 9. Maintain software
∙ Understand code before making changes.
∙ Test software after making changes.
∙ Document changes.
∙ Communicate known defects and risks to 

all stakeholders.

RecommenDeD softwaRe pRocess steps
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 4 .10 su m m a Ry

Every project is unique, and every development team is made up of unique individuals. 
Every software project needs a road map, and the process of developing software 
requires a predictable set of basic tasks (communication, planning, modeling, construc-
tion, and deployment). However, these tasks should not be performed in isolation and 
may need to be adapted to meet the needs of each new project. In this chapter, we 
suggested the use of a highly interactive, incremental prototyping process. We think 
this is better than producing rigid product plans and large documents prior to doing 
any programming. Requirements change. Stakeholder input and feedback should occur 
early and often in the development process to ensure the delivery of useful product.

We suggest the use of an evolutionary process model that emphasizes frequent 
stakeholder involvement in the creation and evaluation of incremental software pro-
totypes. Limiting requirements engineering artifacts to the set of minimal useful 
documents and models allows the early production of prototypes and test cases. Plan-
ning to create evolutionary prototypes reduces the time lost repeating the work needed 
to create throwaway prototypes. Making use of paper prototypes early in the design 
process can also help to avoid programming products that do not satisfy customer 
expectations. Getting the architectural design right before beginning actual develop-
ment is also important to avoiding schedule slippage and cost overruns.

Planning is important but should be done expeditiously to avoid delaying the start 
of development. Developers should have a general idea about how long a project will 
take to complete, but they need to recognize that they are not likely to know all the 
project requirements until the software products are delivered. Developers would be 
wise to avoid detailed planning that extends beyond planning the current prototype. 
The developers and stakeholders should adopt a process for adding features to be 
implemented in future prototypes and to assess the impact of these changes on the 
project schedule and budget.

Risk assessment and acceptance testing are an important part of the prototype 
assessment process. Having an agile philosophy about managing requirements and 
adding new features to the final product is important as well. The biggest challenges 
developers have with evolutionary process models is managing scope creep while 
delivering a product that meets customer expectations and doing all this while deliv-
ering the product on time and within budget. That’s what makes software engineering 
so challenging and rewarding.

  pRo b L e m s a n D po i n t s to po n D e R

4.1. How does the Extreme Programming (XP) model differ from the spiral model in its treat-
ment of incremental prototypes?

4.2. Write the acceptance criteria for the user story that describe the use of the “favorite places” 
or “favorites” feature found on most Web browsers that you wrote for Problem 3.7 in Chapter 3.

4.3. How would you create a preliminary architectural design for the first prototype for a mobile 
app that lets you create and save a shopping list on your device?

4.4. Where would you get the historic date needed to estimate the development time for the 
user stories in a prototype before it is written?
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4.5. Create a series of sketches representing the key screens for a paper prototype for the shop-
ping list app you created in Problem 4.3.

4.6. How can you test the viability of the paper prototype you created for Problem 4.5?

4.7. What data points are needed to make the go, no-go decision during the assessment of an 
evolutionary prototype?

4.8. What is the difference between reactive and proactive maintenance?

Design element: Quick Look icon magnifying glass: © Roger Pressman
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What is it? At the end of the day, people build 
computer software. The human aspects of 
software engineering often have as much to 
do with the success of a project as the latest 
and greatest technology.

Who does it? Individuals and teams do soft-
ware engineering work. In some cases, one 
person has much of the responsibility, but in 
most industry-grade software efforts, a team 
of people does the work.

Why is it important? A software team will be 
successful only if the dynamics of the team are 
right. It is essential for software engineers on a 
team to play well with their colleagues and 
with other product stakeholders.

What are the steps? First, you need to try to 
emulate personal characteristics of successful 

software engineers. Next, you should appreci-
ate the complex psychology of software engi-
neering work so that you can navigate your 
way through a project without peril. Then, you 
need to understand the structure and dynam-
ics of software teams. Finally, you should 
 appreciate the impact of social media, the 
cloud, and other collaborative tools.

What is the work product? Better insight into 
the people, the process, and the product.

How do I ensure that I’ve done it right?  
Spend the time to observe how successful 
software engineers do their work, and tune 
your approach to take advantage of the 
strengths they project.
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5
In a special issue of IEEE Software, the guest editors [deS09] make the follow-
ing observation:

Software engineering has an abundance of techniques, tools, and methods designed 
to improve both the software development process and the final product. However, 
software isn’t simply a product of the appropriate technical solutions applied in 
appropriate technical ways. Software is developed by people, used by people, and 
supports interaction among people. As such, human characteristics, behavior, and 
cooperation are central to practical software development.

Without a team of skilled and motivated people, success is unlikely.

Human Aspects of Software 
Engineering



CHAPTER 5 HUMAN ASPECTS OF SOFTWARE ENGINEERING  75

 5 .1  ch a r ac t e r i st i c s o f a so f t wa r e eng i n e e r

So you want to be a software engineer? Obviously, you need to master the technical 
stuff, learn the skills required to understand the problem, design an effective solution, 
build the software, and test it in an effort to develop the highest-quality products pos-
sible. You need to manage change, communicate with stakeholders, and use appropri-
ate tools as needed. We will discuss these things at great length later in this book.

But there are other things that are equally important—the human aspects that will 
make you effective as a software engineer. Erasmus [Era09] identifies seven traits that 
are present when a software engineer exhibits “superprofessional” behavior.

An effective software engineer has a sense of individual responsibility. This implies 
a drive to deliver on her promises to peers, stakeholders, and her management. It 
implies that she will do what needs to be done, when it needs to be done in an over-
riding effort to achieve a successful outcome.

An effective software engineer has an acute awareness of the needs of other team 
members, the stakeholders requesting changes to an existing software solution, and 
the managers who have overall control of the project. He observes the environment 
in which people work and adapts his behavior to take both into account.

An effective software engineer is brutally honest. If she sees a flawed design, she 
points out the flaws in a constructive but honest manner. If asked to distort facts about 
schedules, features, performance, or other product or project characteristics, she opts 
to be realistic and truthful.

An effective software engineer exhibits resilience under pressure. Software engi-
neering is always on the edge of chaos. Pressure comes in many forms—changes in 
requirements and priorities, demanding stakeholders, and overbearing managers. An 
effective software engineer manages pressure so that his performance does not suffer.

An effective software engineer has a heightened sense of fairness. She gladly shares 
credit with her colleagues. She tries to avoid conflicts of interest and never acts to 
sabotage the work of others.

An effective software engineer exhibits attention to detail. This does not imply an 
obsession with perfection. He carefully considers the broader criteria (e.g., perfor-
mance, cost, quality) that have been established for the product and the project in 
making his daily technical decisions.

Finally, an effective software engineer is pragmatic. She recognizes that software 
engineering is not a religion in which dogmatic rules must be followed, but rather a 
discipline that can be adapted based on the circumstances at hand.

 5 .2  th e ps yc h o L o gy o f so f t wa r e eng i n e e r i ng

In a seminal paper on the psychology of software engineering, Bill Curtis and Diane 
Walz [Cur90] suggest a layered behavioral model for software development 
(Figure 5.1). At an individual level, software engineering psychology focuses on rec-
ognition of the problem to be solved, the problem-solving skills required to solve it, 
and the motivation to complete the solution within the constraints established by outer 
layers in the model. At the team and project levels, group dynamics becomes the 
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dominating factor. Here, team structure and social factors govern success. Group com-
munication, collaboration, and coordination are as important as the skills of an indi-
vidual team member. At the outer layers, organizational behavior governs the actions 
of the company and its response to the business milieu.

 5 .3  th e so f t wa r e te a m

In their classic book Peopleware, Tom DeMarco and Tim Lister [DeM98] discuss the 
cohesiveness of a software team:

We tend to use the word team loosely in the business world, calling any group of people 
assigned to work together a “team.” But many of these groups just don’t behave like 
teams. They may not have a common definition of success or any identifiable team spirit. 
What is missing is a phenomenon that we call jell.

A jelled team is a group of people so strongly knit that the whole is greater than the 
sum of the parts. . . .

Once a team begins to jell, the probability of success goes way up. The team can 
become unstoppable, a juggernaut for success. . . . They don’t need to be managed in the 
traditional way, and they certainly don’t need to be motivated. They’ve got momentum.

Figure 5.1
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DeMarco and Lister contend that members of jelled teams are significantly more 
productive and more motivated than average. They share a common goal, a common 
culture, and in many cases, a “sense of eliteness” that makes them unique.

There is no foolproof method for creating a jelled team. But there are attributes 
that are normally found in effective software teams.1 Miguel Carrasco [Car08] sug-
gests that an effective software team must establish a sense of purpose. An effective 
team must also inculcate a sense of involvement that allows every member to feel that 
his skill set and contributions are valued.

An effective team should foster a sense of trust. Software engineers on the team 
should trust the skills and competence of their peers and their managers. The team 
should encourage a sense of improvement, by periodically reflecting on its approach 
to software engineering and looking for ways to improve their work.

The most effective software teams are diverse in the sense that they combine a 
variety of different skill sets. Highly skilled technologists are complemented by mem-
bers who may have less technical background but are more empathetic to the needs 
of stakeholders.

But not all teams are effective and not all teams jell. In fact, many teams suffer 
from what Jackman [Jac98] calls “team toxicity.” She defines five factors that “foster 
a potentially toxic team environment”: (1) a frenzied work atmosphere, (2) high frus-
tration that causes friction among team members, (3) a “fragmented or poorly coor-
dinated” software process, (4) an unclear definition of roles on the software team, and 
(5) “continuous and repeated exposure to failure.”

To avoid a frenzied work environment, the team should have access to all infor-
mation required to do the job. Major goals and objectives, once defined, should 
not be modified unless absolutely necessary. A software team can avoid frustration 
if it is given as much responsibility for decision making as possible. An inappropri-
ate process (e.g., unnecessary or burdensome work tasks or poorly chosen work 
products) can be avoided by understanding the product to be built and the people 
doing the work and by allowing the team to select the process model. The team 
itself should establish its own mechanisms for accountability (technical reviews2 
are an excellent way to accomplish this) and define a series of corrective approaches 
when a member of the team fails to perform. And finally, the key to avoiding an 
atmosphere of failure is to establish team-based techniques for feedback and 
problem solving.

In addition to the five toxins described by Jackman, a software team often struggles 
with the differing human traits of its members. Some people gather information intu-
itively, distilling broad concepts from disparate facts. Others process information lin-
early, collecting and organizing minute details from the data provided. Some team 
members are comfortable making decisions only when a logical, orderly argument is 
presented. Others are intuitive, willing to make a decision based on “feel.” Some work 

1 Bruce Tuckman observes that successful teams go through four phases (forming, storming, 
norming, and performing) on their way to becoming productive (http://en.wikipedia.org/
wiki/Tuckman%27s_stages_of_group_development).

2 Technical reviews are discussed in detail in Chapter 16.
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hard to get things done long before a milestone date, thereby avoiding stress as the 
date approaches, while others are energized by the rush to make a last-minute dead-
line. Recognition of human differences, along with other guidelines presented in this 
section, provide a higher likelihood of creating teams that jell.

 5 .4  te a m st ru c t u r e s

The “best” team structure depends on the management style of your organization, the 
number of people who will populate the team and their skill levels, and the overall 
problem difficulty. Mantei [Man81] describes a number of project factors that should 
be considered when planning the structure of software engineering teams: (1) diffi-
culty of the problem to be solved, (2) “size” of the resultant program(s) in lines of 
code or function points,3 (3) time that the team will stay together (team lifetime), 
(4)  degree to which the problem can be modularized, (5) required quality and reli-
ability of the system to be built, (6) rigidity of the delivery date, and (7) degree of 
sociability (communication) required for the project.

Over the past decade, agile software development (Chapter 3) has been suggested 
as an antidote to many of the problems that have plagued software project work. The 
agile philosophy encourages customer satisfaction and early incremental delivery of 
software, small highly motivated project teams, informal methods, minimal software 
engineering work products, and overall development simplicity.

A small, highly motivated project team, also called an agile team, adopts many 
of the characteristics of successful software project teams discussed in Section 5.3 
and avoids many of the toxins that create problems. However, the agile philosophy 
stresses individual (team member) competency, coupled with group collaboration 
as critical success factors for the team. Channeling creative energy into a high-
performance team must be a central goal of a software engineering organization. 
Cockburn and Highsmith [Coc01a] suggest that “good” software people can work 
within the framework of any software process, and weak performers will struggle 
regardless. The bottom line, they contend, is that “people trump process” but that 
even good people can be hampered by an ill-defined process and poor resource 
support. We agree.

To make effective use of the competencies of each team member and to foster 
effective collaboration through a software project, agile teams are self-organizing. A 
self-organizing team does not necessarily maintain a single team structure. The team 
makes the changes needed to its structure to respond to the changes in the develop-
ment environment or changes in the evolving engineering problem solution.

Communication between team members and all project stakeholders is essential. 
Agile teams often have customer representatives as team members. This fosters respect 
among the developers and stakeholders, as well as providing avenues for timely and 
frequent feedback on the evolving products.

3 Lines of code (LOC) and function points are measures of the size of a computer program 
and are discussed in Chapter 24.
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 5 .5  th e im pac t o f so c i a L me d i a

E-mail, texting, and videoconferencing have become ubiquitous activities in software 
engineering work. But these communication mechanisms are really nothing more than 
modern substitutes or supplements for the face-to-face contact. Social media is different.

Begel [Beg10] and his colleagues address the growth and application of social 
media in software engineering when they write:

The social processes around software development are . . . highly dependent on engineers’ 
abilities to find and connect with individuals who share similar goals and complementary 
skills, to harmonize each team member’s communication and teaming preferences, to 
collaborate and coordinate during the entire software lifecycle, and advocate for their 
product’s success in the marketplace.

In some ways, this “connection” can be as important as face-to-face communica-
tion. The value of social media grows as team size increases and is magnified further 
when the team is geographically dispersed.

Social networking tools (e.g., Facebook, LinkedIn, Slack, Twitter) allow degrees-
of-separation connections among software developers and related technologists. This 
allows “friends” on a social networking site to learn about friends of friends who may 
have knowledge or expertise related to the application domain or problem to be solved. 
Specialized private networks built on the social networking paradigm can be used 
within an organization.

Team Structure

The scene: Doug Miller’s office 
prior to the initiation of the 

SafeHome software project.

The players: Doug Miller (manager of the 
SafeHome software engineering team), Vinod 
Raman, Jamie Lazar, and other members of the 
product software engineering team.

The conversation:
Doug: Have you guys had a chance to look 
over the preliminary info on SafeHome that 
marketing has prepared?

Vinod (nodding and looking at his teammates):  
Yes. But we have a bunch of questions.

Doug: Let’s hold on to that for a moment. I’d 
like to talk about how we’re going to structure 
the team, who’s responsible for what . . .

Jamie: I’m really into the agile philosophy, Doug. 
I think we should be a self-organizing team.

Vinod: I agree. Given the tight time line and 
some of the uncertainty, and the fact that we’re 
all really competent [laughs], that seems like 
the right way to go.

Doug: That’s okay with me, but you guys 
know the drill.

Jamie (smiling and talking as if she was recit-
ing something): We make tactical decisions, 
about who does what and when, but it’s our 
responsibility to get product out the door on 
time.

Vinod: And with quality.

Doug: Exactly. But remember there are 
constraints. Marketing defines the software 
increments to be produced—in consultation 
with us, of course.

safehome
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It is very important to note that privacy and security issues should not be over-
looked when using social media for software engineering work. Much of the work 
performed by software engineers may be proprietary to their employer and disclosure 
could be very harmful. For that reason, the distinct benefits of social media must be 
weighed against the threat of uncontrolled disclosure of private information.

 5 .6  gL o ba L te a m s

In the software domain, globalization implies more than the transfer of goods and 
services across international boundaries. For the past few decades, an increasing num-
ber of major software products have been built by software teams that are often located 
in different countries. These global software development (GSD) teams have unique 
challenges that include coordination, collaboration, communication, and specialized 
decision making. Approaches to coordination, collaboration, and communication are 
influenced by the team structure that has been established. Decision making on all 
software teams is complicated by four factors [Gar10a]:

∙ Complexity of the problem.
∙ Uncertainty and risk associated with the decision.
∙ The law of unintended consequences (i.e., a work-associated decision has an 

unintended effect on another project objective).
∙ Different views of the problem that lead to different conclusions about the 

way forward.

For a GSD team, the challenges associated with coordination, collaboration, and 
communication can have a profound effect on decision making. Figure 5.2 illustrates 
the impact of distance on the challenges that face a GSD team. Distance complicates 

Figure 5.2
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communication, but, at the same time, accentuates the need for coordination. Distance 
also introduces barriers and complexity that can be driven by cultural differences. 
Barriers and complexity attenuate communication (i.e., the signal-to-noise ratio 
decreases). The problems inherent in this dynamic can result in a project that becomes 
unstable.

 5 .7  Su m m a ry

A successful software engineer must have technical skills. But, in addition, he must 
take responsibility for his commitments, be aware of the needs of his peers, be honest 
in his assessment of the product and the project, be resilient under pressure, treat his 
peers fairly, and exhibit attention to detail.

The psychology of software engineering includes individual cognition and motiva-
tion, the group dynamics of a software team, and the organizational behavior of the 
company. A successful (“jelled”) software team is more productive and motivated than 
average. To be effective, a software team must have a sense of purpose, a sense of 
involvement, a sense of trust, and a sense of improvement. In addition, the team must 
avoid “toxicity” that is characterized by a frenzied and frustrating work atmosphere, 
an inappropriate software process, an unclear definition of roles on the software team, 
and continuous exposure to failure.

Agile teams subscribe to the agile philosophy and generally have more autonomy 
than more conventional software teams with rigid member roles and external manage-
ment control. Agile teams emphasize communication, simplicity, feedback, courage, 
and respect.

Social media tools are becoming an integral part of many software projects, provid-
ing services that enhance communication and collaboration for a software team. Social 
media and electronic communication are particularly useful for global software devel-
opment where geographic separation can precipitate barriers to successful software 
engineering.

  Pro b l e m S a n d Po i n t S to Po n d e r

5.1. Based on your personal observation of people who are excellent software developers, name 
three personality traits that appear to be common among them.

5.2. How can you be “brutally honest” and still not be perceived (by others) as insulting or 
aggressive?

5.3. How does a software team construct “artificial boundaries” that reduce their ability to 
communicate with others?

5.4. Write a scenario in which the SafeHome team members make use of one or more forms 
of social media as part of their software project.

5.5. Referring to Figure 5.2, why does distance complicate communication? Why does distance 
accentuate the need for coordination? What types of barriers and complexities are introduced 
by distance?

Design element: Quick Look icon magnifying glass: © Roger Pressman
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P A R T

Two
Modeling

In this part of Software Engineering: A Practitioner’s Approach, you’ll 
learn about the principles, concepts, and methods that are used to create 
high-quality requirements and design models. These questions are addressed 
in the chapters that follow:

∙ What concepts and principles guide software engineering practice?
∙ What is requirements engineering, and what are the underlying 

 concepts that lead to good requirements analysis?
∙ How is the requirements model created, and what are its elements?
∙ What are the elements of a good design?
∙ How does architectural design establish a framework for all other 

design actions, and what models are used?
∙ How do we design high-quality software components?
∙ What concepts, models, and methods are applied as the user experience 

is designed?
∙ What is pattern-based design?
∙ What specialized strategies and methods are used to design mobile 

apps?

Once these questions are answered, you’ll be better prepared to apply 
software engineering practice.
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What is it? Software engineering practice is a 
broad array of principles, concepts, methods, 
and tools that you must consider as software 
is planned and developed. Principles that 
guide practice establish a foundation from 
which software engineering is conducted.

Who does it? Practitioners (software engineers) 
and their managers conduct a variety of soft-
ware engineering tasks.

Why is it important? Software process pro-
vides everyone involved in the creation of a 
computer-based system or product with a 
road map for getting to a successful destina-
tion. Software practice provides you with the 
details you’ll need to drive along the road. It 
tells you where the bridges, the roadblocks, 
and the forks are located. It helps you under-
stand the concepts and principles that must 
be understood and followed to drive safely 
and rapidly. It instructs you on how to drive, 
where to slow down, and where to speed 
up.  In the context of software engineering, 
practice is what you do day in and day out as 
software evolves from an idea to a reality.

What are the steps? Four elements of practice 
apply regardless of the process model that is 
chosen. They are principles, concepts, meth-
ods, and tools. Tools support the application 
of methods.

What is the work product? Practice encom-
passes the technical activities that produce all 
work products that are defined by the soft-
ware process model that has been chosen.

How do I ensure that I’ve done it right? First, 
have a firm understanding of the principles 
that apply to the work (e.g., design) that you’re 
doing at the moment. Then, be certain that 
you’ve chosen an appropriate method for the 
work, be sure that you understand how to 
 apply the method, use automated tools when 
they’re appropriate for the task, and be 
 adamant about the need for techniques to 
 ensure the quality of work products that are 
produced. You also need to be agile enough 
to make changes to your plans and methods 
as needed.
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6
Software engineers are often depicted as working long hours by themselves to 
meet impossible deadlines without connecting to other people. This is a dark 
image of software engineering practice to be sure. Yet, as we discussed in the 
previous chapters, most software engineers work on teams and frequently interact 
with their stakeholders. If you search for surveys of technical professionals on 
the Internet, you will see software engineers listed among those experiencing the 
greatest satisfaction from their jobs.

Principles That  
Guide Practice
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People who create computer software practice the art or craft or discipline1 that is 
software engineering. But what is software engineering “practice”? In a generic sense, 
practice is a collection of concepts, principles, methods, and tools that a software 
engineer calls upon on a daily basis. Practice allows managers to manage software 
projects and software engineers to build computer programs. Practice populates a 
software process model with the necessary technical and management how-to’s to get 
the job done. Practice transforms a haphazard unfocused approach into something that 
is more organized, more effective, and more likely to achieve success.

Various aspects of software engineering practice will be examined throughout the 
remainder of this book. In this chapter, our focus is on principles and concepts that 
guide software engineering practice in general.

 6 .1  co r e pr i nc i p L e s

Software engineering is guided by a collection of core principles that help in the 
application of a meaningful software process and the execution of effective software 
engineering methods. At the process level, core principles establish a philosophical 
foundation that guides a software team as it performs the framework and umbrella 
activities and produces a set of software engineering work products. At the practice 
level, core principles establish a collection of values and rules that can guide you in 
analyzing a problem, designing a solution, implementing and testing the solution, and 
ultimately deploying the software so stakeholders can use it.

6.1.1 Principles That Guide Process
In Part One of this book we discussed the importance of the software process and 
described several process models that have been proposed for software engineering 
work. Every project is unique, and every team is unique. That means you must adapt 
your process to best fit your needs. Regardless of the process model your team adopts, 
it contains elements of the generic process framework we described in Chapter 1. The 
following set of core principles can be applied to this framework and to every software 
process. A simplified view of this framework is shown in Figure 6.1.

Principle 1. Be agile. Whether the process model you choose is prescriptive 
or agile, the basic tenets of agile development should govern your approach. Every 
aspect of the work you do should emphasize economy of action—keep your techni-
cal approach as simple as possible, keep the work products you produce as concise 
as possible, and make decisions locally whenever possible.

Principle 2. Focus on quality at every step. The exit condition for every process 
activity, action, and task should focus on the quality of the work product that has 
been produced.

Principle 3. Be ready to adapt. Process is not a religious experience, and dogma 
has no place in it. When necessary, adapt your approach to constraints imposed by 
the problem, the people, and the project itself.

1 Some writers argue for one of these terms to the exclusion of the others. In reality, software 
engineering is all three.
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Principle 4. Build an effective team. Software engineering process and practice 
are important, but the bottom line is people. Build a self-organizing team that has 
mutual trust and respect.2

Principle 5. Establish mechanisms for communication and coordination. Projects 
fail because important information falls into the cracks and/or stakeholders fail to 
coordinate their efforts to create a successful end product. These are management 
issues, and they must be addressed.

Principle 6. Manage change. The approach may be either formal or informal, 
but mechanisms must be established to manage the way changes are requested, 
assessed, approved, and implemented.

Principle 7. Assess risk. Lots of things can go wrong as software is being 
developed. It’s essential that you establish contingency plans. Some of these 
 contingency plans will form the basis for security engineering tasks (Chapter 18).

Principle 8. Create work products that provide value for others. Create only 
those work products that provide value for other process activities, actions, or tasks. 
Every work product that is produced as part of software engineering practice will 
be passed on to someone else. Be sure that the work product imparts the necessary 
information without ambiguity or omission.

Part Four of this book focuses on project and process management issues and 
considers various aspects of each of these principles in some detail.

6.1.2 Principles That Guide Practice
Software engineering practice has a single overriding goal: to deliver on-time, high-
quality, operational software that contains functions and features that meet the needs 
of all stakeholders. To achieve this goal, you should adopt a set of core principles 
that guide your technical work. These principles have merit regardless of the analysis 

Communication Planning

Construction Deployment

Time

Modeling

Figure 6.1
Simplified 
process 
framework

2 The characteristics of effective software teams were discussed in Chapter 5.
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and design methods that you apply, the construction techniques (e.g., programming 
language, automated tools) that you use, or the verification and validation approach 
that you choose. The following set of core principles is fundamental to the practice 
of software engineering:

Principle 1. Divide and conquer. Stated in a more technical manner, analysis and 
design should always emphasize separation of concerns (SoCs). A large problem 
is easier to solve if it is subdivided into a collection of elements (or concerns).

Principle 2. Understand the use of abstraction. At its core, an abstraction is a 
simplification of some complex element of a system used to communicate meaning 
in a single phrase. When we use the abstraction spreadsheet, it is assumed that you 
understand what a spreadsheet is, the general structure of content that a spreadsheet 
presents, and the typical functions that can be applied to it. In software engineering 
practice, you use many different levels of abstraction, each imparting or implying 
meaning that must be communicated. In analysis and design work, a software team 
normally begins with models that represent high levels of abstraction (e.g., a 
spreadsheet) and slowly refines those models into lower levels of abstraction 
(e.g., a column or the SUM function).

Principle 3. Strive for consistency. Whether it’s creating an analysis model, 
developing a software design, generating source code, or creating test cases, the 
principle of consistency suggests that a familiar context makes software easier to 
use. As an example, consider the design of a user interface for a mobile app. 
Consistent placement of menu options, the use of a consistent color scheme, and the 
consistent use of recognizable icons help to create a highly effective user experience.

Principle 4. Focus on the transfer of information. Software is about information 
transfer—from a database to an end user, from a legacy system to a WebApp, from an 
end user into a graphic user interface (GUI), from an operating system to an 
 application, from one software component to another—the list is almost endless. In 
every case, information flows across an interface, and this means there are opportunities 
for errors, omissions, or ambiguity. The implication of this principle is that you must 
pay special attention to the analysis, design, construction, and testing of interfaces.

Principle 5. Build software that exhibits effective modularity. Separation of 
concerns (Principle 1) establishes a philosophy for software. Modularity provides a 
mechanism for realizing the philosophy. Any complex system can be divided into 
modules (components), but good software engineering practice demands more. 
Modularity must be effective. That is, each module should focus exclusively on one 
well-constrained aspect of the system. Additionally, modules should be interconnected 
in a relatively simple manner to other modules, to data sources, and to other environ-
mental aspects.

Principle 6. Look for patterns. Software engineers use patterns as a means of 
 cataloging and reusing solutions to problems they have encountered in the past. 
The use of these design patterns can be applied to wider systems engineering and 
systems integration problems, by allowing components in complex systems to 
evolve independently. Patterns will be discussed further in Chapter 14.

Principle 7. When possible, represent the problem and its solution from several 
different perspectives. When a problem and its solution are examined from different 
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perspectives, it is more likely that greater insight will be achieved and that errors and 
omissions will be uncovered. The unified modeling language (UML) provides a means 
of describing a problem solution from multiple viewpoints, as described in Appendix 1.

Principle 8. Remember that someone will maintain the software. Over the long 
term, software will be corrected as defects are uncovered, adapted as its environ-
ment changes, and enhanced as stakeholders request more capabilities. These main-
tenance activities can be facilitated if solid software engineering practice is applied 
throughout the software process.

These principles are not all you’ll need to build high-quality software, but they do 
establish a foundation for every software engineering method discussed in this book.

 6.2 principLes that Guide each Framework activity

In the sections that follow, we consider principles that have a strong bearing on the 
success of each generic framework activity defined as part of the software process. 
In many cases, the principles that are discussed for each of the framework activities 
are a refinement of the principles presented in Section 6.1. They are simply core 
principles stated at a lower level of abstraction.

6.2.1 Communication Principles
Before customer requirements can be analyzed, modeled, or specified, they must be 
gathered through the communication activity. A customer has a problem that may be 
amenable to a computer-based solution. You respond to the customer’s request for 
help. Communication has begun. But the road from communication to understanding 
is often full of potholes.

Effective communication (among technical peers, with the customer and other 
stakeholders, and with project managers) is among the most challenging activities that 
you will confront. There are many ways to communicate, but it’s important to recog-
nize that not all are equal in richness or effectiveness (Figure 6.2). In this context, we 
discuss communication principles as they apply to customer communication. However, 
many of the principles apply equally to all forms of communication that occur within 
a software project.

The Difference Between 
Customers and End Users
A customer is the person or group who 

(1) originally requested the software to be built,  
(2) defines overall business objectives for the 
 software, (3) provides basic product requirements, 
and (4) coordinates funding for the project. In a 
product or system business, the customer is often 
the marketing group. In an information technology 

(IT) environment, the customer might be 
a business component or department.

An end user is the person or group who (1) will 
actually use the software that is built to achieve 
some business purpose and (2) will  define opera-
tional details of the software so the business 
 purpose can be achieved. In some cases, the 
customer and the end user may be one and the 
same, but for many projects that is not the case.

inFo
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Principle 1. Listen. Before communicating, be sure you understand the point of 
view of the other party, know a bit about his or her needs, and then listen. Try to 
focus on the speaker’s words, rather than formulating your response to those words. 
Ask for clarification if something is unclear, and avoid constant interruptions. Never 
become contentious in your words or actions (e.g., rolling your eyes or shaking 
your head) as a person is talking.

Principle 2. Prepare before you communicate. Spend the time to understand the 
problem before you meet with others. If necessary, do some research to understand 
business domain jargon. If you have responsibility for conducting a meeting, prepare 
an agenda in advance of the meeting.

Principle 3. Someone should facilitate the activity. Every communication 
 meeting should have a leader (a facilitator) to keep the conversation moving in a 
productive direction, (2) to mediate any conflict that does occur, and (3) to ensure 
that other principles are followed.

Principle 4. Face-to-face communication is best. However, this communication 
usually works better when some other representation of the relevant information is 
present. For example, a participant may create a drawing or a “strawman” document 
that serves as a focus for discussion.

Principle 5. Take notes and document decisions. Things have a way of falling 
into the cracks. Someone participating in the communication should serve as a 
“recorder” and write down all important points and decisions.

Principle 6. Strive for collaboration. Collaboration and consensus occur when 
the collective knowledge of members of the team is used to describe product or 
system functions or features. Each small collaboration serves to build trust among 
team members and creates a common goal for the team.
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Principle 7. Stay focused; modularize your discussion. The more people are 
involved in any communication, the more likely that discussion will bounce from 
one topic to the next. The facilitator should keep the conversation modular, leaving 
one topic only after it has been resolved (however, see Principle 9).

Principle 8. If something is unclear, draw a picture. Verbal communication 
goes only so far. A sketch or drawing can often provide clarity when words fail to 
do the job.

Principle 9. (a) Once you agree to something, move on. (b) If you can’t agree 
to something, move on. (c) If a feature or function is unclear and cannot be 
 clarified right now, move on. Communication, like any software engineering 
 activity, takes time. Rather than iterating endlessly, the people who participate 
should recognize that many topics require discussion (see Principle 2) and that 
“moving on” is sometimes the best way to achieve communication agility.

Principle 10. Negotiation is not a contest or a game. It works best when both 
parties win. There are many instances in which you and other stakeholders must 
negotiate functions and features, priorities, and delivery dates. If the team has 
 collaborated well, all parties have a common goal. Still, negotiation will demand 
compromise from all parties.

Communication Mistakes

The scene: Software engineer-
ing team workspace

The players: Jamie Lazar, software team  
member; Vinod Raman, software team member; 
Ed Robbins, software team member.

The conversation:
Ed: What have you heard about this 
SafeHome project?

Vinod: The kickoff meeting is scheduled for 
next week.

Jamie: I’ve already done a little bit of investi-
gation, but it didn’t go well.

Ed: What do you mean?

Jamie: Well, I gave Lisa Perez a call. She’s the 
marketing honcho on this thing.

Vinod: And . . . ?

Jamie: I wanted her to tell me about SafeHome 
features and functions . . . that sort of thing. 
 Instead, she began asking me questions about 
security systems, surveillance systems . . . I’m 
no expert.

Vinod: What does that tell you?

(Jamie shrugs)

Vinod: That marketing will need us to act as 
consultants and that we’d better do some 
homework on this product area before our 
kickoff meeting. Doug said that he wanted us 
to “collaborate” with our customer, so we’d 
better learn how to do that.

Ed: Probably would have been better to stop 
by her office. Phone calls just don’t work as 
well for this sort of thing.

Jamie: You’re both right. We’ve got to get our 
act together or our early communications will 
be a struggle.

Vinod: I saw Doug reading a book on 
 “requirements engineering.” I’ll bet that lists 
some principles of good communication. I’m 
going to borrow it from him.

Jamie: Good idea . . . then you can teach us.

Vinod (smiling): Yeah, right.

saFehome
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6.2.2 Planning Principles
The planning activity encompasses a set of management and technical practices that 
enable the software team to define a road map as it travels toward its strategic goal 
and tactical objectives.

Try as we might, it’s impossible to predict exactly how a software project will 
evolve. There is no easy way to determine what unforeseen technical problems will be 
encountered, what important information will remain undiscovered until late in the 
project, what misunderstandings will occur, or what business issues will change. And 
yet, a good software team must plan its approach. Often planning is iterative (Figure 6.3).

There are different planning philosophies.3 Some people are “minimalists,” arguing 
that change often obviates the need for a detailed plan. Others are “traditionalists,” 
arguing that the plan provides an effective road map and the more detail it has, the 
less likely the team will become lost.

What to do? On many projects, overplanning is time consuming and fruitless (too 
many things change), but underplanning is a recipe for chaos. Like most things in life, 
planning should be agile and conducted in moderation, enough to provide useful guid-
ance for the team—no more, no less. Regardless of the rigor with which planning is 
conducted, the following principles always apply:

Principle 1. Understand the scope of the project. It’s impossible to use a road 
map if you don’t know where you’re going. Scope provides the software team with 
a destination.

Principle 2. Involve stakeholders in the planning activity. Stakeholders define 
priorities and establish project constraints. To accommodate these realities, software 
engineers must often negotiate order of delivery, time lines, and other project-
related issues.

3 A detailed discussion of software project planning and management is presented in Part 
Four of this book.
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Principle 3. Recognize that planning is iterative. A project plan is never engraved 
in stone. As work begins, it is very likely that things will change. The plan will need 
to be adjusted. Iterative, incremental process models include time for revising plans 
after the delivery of each software increment based on feedback received from users.

Principle 4. Estimate based on what you know. The intent of estimation is to 
 provide an indication of effort, cost, and task duration, based on the team’s current 
understanding of the work to be done. If information is vague or unreliable, estimates 
will be equally unreliable.

Principle 5. Consider risk as you define the plan. If you have identified risks 
that have high impact and high probability, contingency planning is necessary. 
The project plan (including the schedule) should be adjusted to accommodate the 
likelihood that one or more of these risks will occur.

Principle 6. Be realistic. People don’t work 100 percent of every day. Changes 
will occur. Even the best software engineers make mistakes. These and other realities 
should be considered as a project plan is established.

Principle 7. Adjust granularity as you define the plan. The term granularity 
refers to the detail with which some element of planning is represented or conducted. 
A high-granularity plan provides significant work task detail that is planned over 
 relatively short time increments (so that tracking and control occur frequently). A 
low-granularity plan provides broader work tasks that are planned over longer time 
periods. In general, granularity moves from high to low as the project time line 
moves away from the current date. Activities that won’t occur for many months do 
not require high granularity (too much can change).

Principle 8. Define how you intend to ensure quality. The plan should identify 
how the software team intends to ensure quality. If technical reviews4 are to 
be   conducted, they should be scheduled. If pair programming (Chapter 3) is to be 
used during construction, it should be explicitly defined within the plan.

Principle 9. Describe how you intend to accommodate change. Uncontrolled 
change can obviate even the best planning. You should identify how changes are to 
be accommodated as software engineering work proceeds. For example, can the 
 customer request a change at any time? If a change is requested, is the team obliged 
to implement it immediately? How is the impact and cost of the change assessed?

Principle 10. Track the plan frequently, and make adjustments as required. 
Software projects fall behind schedule one day at a time. Therefore, it makes sense 
to track progress daily, looking for problem areas and situations in which scheduled 
work does not conform to actual work conducted. When slippage is encountered, 
the plan is adjusted accordingly.

To be most effective, everyone on the software team should participate in the 
 planning activity. Only then will team members “sign up” to the plan.

6.2.3 Modeling Principles
We create models to gain a better understanding of the actual entity to be built. When 
the entity is a physical thing (e.g., a building, a plane, a machine), we can build a 

4 Technical reviews are discussed in Chapter 16.
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three-dimensional (3D) model that is identical in form and shape but smaller in scale. 
However, when the entity to be built is software, our model must take a different 
form. It must be capable of representing the information that software transforms, the 
architecture and functions that enable the transformation to occur, the features that 
users desire, and the behavior of the system as the transformation is taking place. 
Models must accomplish these objectives at different levels of abstraction—first 
depicting the software from the customer’s viewpoint and later representing the soft-
ware at a more technical level. Figure 6.4 shows how modeling may be used in agile 
software design.

In software engineering work, two classes of models can be created: requirements 
models and design models. Requirements models (also called analysis models) repre-
sent customer requirements by depicting the software in three different domains: the 
information domain, the functional domain, and the behavioral domain (Chapter 8). 
Design models represent characteristics of the software that help practitioners to con-
struct it effectively: the architecture, the user interface, and component-level detail 
(Chapters 9 through 12).

In their book on agile modeling, Scott Ambler and Ron Jeffries [Amb02] define a 
set of modeling principles5 that are intended for those who use an agile process model 
(Chapter 3) but are appropriate for all software engineers who perform modeling 
action and tasks:

Principle 1. The primary goal of the software team is to build software, not 
create models. Agility means getting software to the customer in the fastest possible 
time. Models that make this happen are worth creating, but models that slow the 
process down or provide little new insight should be avoided.

Modeling
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Quick Design

Deployment,
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5 The principles noted in this section have been abbreviated and rephrased for the purposes 
of this book.
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Principle 2. Travel light—don’t create more models than you need. Every 
model that is created must be kept up to date as changes occur. More importantly, 
every new model takes time that might otherwise be spent on construction (coding 
and testing). Therefore, create only those models that make it easier and faster to 
construct the software.

Principle 3. Strive to produce the simplest model that will describe the prob-
lem or the software. Don’t overbuild the software [Amb02]. By keeping models 
simple, the resultant software will also be simple. The result is software that is 
 easier to integrate, easier to test, and easier to maintain (to change). In addition, 
simple models are easier for members of the software team to understand and 
 critique, resulting in an ongoing form of feedback that optimizes the end result.

Principle 4. Build models in a way that makes them amenable to change. 
Assume that your models will change, but in making this assumption don’t get 
sloppy. The problem with this attitude is that you may not create a reasonably 
 complete requirements model, which means you’ll create a design (design model) 
that will invariably miss important functions and features.

Principle 5. Be able to state an explicit purpose for each model that is created. 
Every time you create a model, ask yourself why you’re doing so. If you can’t 
 provide solid justification for the existence of the model, don’t spend time on it.

Principle 6. Adapt the models you develop to the system at hand. It may be 
necessary to adapt model notation or rules to the application; for example, a video 
game application might require a different modeling technique than real-time, 
embedded software for adaptive cruise control in an automobile.

Principle 7. Try to build useful models, but forget about building perfect models. 
When building requirements and design models, a software engineer reaches a point 
of diminishing returns. That is, the effort required to make a model that is complete 
and internally consistent may not be worth the benefits of these properties. Iterating 
endlessly to make a model “perfect” does not serve the need for agility.

Principle 8. Don’t become dogmatic about the syntax of the model. If it communi-
cates content successfully, representation is secondary. Although everyone on a soft-
ware team should try to use consistent notation during modeling, the most important 
characteristic of the model is to communicate information that enables the next software 
engineering task. If a model does this successfully, incorrect syntax can be forgiven.

Principle 9. If your instincts tell you a model isn’t right even though it seems 
okay on paper, you probably have reason to be concerned. If you are an experi-
enced software engineer, trust your instincts. Software work teaches many lessons—
some of them on a subconscious level. If something tells you that a design model 
is doomed to fail (even though you can’t prove it explicitly), you have reason to 
spend additional time examining the model or developing a different one.

Principle 10. Get feedback as soon as you can. The intent of any model is to 
communicate information. It should stand on its own. Assume that you won’t be 
there to explain the model. Every model should be reviewed by members of the 
software team. The intent of these reviews is to provide feedback that can be used 
to correct modeling mistakes, change misinterpretations, and add features or 
 functions that were inadvertently omitted.
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6.2.4 Construction Principles
The construction activity encompasses a set of coding and testing tasks that lead to 
operational software that is ready for delivery to the customer or end user.

In modern software engineering work, coding may be: (1) the direct creation of 
programming language source code, (2) the automatic generation of source code using 
an intermediate design like representation of the component to be built, or (3) the 
automatic generation of executable code using a fourth-generation programming lan-
guage (e.g., Unreal4 Blueprints).6

The initial focus of testing is at the component level, often called unit testing. Other 
levels of testing include (1) integration testing (conducted as the system is con-
structed), (2) validation testing that assesses whether requirements have been met for 
the complete system (or software increment), and (3) acceptance testing that is con-
ducted by the customer in an effort to exercise all required features and functions. 
Figure 6.5 shows where testing and test case design is placed in agile processes.

Testing is considered in detail in Chapters 19 through 21. The following set of 
fundamental principles and concepts are applicable to coding and testing.

6 Blueprints is a visual scripting tool created by Epic Games (https://docs.unrealengine.com/
latest/INT/Engine/Blueprints/).
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Coding Principles. The principles that guide the coding task are closely aligned 
with programming style, programming languages, and programming methods. There 
are some fundamental principles that might be followed:

Preparation Principles: Before you write one line of code, be sure you:

Principle 1. Understand the problem you’re trying to solve.

Principle 2. Understand basic design principles and concepts.

Principle 3. Pick a programming language that meets the needs of the software 
to be built and the environment in which it will operate.

Principle 4. Select a programming environment that provides tools that will 
make your work easier.

Principle 5. Create a set of unit tests that will be applied once the component 
you code is completed.

Coding Principles: As you begin writing code, be sure you:

Principle 6. Constrain your algorithms by following structured programming 
[Boh00] practice.

Principle 7. Consider the use of pair programming.

Principle 8. Select data structures that will meet the needs of the design.

Principle 9. Understand the software architecture and create interfaces that 
are consistent with it.

Validation Principles: After you’ve completed your first coding pass, be 
sure you:

Principle 10. Conduct a code walkthrough when appropriate.

Principle 11. Perform unit tests and correct errors you’ve uncovered.

Principle 12. Refactor the code to improve its quality.

Testing Principles. In a classic book on software testing, Glen Myers [Mye79] 
states a number of rules that can serve well as testing objectives:

 1. Testing is a process of executing a program with the intent of finding an 
error.

 2. A good test case is one that has a high probability of finding an as-yet- 
undiscovered error.

 3. A successful test is one that uncovers an as-yet-undiscovered error.

These objectives imply a dramatic change in viewpoint for some software developers. 
They move counter to the commonly held view that a successful test is one in which 
no errors are found. Your objective is to design tests that systematically uncover dif-
ferent classes of errors and to do so with a minimum amount of time and effort.

As a secondary benefit, testing demonstrates that software functions appear to be 
working according to specification and that behavioral and performance requirements 
appear to have been met. In addition, the data collected as testing is conducted provide 
a good indication of software reliability and some indication of software quality. 
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Testing cannot show the absence of errors and defects; it can show only that software 
errors and defects are present (Figure 6.6). It is important to keep this (rather gloomy) 
statement in mind as testing is being conducted.

Davis [Dav95b] suggests a set of testing principles7 that have been adapted for use 
in this book. In addition, Everett and Meyer [Eve09] suggest additional principles:

Principle 1. All tests should be traceable to customer requirements.8 The objec-
tive of software testing is to uncover errors. It follows that the most severe defects 
(from the customer’s point of view) are those that cause the program to fail to meet 
its requirements.

Principle 2. Tests should be planned long before testing begins. Test planning 
(Chapter 19) can begin as soon as the requirements model is complete. Detailed def-
inition of test cases can begin as soon as the design model has been solidified. 
Therefore, all tests can be planned and designed before any code has been generated.

Principle 3. The Pareto principle applies to software testing. In this context, the 
Pareto principle implies that 80 percent of all errors uncovered during testing will 

7 Only a small subset of Davis’s testing principles are noted here. For more information, see 
[Dav95b].

8 This principle refers to functional tests, that is, tests that focus on requirements. Structural 
tests (tests that focus on architectural or logical detail) may not address specific requirements 
directly.
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likely be traceable to 20 percent of all program components. The problem, of 
course, is to isolate these suspect components and to thoroughly test them.

Principle 4. Testing should begin “in the small” and progress toward testing 
“in the large.” The first tests planned and executed generally focus on individual 
components. As testing progresses, focus shifts to looking for errors in integrated 
clusters of components and ultimately in the entire system.

Principle 5. Exhaustive testing is not possible. The number of path permutations 
for even a moderately sized program is exceptionally large. For this reason, it is 
impossible to execute every combination of paths during testing. It is possible, 
 however, to adequately cover program logic and to ensure that all conditions in the 
component-level design have been exercised.

Principle 6. Apply to each module in the system a testing effort commensurate 
with its expected fault density. These are often the newest modules or the ones that 
are least understood by the developers.

Principle 7. Static testing techniques can yield high results. More than 85 per-
cent of software defects originate in the software documentation (requirements, 
specifications, code walk-throughs, and user manuals) [Jon91]. There may be value 
in testing the system documentation.

Principle 8. Track defects and look for patterns in defects uncovered by testing. 
The total defects uncovered is a good indicator of software quality. The types of 
defects uncovered can be a good measure of software stability. Patterns of defects 
found over time can forecast numbers of expected defects.

Principle 9. Include test cases that demonstrate software is behaving correctly. 
As software components are being maintained or adapted, unexpected interactions 
cause unintended side effects in other components. It is important to have a set of 
regression test cases (Chapter 19) ready to check system behavior after changes are 
made to a software product.

6.2.5 Deployment Principles
As we noted in Part One of this book, the deployment activity encompasses three 
actions: delivery, support, and feedback. Because modern software process models 
are evolutionary or incremental in nature, deployment happens not once, but several 
times as software moves toward completion. Each delivery cycle provides the cus-
tomer and end users with an operational software increment that provides usable 
functions and features. Each support cycle provides documentation and human assis-
tance for all functions and features introduced during all deployment cycles to date. 
Each feedback cycle provides the software team with important guidance that results 
in modifications to the functions, features, and approach taken for the next increment. 
Typical deployment actions are illustrated in Figure 6.7.

The delivery of a software increment represents an important milestone for any 
software project. Some key principles should be followed as the team prepares to 
deliver an increment:

Principle 1. Customer expectations for the software must be managed. Too often, 
the customer expects more than the team has promised to deliver, and disappointment 
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occurs immediately. This results in feedback that is not productive and ruins team 
morale. In her book on managing expectations, Naomi Karten [Kar94] states: “The 
starting point for managing expectations is to become more conscientious about what 
you communicate and how.” She suggests that a software engineer must be careful 
about sending the customer conflicting messages (e.g., promising more than you can 
reasonably deliver in the time period provided or delivering more than you promise for 
one software increment and then less than promised for the next).

Principle 2. A complete delivery package should be assembled and tested. 
All executable software, support data files, support documents, and other relevant 
information should be assembled and thoroughly beta-tested with actual users. All 
installation scripts and other operational features should be thoroughly exercised in 
all possible computing configurations (i.e., hardware, operating systems, peripheral 
devices, networking arrangements).

Principle 3. A support regimen must be established before the software is delivered. 
An end user expects responsiveness and accurate information when a question or 
problem arises. If support is ad hoc, or worse, nonexistent, the customer will become 
dissatisfied immediately. Support should be planned, support materials should be 
prepared, and appropriate record-keeping mechanisms should be established so that the 
software team can conduct a categorical assessment of the kinds of support requested.

Principle 4. Appropriate instructional materials must be provided to end users. 
The software team delivers more than the software itself. Appropriate training aids 
(if required) should be developed; troubleshooting guidelines should be provided, 

Assemble Deployment Package Establish Support Regimen

Manage Customer Expectations Provide Instructional
Materials to End Users

Figure 6.7
Deployment 
actions
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and when necessary, a “what’s different about this software increment” description 
should be published.9

Principle 5. Buggy software should be fixed first, delivered later. Under time 
pressure, some software organizations deliver low-quality increments with a warning 
to the customer that bugs “will be fixed in the next release.” This is a mistake. 
There’s a saying in the software business: “Customers will forget you delivered 
a high-quality product a few days late, but they will never forget the problems 
that a low-quality product caused them. The software reminds them every day.”

 6 .3  su m m a ry

Software engineering practice encompasses principles, concepts, methods, and tools 
that software engineers apply throughout the software process. Every software engi-
neering project is different. Yet, a set of generic principles applies to the process and 
to the practice of each framework activity regardless of the project or the product.

A set of core principles helps in the application of a meaningful software process 
and the execution of effective software engineering methods. At the process level, 
core principles establish a philosophical foundation that guides a software team as it 
navigates through the software process. At the practice level, core principles establish 
a collection of values and rules that serve as a guide as you analyze a problem, design 
a solution, implement and test the solution, and ultimately deploy the software in the 
user community.

Communication principles focus on the need to reduce noise and improve band-
width as the conversation between developer and customer progresses. Both parties 
must collaborate for the best communication to occur.

Planning principles provide guidelines for constructing the best map for the journey 
to a completed system or product. The plan may be designed solely for a single soft-
ware increment, or it may be defined for the entire project. Regardless, it must address 
what will be done, who will do it, and when the work will be completed.

Modeling principles serve as a foundation for the methods and notation that are 
used to create representations of the software. Modeling encompasses both analysis 
and design, describing representations of the software that progressively become more 
detailed. The intent of the models is to solidify understanding of the work to be done 
and to provide technical guidance to those who will implement the software.

Construction incorporates a coding and testing cycle in which source code for a 
component is generated and tested. Coding principles define generic actions that 
should occur before code is written, while it is being created, and after it has been 
completed. Although there are many testing principles, only one is dominant: Testing 
is a process of executing a program with the intent of finding an error.

Deployment occurs as each software increment is presented to the customer and 
encompasses delivery, support, and feedback. Key principles for delivery consider 
managing customer expectations and providing the customer with appropriate support 

9 During the communication activity, the software team should determine what types of help 
materials users want.
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information for the software. Support demands advance preparation. Feedback allows 
the customer to suggest changes that have business value and provide the developer 
with input for the next iterative software engineering cycle.

Pro b l e m s a n d Po i n t s to Po n d e r

6.1. Because a focus on quality demands resources and time, is it possible to be agile and still 
maintain a quality focus?

6.2. Of the eight core principles that guide process (discussed in Section 6.1.1), which do you 
believe is most important?

6.3. Describe the concept of separation of concerns in your own words.

6.4. Why is it necessary to “move on”?

6.5. Do some research on “negotiation” for the communication activity, and prepare a set of 
guidelines that focus solely on negotiation.

6.6. Why are models important in software engineering work? Are they always necessary? Are 
there qualifiers to your answer about necessity?

6.7. What is a successful test?

6.8. Why is feedback important to the software team?

Design element: Quick Look icon magnifying glass: © Roger Pressman
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What is it? Before you begin any technical work, 
it’s a good idea to create a set of requirements 
for the engineering tasks. By establishing a set 
of requirements, you’ll gain an understanding 
of what the business impact of the software 
will be, what the customer wants, and how end 
users will interact with the software.

Who does it? Software engineers and other 
project stakeholders (managers, customers, 
and end users) all participate in requirements 
engineering.

Why is it important? To understand what the 
customer wants before you begin to design 
and build a computer-based system. Building 
an elegant computer program that solves the 
wrong problem helps no one.

What are the steps? Requirements engineer-
ing begins with inception (a task that defines 
the scope and nature of the problem to be 
solved). It moves onward to elicitation (a task 
that helps stakeholders define what is 

 required), and then elaboration (where basic 
requirements are refined and modified). As 
stakeholders define the problem, negotiation 
occurs (what are the priorities, what is essen-
tial, when is it required?). Finally, the problem 
is specified in some manner and then re-
viewed or validated to ensure that your under-
standing of the problem and the stakeholders’ 
understanding of the problem coincide.

What is the work product? Requirements en-
gineering provides all parties with a written 
understanding of the problem. The work prod-
ucts may include: usage scenarios, function 
and feature lists, and requirements models.

How do I ensure that I’ve done it right? Re-
quirements engineering work products are 
reviewed with stakeholders to ensure that ev-
eryone is on the same page. A word of warn-
ing: Even after all parties agree, things will 
change, and they will continue to change 
throughout the project.
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C H A P T E R

7
Understanding problem requirements is among the most difficult tasks facing a 
software engineer. When you first think about it, developing a clear understand-
ing of the requirements doesn’t seem that hard. After all, doesn’t the customer 
know what is required? Shouldn’t the end users have a good understanding of 
the features and functions that they need? Surprisingly, in many instances, the 
answer to these questions is no. And even if customers and end users can state 
their needs explicitly, those needs will change throughout the project.

Understanding  
Requirements
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In the forward to a book by Ralph Young [You01] on effective requirements prac-
tices, one of us [RSP] wrote:

It’s your worst nightmare. A customer walks into your office, sits down, looks you 
straight in the eye, and says, “I know you think you understand what I said, but what 
you don’t understand is what I said is not what I meant.” Invariably, this happens late 
in the project, after deadline commitments have been made, reputations are on the line, 
and serious money is at stake.

All of us who have worked in the systems and software business for more than a few 
years have lived this nightmare, and yet, few of us have learned to make it go away. We 
struggle when we try to elicit requirements from our customers. We have trouble under-
standing the information that we do acquire. We often record requirements in a disorga-
nized manner, and we spend far too little time verifying what we do record. We allow 
change to control us, rather than establishing mechanisms to control change. In short, 
we fail to establish a solid foundation for the system or software. Each of these problems 
is challenging. When they are combined, the outlook is daunting for even the most 
experienced managers and practitioners. But solutions do exist.

It’s reasonable to argue that the techniques we’ll discuss in this chapter are not a 
true “solution” to the challenges just noted. But they do provide a solid approach for 
addressing these challenges.

 7 .1  Re Q u i R e m e n t s eng i n e e R i ng

Designing and building computer software is challenging, creative, and just plain fun. 
In fact, building software is so compelling that many software developers want to 
jump right in before they have a clear understanding of what is needed. They argue 
that things will become clear as they build, that project stakeholders will be able to 
understand need only after examining early iterations of the software, that things 
change so rapidly that any attempt to understand requirements in detail is a waste of 
time, that the bottom line is producing a working program, and that all else is second-
ary. What makes these arguments seductive is that they contain elements of truth. But 
each argument is flawed and can lead to a failed software project.

Requirements engineering is the term for the broad spectrum of tasks and tech-
niques that lead to an understanding of requirements. From a software process per-
spective, requirements engineering is a major software engineering action that begins 
during the communication activity and continues into the modeling activity. Require-
ments engineering establishes a solid base for design and construction. Without it, the 
resulting software has a high probability of not meeting customer’s needs. It must be 
adapted to the needs of the process, the project, the product, and the people doing 
the work. It is important to realize that each of these tasks is done iteratively as the 
project team and the stakeholders continue to share information about their respective 
concerns.

Requirements engineering builds a bridge to design and construction. But where 
does the bridge originate? One could argue that it begins with the project stakehold-
ers (e.g., managers, customers, and end users), where business needs are defined, user 
scenarios are described, functions and features are delineated, and project constraints 
are identified. Others might suggest that it begins with a broader system definition, 
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where software is but one component of the larger system domain. But regardless of 
the starting point, the journey across the bridge takes you high above the project, 
allowing you to examine the context of the software work to be performed; the specific 
needs that design and construction must address; the priorities that guide the order in 
which work is to be completed; and the information, functions, and behaviors 
that  will  have a profound impact on the resulting design. Requirements engineering 
encompasses seven tasks with sometimes muddy boundaries: inception, elicitation, 
elaboration, negotiation, specification, validation, and management. It is important 
to  note that some of these tasks occur in parallel and all are adapted to the needs 
of  the project. Expect to do a bit of design during requirements work and a bit of 
requirements work during design.

7.1.1 Inception
How does a software project get started? In general, most projects begin with an 
identified business need or when a potential new market or service is discovered. At 
project inception, you establish a basic understanding of the problem, the people who 
want a solution, and the nature of the solution that is desired. Communication between 
all stakeholders and the software team needs to be established during this task to begin 
an effective collaboration.

7.1.2 Elicitation
It certainly seems simple enough—ask the customer, the users, and others what the 
objectives for the system or product are, what is to be accomplished, how the system 
or product fits into the needs of the business, and finally, how the system or product 
is to be used on a day-to-day basis. But it isn’t simple—it’s very hard.

An important part of elicitation is to understand the business goals [Cle10]. A goal 
is a long-term aim that a system or product must achieve. Goals may deal with either 
functional or nonfunctional (e.g., reliability, security, usability) concerns [Lam09].

Goals are often a good way to explain requirements to stakeholders and, once 
established, can be used to manage conflicts among stakeholders. Goals should be 
specified precisely and serve as the basis for requirements elaboration, verification 
and validation, conflict management, negotiation, explanation, and evolution.

Your job is to engage stakeholders and to encourage them to share their goals 
honestly. Once the goals are captured, you establish a prioritization mechanism and 
create a design rationale for a potential architecture (that meets stakeholder goals).

Agility is an important aspect of requirements engineering. The intent of elicitation 
is to transfer ideas from stakeholders to the software team smoothly and without delay. 
It is highly likely that new requirements will continue to emerge as iterative product 
development occurs.

7.1.3 Elaboration
The elaboration task focuses on developing a refined requirements model that identifies 
various aspects of software function, behavior, and information (Chapter 8). Elabora-
tion is driven by the creation and refinement of user scenarios obtained during elicita-
tion. These scenarios describe how the end users (and other actors) will interact with 
the system. Each user scenario is parsed to extract analysis classes—business domain 
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entities that are visible to the end user. The attributes of each analysis class are defined, 
and the services that are required by each class are identified. The relationships and 
collaboration between classes are identified. Elaboration is a good thing, but you need 
to know when to stop. The key is to describe the problem in a way that establishes a 
firm base for design and then move on. Do not obsess over unnecessary details.

7.1.4 Negotiation
It isn’t unusual for customers and users to ask for more than can be achieved, given 
limited business resources. It’s also relatively common for different customers or users 
to propose conflicting requirements, arguing that their version is “essential for our 
special needs.”

These conflicts need to be reconciled through the process of negotiation. Custom-
ers, users, and other stakeholders are asked to rank requirements and then discuss 
conflicts in priority. There should be no winner and no loser in an effective negotia-
tion. Both sides win, because a “deal” that both can live with is solidified. You should 
use an iterative approach that prioritizes requirements, assesses their cost and risk, 
and addresses internal conflicts. In this way, requirements are eliminated, combined, 
and/or modified so that each party achieves some measure of satisfaction.

7.1.5 Specification
In the context of computer-based systems (and software), the term specification means 
different things to different people. A specification can be a written document, a set 
of graphical models, a formal mathematical model, a collection of usage scenarios, a 
prototype, or any combination of these.

Some suggest that a “standard template” [Som97] should be developed and used for 
a specification, arguing that this leads to requirements that are presented in a consistent 
and therefore more understandable manner. However, it is sometimes necessary to 
remain flexible when a specification is to be developed. The formality and format of 
a specification varies with the size and the complexity of the software to be built. For 
large systems, a written document, combining natural language descriptions and graph-
ical models, may be the best approach. A template for a formal software requirements 
specification document can be downloaded from: https://web.cs.dal.ca/~hawkey/3130/
srs_template-ieee.doc. However, usage scenarios may be all that are required for smaller 
products or systems that reside within well-understood technical environments.

7.1.6 Validation
The work products produced during requirements engineering are assessed for quality 
during a validation step. A key concern during requirements validation is consistency. 
Use the analysis model to ensure that requirements have been consistently stated. 
Requirements validation examines the specification to ensure that all software require-
ments have been stated unambiguously; that inconsistencies, omissions, and errors 
have been detected and corrected; and that the work products conform to the standards 
established for the process, the project, and the product.

The primary requirements validation mechanism is the technical review (Chapter 16). 
The review team that validates requirements includes software engineers, customers, 
users, and other stakeholders who examine the specification looking for errors in 
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content or interpretation, areas where clarification may be required, missing informa-
tion, inconsistencies (a major problem when large products or systems are engineered), 
conflicting requirements, or unrealistic (unachievable) requirements.

To illustrate some of the problems that occur during requirements validation, 
consider two seemingly innocuous requirements:

∙ The software should be user friendly.
∙ The probability of a successful unauthorized database intrusion should be less 

than 0.0001.
The first requirement is too vague for developers to test or assess. What exactly 

does “user friendly” mean? To validate it, it must be quantified or qualified in some 
manner.

The second requirement has a quantitative element (“less than 0.0001”), but intru-
sion testing will be difficult and time consuming. Is this level of security even war-
ranted for the application? Can other complementary requirements associated with 
security (e.g., password protection, specialized handshaking) replace the quantitative 
requirement noted?

7.1.7 Requirements Management
Requirements for computer-based systems change, and the desire to change require-
ments persists throughout the life of the system. Requirements management is a set 
of activities that help the project team identify, control, and track requirements and 
changes to requirements at any time as the project proceeds. Many of these activities 
are identical to the software configuration management (SCM) techniques discussed 
in Chapter 22.

Requirements Validation  
Checklist
It is often useful to examine each re-

quirement against a set of checklist questions. 
Here is a small subset of those that might be 
asked:

 1. Are requirements stated clearly? Can they be 
misinterpreted?

 2. Is the source (e.g., a person, a regulation, a 
document) of the requirement identified? 
Has the final statement of the requirement 
been examined by or against the original 
source?

 3. Is the requirement bounded in quantitative 
terms?

 4. What other requirements relate to this re-
quirement? Are they clearly noted via a 
cross-reference matrix or other mechanism?

 5. Does the requirement violate any system 
domain constraints?

 6. Is the requirement testable? If so, can we 
specify tests (sometimes called validation 
criteria) to exercise the requirement?

 7. Is the requirement traceable to any system 
model that has been created?

 8. Is the requirement traceable to overall 
system and product objectives?

 9. Is the specification structured in a way that 
leads to easy understanding, easy reference, 
and easy translation into more technical work 
products?

 10. Has an index for the specification been 
created?

 11. Have requirements associated with perfor-
mance, behavior, and operational character-
istics been clearly stated? What requirements 
appear to be implicit?

info
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 7 .2  esta b L i s h i ng t h e gRo u n dwo R k

In an ideal setting, stakeholders and software engineers work together on the same 
team. In such cases, requirements engineering is simply a matter of conducting mean-
ingful conversations with colleagues who are well-known members of the team. But 
reality is often quite different.

Customer(s) or end users may reside in different cities or countries, may have only 
a vague idea of what is required, may have conflicting opinions about the system to 
be built, may have limited technical knowledge, and may have limited time to interact 
with the requirements engineer. None of these things are desirable, but all are com-
mon, and you are often forced to work within the constraints imposed by this situation.

In the sections that follow, we discuss the steps required to establish the ground-
work for an understanding of software requirements—to get the project started in a 
way that will keep it moving forward toward a successful solution.

7.2.1 Identifying Stakeholders
Sommerville and Sawyer [Som97] define a stakeholder as “anyone who benefits in a 
direct or indirect way from the system which is being developed.” We have already 
identified the usual suspects: business operations managers, product managers, market-
ing people, internal and external customers, end users, consultants, product engineers, 
software engineers, support and maintenance engineers, and others. Each stakeholder 
has a different view of the system, achieves different benefits when the system is suc-
cessfully developed, and is open to different risks if the development effort should fail.

At inception, you should create a list of people who will contribute input as require-
ments are elicited (Section 7.3). The initial list will grow as stakeholders are contacted 
because every stakeholder will be asked: “Whom else do you think I should talk to?”

7.2.2 Recognizing Multiple Viewpoints
Because many different stakeholders exist, the requirements of the system will be 
explored from many different points of view. For example, the marketing group is 
interested in features that will excite the potential market, making the new system 
easy to sell. Business managers are interested in a feature set that can be built within 
budget and that will be ready to meet defined market windows. End users may want 
features that are familiar to them and that are easy to learn and use. Software engineers 
may be concerned with functions that are invisible to nontechnical stakeholders but 
that enable an infrastructure that supports more marketable functions and features. 
Support engineers may focus on the maintainability of the software.

Each of these constituencies (and others) will contribute information to the require-
ments engineering process. As information from multiple viewpoints is collected, 
emerging requirements may be inconsistent or may conflict with one another. You 
should categorize all stakeholder information (including inconsistent and conflicting 
requirements) in a way that will allow decision makers to choose an internally con-
sistent set of requirements for the system.

Several things can make it hard to elicit requirements for software that satisfies its 
users: project goals are unclear, stakeholders’ priorities differ, people have unspoken 
assumptions, stakeholders interpret meanings differently, and requirements are stated 
in a way that makes them difficult to verify [Ale11]. The goal of effective require-
ments engineering is to eliminate or at least reduce these problems.
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7.2.3 Working Toward Collaboration
If five stakeholders are involved in a software project, you may have five (or more) 
different opinions about the proper set of requirements. Throughout earlier chapters, 
we have noted that customers (and other stakeholders) should collaborate among 
themselves (avoiding petty turf battles) and with software engineering practitioners if 
a successful system is to result. But how is this collaboration accomplished?

The job of a requirements engineer is to identify areas of commonality (i.e., 
requirements on which all stakeholders agree) and areas of conflict or inconsistency 
(i.e., requirements that are desired by one stakeholder but conflict with the needs of 
another stakeholder). It is, of course, the latter category that presents a challenge.

Collaboration does not necessarily mean that requirements are “defined by com-
mittee.” In many cases, stakeholders collaborate by providing their view of require-
ments, but a strong “project champion” (e.g., a business manager or a senior 
technologist) may make the final decision about which requirements make the cut.

Using “Planning Poker”
One way of resolving conflicting 
 requirements and at the same time 

 better understanding the relative importance of 
all requirements is to use a “voting” scheme 
based on priority points. All stakeholders are 
provided with some number of priority points 
that can be “spent” on any number of require-
ments. A list of requirements is presented, and 

each stakeholder indicates the relative impor-
tance of each (from his viewpoint) by spending 
one or more priority points on it. Points spent 
cannot be reused. Once a stakeholder’s priority 
points are  exhausted, no further action on 
 requirements can be taken by that person. 
 Overall points spent on each requirement by 
all stakeholders provide an  indication of the 
overall importance of each requirement.

info

7.2.4 Asking the First Questions
Questions asked at the inception of the project should be “context free” [Gau89]. The 
first set of context-free questions focuses on the customer and other stakeholders and 
the overall project goals and benefits. For example, you might ask:

∙ Who is behind the request for this work?
∙ Who will use the solution?
∙ What will be the economic benefit of a successful solution?
∙ Is there another source for the solution that you need?

These questions help to identify all stakeholders who will have interest in the 
software to be built. In addition, the questions identify the measurable benefit of a 
successful implementation and possible alternatives to custom software development.

The next set of questions enables you to gain a better understanding of the problem 
and allows the customer to voice her perceptions about a solution:

∙ How would you characterize “good” output that would be generated by a 
successful solution?

∙ What problem(s) will this solution address?
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∙ Can you show me (or describe) the business environment in which the solu-
tion will be used?

∙ Will special performance issues or constraints affect the way the solution is 
approached?

The final set of questions focuses on the effectiveness of the communication activ-
ity itself. Gause and Weinberg [Gau89] call these “meta-questions” and propose the 
following (abbreviated) list:

∙ Are you the right person to answer these questions? Are your answers “official”?
∙ Are my questions relevant to the problem that you have?
∙ Am I asking too many questions?
∙ Can anyone else provide additional information?
∙ Should I be asking you anything else?

These questions (and others) will help to “break the ice” and initiate the commu-
nication that is essential to successful elicitation. But a question-and-answer (Q&A) 
meeting format is not an approach that has been overwhelmingly successful. In fact, 
the Q&A session should be used for the first encounter only and then replaced by a 
requirements elicitation format that combines elements of problem solving, negotia-
tion, and specification. An approach of this type is presented in Section 7.3.

7.2.5 Nonfunctional Requirements
A nonfunctional requirement (NFR) can be described as a quality attribute, a perfor-
mance attribute, a security attribute, or a general constraint on a system. These are 
often not easy for stakeholders to articulate. Chung [Chu09] suggests that there is a 
lopsided emphasis on functionality of the software, yet the software may not be use-
ful or usable without the necessary nonfunctional characteristics.

It is possible to define a two-phase approach [Hne11] that can assist a software 
team and other stakeholders in identifying nonfunctional requirements. During the 
first phase, a set of software engineering guidelines is established for the system to 
be built. These include guidelines for best practice, but also address architectural style 
(Chapter 10) and the use of design patterns (Chapter 14). A list of NFRs (e.g., require-
ments that address usability, testability, security, or maintainability) is then developed. 
A simple table lists NFRs as column labels and software engineering guidelines as 
row labels. A relationship matrix compares each guideline to all others, helping the 
team to assess whether each pair of guidelines is complementary, overlapping, con-
flicting, or independent.

In the second phase, the team prioritizes each nonfunctional requirement by creat-
ing a homogeneous set of nonfunctional requirements using a set of decision rules 
that establish which guidelines to implement and which to reject.

7.2.6 Traceability
Traceability is a software engineering term that refers to documented links between 
software engineering work products (e.g., requirements and test cases). A traceability 
matrix allows a requirements engineer to represent the relationship between 
requirements and other software engineering work products. Rows of the traceability 
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matrix are labeled using requirement names, and columns can be labeled with the 
name of a software engineering work product (e.g., a design element or a test case). 
A matrix cell is marked to indicate the presence of a link between the two.

The traceability matrices can support a variety of engineering development activi-
ties. They can provide continuity for developers as a project moves from one project 
phase to another, regardless of the process model being used. Traceability matrices 
often can be used to ensure the engineering work products have taken all requirements 
into account.

As the number of requirements and the number of work products grows, it becomes 
increasingly difficult to keep the traceability matrix up to date. Nonetheless, it is 
important to create some means for tracking the impact and evolution of the product 
requirements [Got11].

 7 .3  Re Q u i R e m e n t s gat h e R i ng

Requirements gathering combines elements of problem solving, elaboration, negotia-
tion, and specification. To encourage a collaborative, team-oriented approach to 
requirements gathering, stakeholders work together to identify the problem, propose 
elements of the solution, negotiate different approaches, and specify a preliminary set 
of solution requirements [Zah90].

7.3.1 Collaborative Requirements Gathering
Many different approaches to collaborative requirements gathering have been pro-
posed. Each makes use of a slightly different scenario, but all apply some variation 
on the following basic guidelines:

∙ Meetings (either real or virtual) are conducted and attended by both software 
engineers and other stakeholders.

∙ Rules for preparation and participation are established.
∙ An agenda is suggested that is formal enough to cover all important points 

but informal enough to encourage the free flow of ideas.
∙ A “facilitator” (can be a customer, a developer, or an outsider) controls the 

meeting.
∙ A “definition mechanism” (can be worksheets, flip charts, or wall stickers or 

an electronic bulletin board, chat room, or virtual forum) is used.

The goal is to identify the problem, propose elements of the solution, negotiate 
different approaches, and specify a preliminary set of solution requirements.

A one- or two-page “product request” is generated during inception (Section 7.2). 
A meeting place, time, and date are selected; a facilitator is chosen; and attendees 
from the software team and other stakeholder organizations are invited to participate. 
If a system or product will serve many users, be absolutely certain that requirements 
are elicited from a representative cross section of users. If only one user defines all 
requirements, acceptance risk is high (meaning there may be several other stakehold-
ers who will not accept the product). The product request is distributed to all attend-
ees before the meeting date.
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As an example, consider an excerpt from a product request written by a marketing 
person involved in the SafeHome project. This person writes the following narrative 
about the home security function that is to be part of SafeHome:

Our research indicates that the market for home management systems is growing at a 
rate of 40 percent per year. The first SafeHome function we bring to market should be 
the home security function. Most people are familiar with “alarm systems,” so this would 
be an easy sell. We might also consider using voice control of the system using some 
technology like Alexa.

The home security function would protect against and/or recognize a variety of unde-
sirable “situations” such as illegal entry, fire, flooding, carbon monoxide levels, and 
others. It’ll use our wireless sensors to detect each situation, can be programmed by the 
homeowner, and will automatically contact a monitoring agency and the owner’s cell 
phone when a situation is detected.

In reality, others would contribute to this narrative during the requirements gather-
ing meeting and considerably more information would be available. But even with 
additional information, ambiguity is present, omissions are likely to exist, and errors 
might occur. For now, the preceding “functional description” will suffice.

While reviewing the product request in the days before the meeting, each attendee 
is asked to make a list of objects that are part of the environment that surrounds the 
system, other objects that are to be produced by the system, and objects that are used 
by the system to perform its functions. In addition, each attendee is asked to make 
another list of services (processes or functions) that manipulate or interact with the 
objects. Finally, lists of constraints (e.g., cost, size, business rules) and performance 
criteria (e.g., speed, accuracy, security) are also developed. The attendees are informed 
that the lists are not expected to be exhaustive but are expected to reflect each person’s 
perception of the system.

Objects described for SafeHome might include the control panel, smoke detectors, 
window and door sensors, motion detectors, an alarm, an event (a sensor has been 
activated), a display, a tablet, telephone numbers, a telephone call, and so on. The list 
of services might include configuring the system, setting the alarm, monitoring the 
sensors, dialing the phone using a wireless router, programming the control panel, 
and reading the display (note that services act on objects). In a similar fashion, each 
attendee will develop lists of constraints (e.g., the system must recognize when sensors 
are not operating, must be user friendly, must interface directly to a standard phone 
line) and performance criteria (e.g., a sensor event should be recognized within  
1 second, and an event priority scheme should be implemented).

The lists of objects can be pinned to the walls of the room using large sheets of 
paper, stuck to the walls using adhesive-backed sheets, or written on a wall board. 
Alternatively, the lists may have been posted on a group forum or at an internal web-
site or posed in a social networking environment for review prior to the meeting. 
Ideally, each listed entry should be capable of being manipulated separately so that 
lists can be combined, entries can be deleted, and additions can be made. At this stage, 
critique and debate are strictly prohibited. Avoid the impulse to shoot down a cus-
tomer’s idea as “too costly” or “impractical.” The idea here is to negotiate a list that 
is acceptable to all. To do this, you must keep an open mind.

After individual lists are presented in one topic area, the group creates a combined 
list by eliminating redundant entries, adding any new ideas that come up during the 
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discussion, but not deleting anything. After you create combined lists for all topic 
areas, discussion—coordinated by the facilitator—ensues. The combined list is short-
ened, lengthened, or reworded to properly reflect the product or system to be devel-
oped. The objective is to develop a consensus list of objects, services, constraints, and 
performance for the system to be built.

In many cases, an object or service described on a list will require further explana-
tion. To accomplish this, stakeholders develop mini-specifications for entries on the 
lists or by creating a use case (Section 7.4) that involves the object or service. For 
example, the mini-spec for the SafeHome object Control Panel might be:

The control panel is a wall-mounted unit that is approximately 230 × 130 mm in size. 
The control panel has wireless connectivity to sensors and a tablet. User interaction 
occurs through a keypad containing 12 keys. A 75 × 75 mm OLED color display provides 
user feedback. Software provides interactive prompts, echo, and similar functions.

The mini-specs are presented to all stakeholders for discussion. Additions, dele-
tions, and further elaboration are made. In some cases, the development of mini-specs 
will uncover new objects, services, constraints, or performance requirements that will 
be added to the original lists. During all discussions, the team may raise an issue that 
cannot be resolved during the meeting. An issues list is maintained so that these ideas 
will be acted on later.

Case Study Example
Conducting a Requirements Gathering Meeting

The scene: A meeting room. 
The first requirements gathering meeting is in 
progress.

The players: Jamie Lazar, software team 
member; Vinod Raman, software team mem-
ber; Ed Robbins, software team member; Doug 
Miller, software engineering manager; three 
members of marketing; a product engineering 
representative; and a facilitator.

The conversation:
Facilitator (pointing at whiteboard): So that’s 
the current list of objects and services for the 
home security function.

Marketing person: That about covers it from 
our point of view.

Vinod: Didn’t someone mention that they 
wanted all SafeHome functionality to be ac-
cessible via the Internet? That would include 
the home security function, no?

Marketing person: Yes, that’s right . . . we’ll 
have to add that functionality and the 
appropriate objects.

Facilitator: Does that also add some 
constraints?

Jamie: It does, both technical and legal.

Production rep: Meaning?

Jamie: We better make sure an outsider can’t 
hack into the system, disarm it, and rob the 
place or worse. Heavy liability on our part.

Doug: Very true.

Marketing: But we still need that . . . just be 
sure to stop an outsider from getting in.

Ed: That’s easier said than done and . . .

Facilitator (interrupting): I don’t want to de-
bate this issue now. Let’s note it as an action 
item and proceed.
(Doug, serving as the recorder for the meeting, 
makes an appropriate note.)

Facilitator: I have a feeling there’s still more to 
consider here.
(The group spends the next 20 minutes refining 
and expanding the details of the home security 
function.)

safehome
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Many stakeholder concerns (e.g., accuracy, data accessibility, security) are the basis 
for nonfunctional system requirements (Section 7.2). As stakeholders enunciate these 
concerns, software engineers must consider them within the context of the system to 
be built. The questions that must be answered [Lag10] are:

∙ Can we build the system?
∙ Will this development process allow us to beat our competitors to market?
∙ Do adequate resources exist to build and maintain the proposed system?
∙ Will the system performance meet the needs of our customers?

7.3.2 Usage Scenarios
As requirements are gathered, an overall vision of system functions and features begin 
to materialize. However, it is difficult to move into more technical software engineer-
ing activities until you understand how the features will be used by different classes 
of end users. To accomplish this, developers and users can create a set of scenarios 
that identify a thread of usage for the system to be constructed. The scenarios, often 
called use cases [Jac92], provide a description of how the system will be used. Use 
cases are discussed in greater detail in Section 7.4.

Developing a Preliminary User Scenario

The scene: A meeting room, 
continuing the first require-

ments gathering meeting.

The players: Jamie Lazar, software team 
member; Vinod Raman, software team mem-
ber; Ed Robbins, software team member; Doug 
Miller, software engineering manager; three 
members of marketing; a product engineering 
representative; and a facilitator.

The conversation:
Facilitator: We’ve been talking about security 
for access to SafeHome functionality that will 
be accessible via the Internet. I’d like to try 
something. Let’s develop a usage scenario for 
access to the home security function.

Jamie: How?

Facilitator: We can do it a couple of different 
ways, but for now, I’d like to keep things really 
informal. Tell us (he points at a marketing per-
son) how you envision accessing the system.

Marketing person: Um . . . well, this is the kind 
of thing I’d do if I was away from home and I 

had to let someone into the house, say a 
housekeeper or repair guy, who didn’t have 
the security code.

Facilitator (smiling): That’s the reason you’d 
do it . . . tell me how you’d actually do this.

Marketing person: Um . . . the first thing I’d 
need is a PC. I’d log on to a website we’d 
maintain for all users of SafeHome. I’d provide 
my user ID and . . .

Vinod (interrupting): The Web page would 
have to be secure, encrypted, to guarantee 
that we’re safe and . . .

Facilitator (interrupting): That’s good informa-
tion, Vinod, but it’s technical. Let’s just focus 
on how the end user will use this capability. 
OK?

Vinod: No problem.

Marketing person: So as I was saying, I’d log 
on to a website and provide my user ID and 
two levels of passwords.

Jamie: What if I forget my password?

safehome
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7.3.3 Elicitation Work Products
The work products produced during requirements elicitation will vary depending on 
the size of the system or product to be built. For large systems, the work products 
may include: (1) a statement of need and feasibility; (2) a bounded statement of scope 
for the system or product; (3) a list of customers, users, and other stakeholders who 
participated in requirements elicitation; (4) a description of the system’s technical 
environment; (5) a list of requirements (preferably organized by function) and the 
domain constraints that apply to each; and (6) a set of usage scenarios that provide 
insight into the use of the system or product under different operating conditions. Each 
of these work products is reviewed by all people who have participated in require-
ments elicitation.

 7 .4  de v e L o p i ng us e ca s e s

A use case tells a stylized story about how an end user (playing one of several pos-
sible roles) interacts with the system under a specific set of circumstances. The story 
may be narrative text (a user story), an outline of tasks or interactions, a template-
based description, or a diagrammatic representation. Regardless of its form, a use case 
depicts the software or system from the end user’s point of view.

The first step in writing a use case is to define the set of “actors” that will be 
involved in the story. Actors are the different people (or devices) that use the system 
or product within the context of the function and behavior that is to be described. 
Actors will represent the roles that people (or devices) play as the system operates. 
Defined somewhat more formally, an actor is anything that communicates with the 
system or product and that is external to the system itself. Every actor has one or 
more goals when using the system.

It is important to note that an actor and an end user are not necessarily the same 
thing. A typical user may play several different roles when using a system, whereas 
an actor represents a class of external entities (often, but not always, people) that play 
just one role in the context of the use case. As an example, consider a user who 
interacts with the program that allows experimenting with alarm sensor configuration 

Facilitator (interrupting): Good point, Jamie, 
but let’s not address that now. We’ll make a 
note of that and call it an exception. I’m sure 
there’ll be others.

Marketing person: After I enter the pass-
words, a screen representing all SafeHome 
functions will appear. I’d select the home secu-
rity function. The system might request that I 
verify who I am, say, by asking for my address 
or phone number or something. It would then 
display a picture of the security system control 

panel along with a list of functions that I can 
perform—arm the system, disarm the system, 
disarm one or more sensors. I suppose it might 
also allow me to reconfigure security zones 
and other things like that, but I’m not sure.
(As the marketing person continues talking, Doug 
takes copious notes; these form the basis for the 
first informal usage scenario. Alternatively, the 
marketing person could have been asked to 
write the scenario, but this would be done 
outside the meeting.)
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in a virtual building. After careful review of requirements, the software for the control 
computer requires four different modes (roles) for interaction: placement mode, testing 
mode, monitoring mode, and troubleshooting mode. Therefore, four actors can be 
defined: editor, tester, monitor, and troubleshooter. In some cases, the user can play 
all the roles. In others, different people may play the role of each actor.

Because requirements elicitation is an evolutionary activity, not all actors are iden-
tified during the first iteration. It is possible to identify primary actors [Jac92] during 
the first iteration and secondary actors as more is learned about the system. Primary 
actors interact to achieve required system function and derive the intended benefit 
from the system. They work directly and frequently with the software. Secondary 
actors support the system so that primary actors can do their work.

Once actors have been identified, use cases can be developed. Jacobson [Jac92] 
suggests questions that should be answered by a use case:

 1. Who is the primary actor, the secondary actor(s)?
 2. What are the actor’s goals?
 3. What preconditions should exist before the story begins?
 4. What main tasks or functions are performed by the actor?
 5. What exceptions might be considered as the story is described?
 6. What variations in the actor’s interaction are possible?
 7. What system information will the actor acquire, produce, or change?
 8. Will the actor have to inform the system about changes in the external 

environment?
 9. What information does the actor desire from the system?
 10. Does the actor wish to be informed about unexpected changes?

Recalling basic SafeHome requirements, we define four actors: homeowner (a 
user), setup manager (likely the same person as homeowner, but playing a different 
role), sensors (devices attached to the system), and the monitoring and response 
subsystem (the central station that monitors the SafeHome home security function). 
For the purposes of this example, we consider only the homeowner actor. The home-
owner actor interacts with the home security function in different ways using either 
the alarm control panel, a tablet, or a cell phone.

The homeowner:

 1. Enters a password to allow all other interactions
 2. Inquires about the status of a security zone
 3. Inquires about the status of a sensor
 4. Presses the panic button in an emergency
 5. Activates and deactivates the security system

Considering the situation in which the homeowner uses the control panel, the basic 
use case for system activation follows:

 1. The homeowner observes the SafeHome control panel (Figure 7.1) to deter-
mine if the system is ready for input. If the system is not ready, a not ready 
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message is displayed on the LCD display, and the homeowner must physically 
close windows or doors so that the not ready message disappears. (A not ready 
message implies that a sensor is open, i.e., that a door or window is open.)

 2. The homeowner uses the keypad to key in a four-digit password. The password 
is compared with the valid password stored in the system. If the password is 
incorrect, the control panel will beep once and reset itself for additional input. 
If the password is correct, the control panel awaits further action.

 3. The homeowner selects and keys in “stay” or “away” (see Figure 7.1) to acti-
vate the system. Stay activates only perimeter sensors (inside motion detecting 
sensors are deactivated). Away activates all sensors.

 4. When activation occurs, a red alarm light can be observed by the homeowner.

The basic use case presents a high-level user story that describes the interaction 
between the actor and the system.

In many instances, uses cases are further elaborated to provide considerably more 
detail about the interaction. For example, Cockburn [Coc01b] suggests the following 
template for detailed descriptions of use cases:

Use case:   InitiateMonitoring

Primary actor: Homeowner.
Goal in context:  To set the system to monitor sensors when the 

homeowner leaves the house or remains inside.
Preconditions:  System has been programmed for a password and to 

recognize various sensors.
Trigger:    The homeowner decides to “set” the system, that is, 

to turn on the alarm functions.

o� away stay

max test bypass

instant code chime

ready

panic

SafeHome

alarm
check

fire

away
stay

instant
bypass

not ready

1

armed power

2 3

4 5 6

7 8 9

* 0 #

Figure 7.1
SafeHome 
control panel
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Scenario:
 1. Homeowner observes control panel.
 2. Homeowner enters password.
 3. Homeowner selects “stay” or “away.”
 4. Homeowner observes red alarm light to indicate that SafeHome has  

been armed.

Exceptions:
 1. Control panel is not ready: Homeowner checks all sensors to determine which 

are open and then closes them.
 2. Password is incorrect (control panel beeps once): Homeowner reenters correct 

password.
 3. Password not recognized: Monitoring and response subsystem must be contacted 

to reprogram password.
 4. Stay is selected: Control panel beeps twice, and a stay light is lit; perimeter 

sensors are activated.
 5. Away is selected: Control panel beeps three times, and an away light is lit; all 

sensors are activated.

Priority:   Essential, must be implemented
When available: First increment
Frequency of use: Many times per day
Channel to actor: Via control panel interface
Secondary actors: Support technician, sensors
Channels to secondary actors:

Support technician: phone line
Sensors: hardwired and radio frequency interfaces

Open issues:
 1. Should there be a way to activate the system without the use of a password or 

with an abbreviated password?
 2. Should the control panel display additional text messages?
 3. How much time does the homeowner have to enter the password from the time 

the first key is pressed?
 4. Is there a way to deactivate the system before it actually activates?

Use cases for other homeowner interactions would be developed in a similar 
manner. It is important to review each use case with care. If some element of the 
interaction is ambiguous, it is likely that a review of the use case will indicate a 
problem. Use cases are often written informally as user stories. However, using 
the template shown here helps to ensure that you’ve addressed all key issues. This 
is very important for systems where user safety or security is a stakeholder 
concern.
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 7 .5  bu i L d i ng t h e ana Lys i s  mo d e L

The intent of the analysis model is to provide a description of the required informa-
tional, functional, and behavioral domains for a computer-based system. The model 
changes dynamically as you learn more about the system to be built, and as stakehold-
ers understand more about what they really require. For that reason, the analysis model 
is a snapshot of requirements at any given time. You should expect it to change.

As the analysis model evolves, certain elements will become relatively stable, pro-
viding a solid foundation for the design tasks that follow. However, other elements of 
the model may be more volatile, indicating that stakeholders do not yet fully under-
stand requirements for the system. If your team finds that it does not use certain 
elements of the analysis model as the project moves to design and construction, those 
elements should not be created in the future and should not be maintained as the 
requirements change in the current project. The analysis model and the methods that 
are used to build it are presented in detail in Chapter 8. We present a brief overview 
in the sections that follow.

Developing a High-Level Use Case Diagram

The scene: A meeting room, 
continuing the requirements 

gathering meeting.

The players: Jamie Lazar, software team 
member; Vinod Raman, software team mem-
ber; Ed Robbins, software team member; Doug 
Miller, software engineering manager; three 
members of marketing; a product engineering 
representative; and a facilitator.

The conversation:
Facilitator: We’ve spent a fair amount of time 
talking about SafeHome home security func-
tionality. During the break I sketched a use 
case diagram to summarize the important sce-
narios that are part of this function. Take a look.

 (All attendees look at Figure 7.2.)

Jamie: I’m just beginning to learn UML nota-
tion. So the home security function is repre-
sented by the big box with the ovals inside it? 
And the ovals represent use cases that we’ve 
written in text?

Facilitator: Yep. And the stick figures repre-
sent actors—the people or things that interact 

with the system as described by the use 
case . . . oh, I use the labeled square to repre-
sent an actor that’s not a person . . . in this 
case, sensors.
Doug: Is that legal in UML?
Facilitator: Legality isn’t the issue. The 
point is to communicate information. I view 
the use of a humanlike stick figure for repre-
senting a device to be misleading. So I’ve 
adapted things a bit. I don’t think it creates a 
problem.
Vinod: Okay, so we have use case narratives 
for each of the ovals. Do we need to develop 
the more detailed template-based narratives 
I’ve read about?
Facilitator: Probably, but that can wait until 
we’ve considered other SafeHome functions.
Marketing person: Wait, I’ve been looking at 
this diagram and all of a sudden I realize we 
missed something.
Facilitator: Oh really. Tell me what we’ve 
missed.

 (The meeting continues.)

safehome
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7.5.1 Elements of the Analysis Model
There are many ways to look at the requirements for a computer-based system. Some 
software people argue that it’s best to select one mode of representation (e.g., the use 
case) and apply it to the exclusion of all other modes. Other practitioners believe that 
it’s worthwhile to use several different modes of representation to depict the analysis 
model. Using different modes of representation forces you to consider requirements 
from different viewpoints—an approach that has a higher probability of uncovering 
omissions, inconsistencies, and ambiguity. It is always a good idea to get stakeholders 
involved. One of the best ways to do this is to have each stakeholder write use cases 
that describe how the software will be used. A set of generic elements common to 
most analysis models is introduced in this chapter.

Scenario-Based Elements. Scenario-based elements of the requirements model are 
often the first part of the model that is developed. They describe the system from the 
user’s point of view. For example, basic user stories (Section 7.4) and their corre-
sponding use case diagrams (Figure 7.2) may evolve into more elaborate template-
based use cases (Section 7.4). As such, they serve as input for the creation of other 
modeling elements. It is always a good idea to get stakeholders involved. One of the 
best ways to do this is to have each stakeholder write use cases that describe how the 
software will be used.

Homeowner

System
Administrator

Arms/disarms
system

Accesses
system

via Internet

Responds to
alarm events

Encounters
an error
condition

Reconfigures
sensors and

related system
features

Sensors

Figure 7.2
UML use case 
diagram for 
SafeHome 
home security 
function
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Class-Based Elements. Each usage scenario implies a set of objects that are mani-
pulated as an actor interacts with the system. These objects are categorized into 
classes—a collection of things that have similar attributes and common behaviors. For 
example, a UML class diagram can be used to depict a Sensor class for the SafeHome 
security function (Figure 7.3).

Note that the diagram lists the attributes of sensors (e.g., name, type) and the 
operations (e.g., identify, enable) that can be applied to modify these attributes. Other 
analysis modeling elements depict how classes collaborate with one another and the 
relationships and interactions among classes. One way to isolate classes is to look 
for descriptive nouns in a use case script. At least some of the nouns will be candi-
date classes. The verbs found in the use case script may be considered candidate 
methods for these classes. These and other techniques are discussed in more detail 
in Chapter 8.

Behavioral Elements. The behavior of a computer-based system can have a pro-
found effect on the design that is chosen and the implementation approach that is 
applied. Therefore, the requirements model must provide modeling elements that 
depict behavior.

The state diagram is one method for representing the behavior of a system by 
depicting its states and the events that cause the system to change state. A state is 
any externally observable mode of behavior. In addition, the state diagram indicates 
what actions (e.g., process activations) are taken when events occur. External stimuli 
(events) cause transitions between states.

Name
Type
Location
Area
Characteristics

Identify()
Enable()
Disable()
Reconfigure()

Sensor
Figure 7.3

Class diagram 
for sensor
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To illustrate the use of a state diagram, consider software embedded within the 
SafeHome control panel that is responsible for reading user input. An example of 
UML state diagram notation is shown in Figure 7.4. Further discussion of behavioral 
modeling is presented in Chapter 8.

System Status = "ready"
Display msg = "enter cmd"
Display status = "steady"

Entry/subsystems ready
Do: poll user input panel
Do: ready user input
Do: interpret user input

Reading Commands

System Status = "o�"

cmd = o�

Screen Blank

Figure 7.4
UML state 
diagram 
notation

Preliminary Behavioral Modeling

 The scene: A meeting room, 
continuing the requirements 
meeting.

The players: Jamie Lazar, software team 
member; Vinod Raman, software team mem-
ber; Ed Robbins, software team member; Doug 
Miller, software engineering manager; three 
members of marketing; a product engineering 
representative; and a facilitator.

The conversation:
Facilitator: We’ve just about finished talking 
about SafeHome home security functionality. 
But before we do, I want to discuss the behav-
ior of the function.

Marketing person: I don’t understand what 
you mean by behavior.

Ed (smiling): That’s when you give the prod-
uct a “timeout” if it misbehaves.

Facilitator: Not exactly. Let me explain.

 (The facilitator explains the basics of behav-
ioral modeling to the requirements gathering 
team.)

Marketing person: This seems a little techni-
cal. I’m not sure I can help here.

Facilitator: Sure you can. What behavior do 
you observe from the user’s point of view?

Marketing person: Uh . . . well, the system 
will be monitoring the sensors. It’ll be reading 
commands from the homeowner. It’ll be 
 displaying its status.

Facilitator: See, you can do it.

Jamie: It’ll also be polling the PC to determine if 
there is any input from it, for example, Internet-
based access or configuration information.

Vinod: Yeah, in fact, configuring the system is 
a state in its own right.

Doug: You guys are rolling. Let’s give this a bit 
more thought . . . is there a way to diagram this 
stuff?

Facilitator: There is, but let’s postpone that 
until after the meeting.

safehome
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7.5.2 Analysis Patterns
Anyone who has done requirements engineering on more than a few software projects 
notices that certain problems reoccur across all projects within a specific application 
domain. These analysis patterns [Fow97] suggest solutions (e.g., a class, a function, 
a behavior) within the application domain that can be reused when modeling many 
applications.

Analysis patterns are integrated into the analysis model by reference to the pattern 
name. They are also stored in a repository so that requirements engineers can use 
search facilities to find and reuse them. Information about an analysis pattern (and 
other types of patterns) is presented in a standard template [Gey01] that is discussed 
in more detail in Chapter 14. Examples of analysis patterns and further discussion of 
this topic are presented in Chapter 8.

 7 .6  ne g ot i at i ng Re Q u i R e m e n t s

In an ideal world, the requirements engineering tasks (inception, elicitation, and elab-
oration) determine customer requirements in sufficient detail to proceed to subsequent 
software engineering activities. Unfortunately, this rarely happens. You may have to 
enter into negotiations with one or more stakeholders. In most cases, stakeholders are 
asked to balance functionality, performance, and other product or system characteristics 
against cost and time to market. The intent of these negotiations is to develop a project 
plan that meets stakeholder needs while at the same time reflecting the real-world 
constraints (e.g., time, people, budget) that have been placed on the software team.

The best negotiations strive for a “win-win” result. That is, stakeholders win by 
getting the system or product that satisfies most their needs, and you (as a member of 
the software team) win by working to realistic and achievable budgets and deadlines.

Fricker [Fri10] and his colleagues suggest replacing the traditional handoff of 
requirements specifications to software teams with a bidirectional communication pro-
cess called handshaking. Handshaking might be one way to accomplish a win-win 
result. In handshaking, the software team proposes solutions to requirements, describes 
their impact, and communicates their intentions to customer representatives. The cus-
tomer representatives review the proposed solutions, focusing on missing features and 
seeking clarification of novel requirements. Requirements are determined to be good 
enough if the customers accept the proposed solution. Handshaking tends to improve 
identification, analysis, and selection of variants and promotes win-win negotiation.

The Start of a Negotiation

The scene: Lisa Perez’s office, 
after the first requirements 

gathering meeting.

The players: Doug Miller, software engineer-
ing manager, and Lisa Perez, marketing 
manager.

The conversation:
Lisa: So, I hear the first meeting went really well.

Doug: Actually, it did. You sent some good 
people to the meeting . . . they really 
contributed.

safehome
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 7 .7  Re Q u i R e m e n t s mo n i to R i ng

Incremental development is commonplace. This means that use cases evolve, new test 
cases are developed for each new software increment, and continuous integration of 
source code occurs throughout a project. Requirements monitoring can be extremely 
useful when incremental development is used. It encompasses five tasks: (1) distrib-
uted debugging uncovers errors and determines their cause, (2) run-time verification 
determines whether software matches its specification, (3) run-time validation assesses 
whether the evolving software meets user goals, (4) business activity monitoring eval-
uates whether a system satisfies business goals, and (5) evolution and codesign pro-
vides information to stakeholders as the system evolves.

Incremental development implies the need for incremental validation. Requirements 
monitoring supports continuous validation by analyzing user goal models against the 
system in use. For example, a monitoring system might continuously assess user 
satisfaction and use feedback to guide incremental improvements [Rob10].

 7 .8  va L i dat i ng Re Q u i R e m e n t s

As each element of the requirements model is created, it is examined for inconsistency, 
omissions, and ambiguity. This is true even for agile process models where require-
ments tend to be written as user stories and/or test cases. The requirements represented 

Lisa (smiling): Yeah, they actually told me they 
got into it, and it wasn’t a “propeller head 
activity.”

Doug (laughing): I’ll be sure to take off my te-
chie beanie the next time I visit . . . Look, Lisa, 
I think we may have a problem with getting all 
of the functionality for the home security sys-
tem out by the dates your management is talk-
ing about. It’s early, I know, but I’ve already 
been doing a little back-of-the-envelope 
planning and . . .

Lisa (frowning): We’ve got to have it by that 
date, Doug. What functionality are you talking 
about?

Doug: I figure we can get full home security 
functionality out by the drop-dead date, but 
we’ll have to delay Internet access ‘til the 
second release.

Lisa: Doug, it’s the Internet access that gives 
SafeHome “gee whiz” appeal. We’re going to 

build our entire marketing campaign around it. 
We’ve gotta have it!

Doug: I understand your situation, I really do. 
The problem is that in order to give you Inter-
net access, we’ll have to have a fully secure 
website up and running. That takes time and 
people. We’ll also have to build a lot of addi-
tional functionality into the first release . . . I 
don’t think we can do it with the resources 
we’ve got.

Lisa (still frowning): I see, but you’ve got to 
figure out a way to get it done. It’s pivotal to 
home security functions and to other functions 
as well . . . those can wait until the next 
releases . . . I’ll agree to that.

 Lisa and Doug appear to be at an impasse, 
and yet they must negotiate a solution to this 
problem. Can they both “win” here? Playing 
the role of a mediator, what would you 
suggest?
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by the model are prioritized by stakeholders and grouped within requirements packages 
that will be implemented as software increments. A review of the requirements model 
addresses the following questions:

 1. Is each requirement consistent with the overall objectives for the system or 
product?

 2. Have all requirements been specified at the proper level of abstraction? That 
is, do some requirements provide a level of technical detail that is inappropri-
ate at this stage?

 3. Is the requirement really necessary or does it represent an add-on feature that 
may not be essential to the objective of the system?

 4. Is each requirement bounded and unambiguous?
 5. Does each requirement have attribution? That is, is a source (generally, a 

specific individual) noted for each requirement?
 6. Do any requirements conflict with other requirements?
 7. Is each requirement achievable in the technical environment that will house 

the system or product?
 8. Is each requirement testable, once implemented?
 9. Does the requirements model properly reflect the information, function, and 

behavior of the system to be built?
 10. Has the requirements model been “partitioned” in a way that exposes progres-

sively more detailed information about the system?
 11. Have requirements patterns been used to simplify the requirements model? 

Have all patterns been properly validated? Are all patterns consistent with 
customer requirements?

These and other questions should be asked and answered to ensure that the require-
ments model is an accurate reflection of stakeholder needs and that it provides a solid 
foundation for design.

 7 .9  su m m a Ry

Requirements engineering tasks are conducted to establish a solid foundation for 
design and construction. Requirements engineering occurs during the communication 
and modeling activities that have been defined for the generic software process. Seven 
requirements engineering activities—inception, elicitation, elaboration, negotiation, 
specification, validation, and management—are conducted by members of the soft-
ware team and product stakeholders.

At project inception, stakeholders establish basic problem requirements, define 
overriding project constraints, and address major features and functions that must be 
present for the system to meet its objectives. This information is refined and expanded 
during elicitation—a requirements gathering activity that makes use of facilitated 
meetings and the development of usage scenarios (user stories).

Elaboration further expands requirements in a model—a collection of scenario-
based, activity-based, class-based, and behavioral elements. The model may reference 
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analysis patterns, characteristics of the problem domain that have been seen to reoccur 
across different applications.

As requirements are identified and the requirements model is being created, the 
software team and other project stakeholders negotiate the priority, availability, and 
relative cost of each requirement. The intent of this negotiation is to develop a real-
istic project plan. Each requirement needs to be validated against customer needs to 
ensure that the right system is to be built.

Pro b l e m s a n d Po i n t s to Po n d e r

7.1. Why is it that many software developers don’t pay enough attention to requirements engi-
neering? Are there ever circumstances where you can skip it?

7.2. You have been given the responsibility to elicit requirements from a customer who tells 
you he is too busy to meet with you. What should you do?

7.3. Discuss some of the problems that occur when requirements must be elicited from three 
or four different customers.

7.4. Your instructor will divide the class into groups of four or six students. Half of the group 
will play the role of the marketing department and half will take on the role of software engi-
neering. Your job is to define requirements for the SafeHome security function described in 
this chapter. Conduct a requirements gathering meeting using the guidelines presented in this 
chapter.

7.5. Develop a complete use case for one of the following activities:

 a. Making a withdrawal at an ATM
 b. Using your charge card for a meal at a restaurant
 c. Searching for books (on a specific topic) using an online bookstore

7.6. Write a user story for one of the activities listed in Problem 7.5.

7.7. Consider the use case you created in Problem 7.5, and write a nonfunctional requirement 
for the application.

7.8. Using the template presented in Section 7.5.2, suggest one or more analysis patterns for 
the following application domains:

 a. E-mail software.
 b. Internet browsers.
 c. Mobile app creation software.

7.9. What does win-win mean in the context of negotiation during the requirements engineer-
ing activity?

7.10. What do you think happens when requirement validation uncovers an error? Who is 
involved in correcting the error?

Design element: Quick Look icon magnifying glass: © Roger Pressman
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What is it? Requirements modeling uses a com-
bination of text and diagrammatic forms to de-
pict requirements in a way that is relatively 
easy to understand, and more important, 
straightforward to review for correctness, 
completeness, and consistency.

Who does it? A software engineer (sometimes 
called an analyst) builds these models from re-
quirements elicited from various stakeholders.

Why is it important? Requirements models 
can be readily evaluated by all stakeholders, 
resulting in useful feedback at the earliest 
possible time. Later, as the model is refined, it 
becomes the basis for software design.

What are the steps? Requirements modeling 
combines three steps: scenario-based model-
ing, class modeling, and behavioral modeling.

What is the work product? Usage scenarios, 
called use cases, describe software functions 
and usage. In addition, a series of UML dia-
grams can be used to represent system be-
havior and other aspects.

How do I ensure that I’ve done it right? Re-
quirements modeling work products must be 
reviewed for correctness, completeness, and 
consistency. 
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C H A P T E R 

8
The written word is a wonderful vehicle for communication, but it is not neces-
sarily the best way to represent the requirements for computer software. At a 
technical level, software engineering begins with a series of modeling tasks that 
lead to a specification of requirements and a design representation for the soft-
ware to be built. The requirements model is actually a set of models that make 
up the first technical representation of a system. Software engineers often prefer 
to include graphical representations of complex model relationships.

Requirements Modeling— 
A Recommended Approach
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For some types of software, a user story (Section 7.3.2) may be the only require-
ments modeling representation that is required. For others, formal use cases 
 (Section 7.4) and class-based models (Section 8.3) may be developed. Class-based 
modeling represents the objects that the system will manipulate, the operations (also 
called methods or services) that will be applied to the objects to effect the manipu-
lation, relationships (some hierarchical) between the objects, and the collaborations 
that occur between the classes that are defined. Class-based methods can be used 
to create a representation of an application that can be understood by nontechnical 
stakeholders.

In still other situations, complex application requirements may demand an examina-
tion of how an application behaves in reaction to either internal or external events. 
These behaviors need to be modeled (Section 8.5) as well. UML diagrams have 
become a standard software engineering means of modeling analysis model element 
relationships and behaviors graphically. As the requirements model is refined and 
expanding, it evolves into a specification that can be used by software engineers in 
the creation of the software design.

The important thing to keep in mind when modeling requirements is to only create 
the models that will be used by the development team. If models developed early in 
a requirements analysis phase of a project are not referred to during the design and 
implementation phases, they may not be worth updating. The sections that follow 
present a series of informal guidelines that will assist in the creation and representa-
tion of requirements models.

 8 .1  Re Q u i R e m e n t s AnA Lys i s

Requirements analysis results in the specification of software’s operational character-
istics, indicates software’s interface with other system elements, and establishes con-
straints that software must meet. Requirements analysis allows you (regardless of 
whether you’re called a software engineer, an analyst, or a modeler) to elaborate on 
basic requirements established during the inception, elicitation, and negotiation tasks 
that are part of requirements engineering (Chapter 7).

The requirements modeling action results in one or more of the following types of 
models:

∙ Scenario-based models of requirements from the point of view of various 
 system “actors.”

∙ Class-oriented models that represent object-oriented classes (attributes and 
operations) and how classes collaborate to achieve system requirements.

∙ Behavioral models that depict how the software reacts to internal or external 
“events.”

∙ Data models that depict the information domain for the problem.
∙ Flow-oriented models that represent the functional elements of the system and 

how they transform data as they move through the system.

These models provide a software designer with information that can be translated 
to architectural-, interface-, and component-level designs. Finally, the requirements 
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model (and the software requirements specification) provides the developer and the 
customer with the means to assess quality once software is built.

In this section, we focus on scenario-based modeling—a technique that is very 
popular throughout the software engineering community. In Sections 8.3 and 8.5 we 
consider class-based modeling and behavioral modeling. Over the past decade, flow 
and data modeling have become less commonly used, while scenario and class-based 
methods, supplemented with behavioral approaches have grown in popularity.1

8.1.1 Overall Objectives and Philosophy
Throughout analysis modeling, your primary focus is on what, not how. What user 
interaction occurs, what objects does the system manipulate, what functions must the 
system perform, what behaviors does the system exhibit, what interfaces are defined, 
and what constraints apply?2

In previous chapters, we noted that complete specification of requirements may 
not be possible at this stage. The customer may be unsure of precisely what is 
required for certain aspects of the system. The developer may be unsure that a specific 
approach will properly accomplish function and performance. These realities mitigate 
in favor of an iterative approach to requirements analysis and modeling. The analyst 
should model what is known and use that model as the basis for design of the software 
increment.3

The requirements model must achieve three primary objectives: (1) to describe 
what the customer requires, (2) to establish a basis for the creation of a software 
design, and (3) to define a set of requirements that can be validated once the software 
is built. The analysis model bridges the gap between a system-level description that 
describes overall system or business functionality (software, hardware, data, human 
elements) and a software design (Chapters 9 through 14) that describes the software’s 
application architecture, user interface, and component-level structure. This relation-
ship is illustrated in Figure 8.1.

It is important to note that all elements of the requirements model will be directly 
traceable to parts of the design model. A clear division between analysis and design 
modeling tasks is not always possible. Some design invariably occurs as part of anal-
ysis, and some analysis will be conducted during design.

8.1.2 Analysis Rules of Thumb
Several rules of thumb [Arl02] are worth considering when creating an analysis 
model. First, focus on the problem or business domain while keeping the level of 
abstraction high. Second, recognize that an analysis model should provide insight into 

1 A presentation of flow-oriented modeling and data modeling is no longer included in this 
chapter. However, copious information about these older requirements modeling methods 
can be found on the Web. If you have interest, use the search phrase “structured analysis.”

2 It should be noted that as customers become more technologically sophisticated, there is a 
trend toward the specification of how as well as what. However, the primary focus should 
remain on what.

3 Alternatively, the software team may choose to create a prototype (Chapter 4) to better 
understand requirements for the system.
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the information domain, the function, and the behavior of the software. Third, delay 
a consideration of software architecture and nonfunctional details until later in the 
modeling activity. Also, it’s important to be aware of the ways in which elements of 
the software are interconnnected with other elements (we call this system coupling).

The analysis model must be structured in a way that provides value to all stake-
holders and should be kept as simple as possible without sacrificing clarity.

8.1.3 Requirements Modeling Principles
Over the past four decades, several requirements modeling methods have been devel-
oped. Investigators have identified requirements analysis problems and their causes 
and have developed a variety of modeling notations and corresponding sets of heu-
ristics to overcome them. Each analysis method has a unique point of view. A set of 
operational principles relates analysis methods:

Principle 1. The information domain of a problem must be represented and 
understood. The information domain encompasses the data that flow into the sys-
tem (from end users, other systems, or external devices), the data that flow out of 
the system (via the user interface, network interfaces, reports, graphics, and other 
means), and the data stores that collect and organize the data that are maintained 
permanently.

Principle 2. The functions that the software performs must be defined. Soft-
ware functions provide direct benefit to end users and those that provide internal 
support for those features that are user visible. Some functions transform data that 
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flow into the system. In other cases, functions effect some level of control over 
internal software processing or external system elements.

Principle 3. The behavior of the software (as a consequence of external 
events) must be represented. The behavior of computer software is driven by its 
interaction with the external environment. Input provided by end users, control 
data provided by an external system, or monitoring data collected over a network 
all cause the software to behave in a specific way.

Principle 4. The models that depict information, function, and behavior must 
be partitioned in a manner that uncovers detail in a layered (or hierarchical) 
fashion. Requirements modeling is the first step in software engineering problem 
solving. It allows you to better understand the problem and establishes a basis for 
the solution (design). Complex problems are difficult to solve in their entirety. For 
this reason, you should use a divide-and-conquer strategy. A large, complex prob-
lem is divided into subproblems until each subproblem is relatively easy to under-
stand. This concept is called partitioning or separation of concerns, and it is a key 
strategy in requirements modeling.

Principle 5. The analysis task should move from essential information toward 
implementation detail. Analysis modeling begins by describing the problem from 
the end-user’s perspective. The “essence” of the problem is described without any 
consideration of how a solution will be implemented. For example, a video game 
requires that the player “instruct” its protagonist on what direction to proceed as 
she moves into a dangerous maze. That is the essence of the problem. Implemen-
tation detail (normally described as part of the design model) indicates how the 
essence will be implemented. For the video game, voice input might be used. Alter-
natively, a keyboard command might be typed, a game pad joystick (or mouse) 
might be pointed in a specific direction, a motion-sensitive device might be waved 
in the air, or a device that reads the player’s body or eye movements directly can 
be used.

By applying these principles, a software engineer approaches a problem system-
atically. But how are these principles applied in practice? This question will be 
answered in the remainder of this chapter.

 8 .2  sc e nA R i o-BA s e d mo d e L i ng

Although the success of a computer-based system or product is measured in many 
ways, user satisfaction resides at the top of the list. If you understand how end users 
(and other actors) want to interact with a system, your software team will be better 
able to properly characterize requirements and build meaningful analysis and design 
models. Using UML4 to model requirements begins with the creation of scenarios in 
the form of use case diagrams, activity diagrams, and sequence diagrams.

4 UML will be used as the modeling notation throughout this book. Appendix 1 provides a 
brief tutorial for those readers who may be unfamiliar with basic UML notation.
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8.2.1 Actors and User Profiles
A UML actor models an entity that interacts with a system object. Actors may rep-
resent roles played by human stakeholders or external hardware as they interact with 
system objects by exchanging information. A single physical entity may be portrayed 
by several actors if the physical entity takes on several roles that are relevant to real-
izing different system functions.

A UML profile provides a way of extending an existing model to other domains 
or platforms. This might allow you to revise the model of a Web-based system and 
model the system for various mobile platforms. Profiles might also be used to model 
the system from the viewpoints of different users. For example, system administrators 
may have a different view of the functionality of an automated teller machine than 
end users.

8.2.2 Creating Use Cases
In Chapter 7, we discussed user stories as a way of summarizing the stakeholders’ 
perspective on how they will interact with the proposed system. However, they are 
written in plain English or the language used by the stakeholders. Developers need 
more precise means of describing this interaction before beginning to create the soft-
ware. Alistair Cockburn characterizes a use case as a “contract for behavior” [Coc01b]. 
As we discussed in Chapter 7, the “contract” defines the way in which an actor5 uses 
a computer-based system to accomplish some goal. In other words, a use case captures 
the interactions that occur between producers and consumers of information within 
the system itself. In this section, we examine how preliminary use cases are developed 
as part of the analysis modeling activity.6

In Chapter 7, we noted that a use case describes a specific usage scenario in 
straightforward language from the point of view of a defined actor. But how do you 
know (1) what to write about, (2) how much to write about it, (3) how detailed to 
make your description, and (4) how to organize the description? These are the ques-
tions that must be answered if use cases are to provide value as a modeling tool.

What to Write About? The first two requirements engineering tasks—inception 
and elicitation—provide you with the information you’ll need to begin writing use 
cases. Requirements gathering meetings and other requirements engineering mecha-
nisms are used to identify stakeholders, define the scope of the problem, specify 
overall operational goals, establish priorities, outline all known functional require-
ments, and describe the things (objects) that will be manipulated by the system.

To begin developing a set of use cases, list the functions or activities performed 
by a specific actor. You can obtain these from a list of required system functions, 
through conversations with stakeholders, or by an evaluation of activity diagrams 
(Section 8.4) developed as part of requirements modeling.

5 An actor is not a specific person, but rather a role that a person (or a device) plays within 
a specific context. An actor “calls on the system to deliver one of its services” [Coc01b].

6 Use cases are a particularly important part of analysis modeling for user interfaces. Interface 
analysis and design is discussed in detail in Chapter 12.
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The SafeHome home surveillance function (subsystem) discussed in the sidebar 
identifies the following functions (an abbreviated list) that are performed by the home-
owner actor:

∙ Select camera to view.
∙ Request thumbnails from all cameras.
∙ Display camera views in a device window.
∙ Control pan and zoom for a specific camera.

Developing Another Preliminary Use Case

The scene: A meeting room, 
during the second requirements 

gathering meeting.

The players: Jamie Lazar, software team 
member; Ed Robbins, software team member; 
Doug Miller, software engineering manager; 
three members of marketing; a product engi-
neering representative; and a facilitator.

The conversation:
Facilitator: It’s time that we begin talking 
about the SafeHome surveillance function. 
Let’s develop a user scenario for access to the 
surveillance function.

Jamie: Who plays the role of the actor on this?

Facilitator: I think Meredith (a marketing per-
son) has been working on that functionality. 
Why don’t you play the role?

Meredith: You want to do it the same way we 
did it last time, right?

Facilitator: Right . . . same way.

Meredith: Well, obviously the reason for sur-
veillance is to allow the homeowner to check 
out the house while he or she is away, to re-
cord and play back video that is captured . . . 
that sort of thing.

Ed: Will we use compression to store the video?

Facilitator: Good question, Ed, but let’s post-
pone implementation issues for now. Meredith?

Meredith: Okay, so basically there are two 
parts to the surveillance function . . . the first 

configures the system including laying out a 
floor plan—we need to have the AR/VR tools to 
help the homeowner do this—and the second 
part is the actual surveillance function itself. 
Since the layout is part of the configuration 
activity, I’ll focus on the surveillance function.

Facilitator (smiling): Took the words right out 
of my mouth.

Meredith: Um . . . I want to gain access to the 
surveillance function either via a mobile device 
or via the Internet. My feeling is that the Inter-
net access would be more frequently used. 
Anyway, I want to be able to display camera 
views on a mobile device or PC and control 
pan and zoom for a specific camera. I specify 
the camera by selecting it from the house floor 
plan. I want to selectively record camera out-
put and replay camera output. I also want to 
be able to block access to one or more cam-
eras with a specific password. I also want the 
option of seeing small windows that show 
views from all cameras and then be able to 
pick the one I want enlarged.

Jamie: Those are called thumbnail views.

Meredith: Okay, then I want thumbnail views 
of all the cameras. I also want the interface for 
the surveillance function to have the same 
look and feel as all other SafeHome interfaces. 
I want it to be intuitive, meaning I don’t want to 
have to read a manual to use it.

Facilitator: Good job. Now, let’s go into this 
function in a bit more detail . . .

sAfeHome
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∙ Selectively record camera output.
∙ Replay camera output.
∙ Access camera surveillance via the Internet.

As further conversations with the stakeholder (who plays the role of a homeowner) 
progress, the requirements gathering team develops use cases for each of the functions 
noted. In general, use cases are written first in an informal narrative fashion. If more 
formality is required, the same use case is rewritten using a structured format like the 
one proposed in Chapter 7.

To illustrate, consider the function access camera surveillance via the Internet—
display camera views (ACS-DCV). The stakeholder who takes on the role of the 
homeowner actor might write the following user story:

Use case: Access camera surveillance via the Internet—display camera views  
(ACS-DCV)

Actor: homeowner

If I’m at a remote location, I can use any mobile device with appropriate browser soft-
ware to log on to the SafeHome Products website. I enter my user ID and two levels of 
passwords and once I’m validated, I have access to all functionality for my installed 
SafeHome system. To access a specific camera view, I select “surveillance” from the 
major function buttons displayed. I then select “pick a camera” and the floor plan of the 
house is displayed. I then select the camera that I’m interested in. Alternatively, I can 
look at thumbnail snapshots from all cameras simultaneously by selecting “all cameras” 
as my viewing choice. Once I choose a camera, I select “view” and a one-frame-per-
second view appears in a viewing window that is identified by the camera ID. If I want 
to switch cameras, I select “pick a camera,” the original viewing window disappears, 
and  the floor plan of the house is displayed again. I then select the camera that I’m 
interested in. A new viewing window appears.
A variation of a narrative use case presents the interaction as an ordered sequence 

of user actions. Each action is represented as a declarative sentence. Revisiting the 
ACS-DCV function, you would write:

Use case: Access camera surveillance via the Internet—display camera views  
(ACS-DCV)

Actor: homeowner

 1. The homeowner logs onto the SafeHome Products website.
 2. The homeowner enters his or her user ID.
 3. The homeowner enters two passwords (each at least eight characters in length).
 4. The system displays all major function buttons.
 5. The homeowner selects the “surveillance” from the major function buttons.
 6. The homeowner selects “pick a camera.”
 7. The system displays the floor plan of the house.
 8. The homeowner selects a camera icon from the floor plan.
 9. The homeowner selects the “view” button.
10. The system displays a viewing window that is identified by the camera ID.
11. The system displays video output within the viewing window at one frame per second.
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It is important to note that this sequential presentation does not consider any 
alternative interactions (the narrative is free flowing and did represent a few alter-
natives). Use cases of this type are sometimes referred to as primary scenarios 
[Sch98].

A description of alternative interactions is essential for a complete understanding 
of the function that is being described by a use case. Therefore, each step in the 
primary scenario is evaluated by asking the following questions [Sch98]:

∙ Can the actor take some other action at this point?

∙ Is it possible that the actor will encounter some error condition at this point? 
If so, what might it be?

∙ Is it possible that the actor will encounter some other behavior at this point 
(e.g., behavior that is invoked by some event outside the actor’s control)? If 
so, what might it be?

Answers to these questions result in the creation of a set of secondary scenarios 
that are part of the original use case but represent alternative behavior. For example, 
consider steps 6 and 7 in the primary scenario presented earlier:

 6. The homeowner selects “pick a camera.”
 7. The system displays the floor plan of the house.

Can the actor take some other action at this point? The answer is yes. Referring 
to the free-flowing narrative, the actor may choose to view thumbnail snapshots of 
all cameras simultaneously. Hence, one secondary scenario might be “View thumbnail 
snapshots for all cameras.”

Is it possible that the actor will encounter some error condition at this point? Any 
number of error conditions can occur as a computer-based system operates. In this 
context, we consider only error conditions that are likely as a direct result of the action 
described in step 6 or step 7. Again, the answer to the question is yes. A floor plan 
with camera icons may have never been configured. Hence, selecting “pick a camera” 
results in an error condition: “No floor plan configured for this house.”7 This error 
condition becomes a secondary scenario.

Is it possible that the actor will encounter some other behavior at this point? Again, 
the answer to the question is yes. As steps 6 and 7 occur, the system may encounter 
an alarm condition. This would result in the system displaying a special alarm noti-
fication (type, location, system action) and providing the actor with several options 
relevant to the nature of the alarm. Because this secondary scenario can occur at any 
time for virtually all interactions, it will not become part of the ACS-DCV use case. 
Rather, a separate use case—Alarm condition encountered—would be developed 
and referenced from other use cases as required.

Each of the situations described in the preceding paragraphs is characterized as a 
use case exception. An exception describes a situation (either a failure condition or 

7 In this case, another actor, the system administrator, would have to configure the floor 
plan, install (e.g., assign an equipment ID) all cameras and initialize them, and test each 
camera to be certain that it is accessible via the system and through the floor plan.
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an alternative chosen by the actor) that causes the system to exhibit somewhat differ-
ent behavior.

Cockburn [Coc01b] recommends a “brainstorming” session to derive a reasonably 
complete set of exceptions for each use case. In addition to the three generic questions 
suggested earlier in this section, the following issues should also be explored:

∙ Are there cases in which some “validation function” occurs during this use 
case? This implies that the validation function is invoked, and a potential 
error condition might occur.

∙ Are there cases in which a supporting function (or actor) will fail to respond 
appropriately? For example, a user action awaits a response but the function 
that is to respond times out.

∙ Can poor system performance result in unexpected or improper user actions? 
For example, a Web-based or mobile interface responds too slowly, resulting 
in a user making multiple selects on a processing button. These selects queue 
inappropriately and ultimately generate an error condition.

The list of extensions developed by asking and answering these questions should 
be “rationalized” [Coc01b] using the following criteria: An exception should be noted 
within the use case if the software can detect the condition described and then handle 
the condition once it has been detected. In some cases, an exception will precipitate 
the development of another use case (to handle the condition noted).

8.2.3 Documenting Use Cases
The informal use cases presented in Section 8.2.2 are sometimes sufficient for require-
ments modeling. However, when a use case involves a critical activity or describes a 
complex set of steps with a significant number of exceptions, a more formal approach 
may be desirable.

The ACS-DCV use case shown in the sidebar follows a typical outline for formal 
use cases. The goal in context identifies the overall scope of the use case. The pre-
condition describes what is known to be true before the use case is initiated. The 
trigger identifies the event or condition that “gets the use case started” [Coc01b]. 
The scenario lists the specific actions that are required by the actor and the appropri-
ate system responses. Exceptions identify the situations uncovered as the preliminary 
use case is refined (Section 8.2.2). Additional headings may or may not be included 
and are reasonably self-explanatory.

Most developers like to create graphical representation as they create use cases 
out of user stories. A diagrammatic representation can facilitate better understanding 
of the problem by all stakeholders, particularly when the scenario is complex. As 
we noted earlier in this book, UML provides use case diagramming capability. 
Figure 8.2 depicts a use case diagram for the SafeHome product. The use case 
diagram helps to show the relations among the use cases in the usage scenario. Each 
use case is represented by an oval. Only the ACS-DCV use case has been discussed 
in this section.

Each modeling notation has limitations, and the UML use case is no exception. Like 
any other form of written description, a use case is only as good as its author(s). If the 
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Use Case Template for Surveillance

Use case: Access camera sur-
veillance via the Internet— 

display camera views (ACS-DCV)
Iteration:   2, last modification: January 

14 by V. Raman.

Primary actor:   Homeowner.

Goal in context:   To view output of cameras 
placed throughout the 
house from any remote 
location via the Internet.

Preconditions:   System must be fully config-
ured; appropriate user ID 
and passwords must be 
obtained.

Trigger:   The homeowner decides to 
take a look inside the house 
while away.

Scenario:
 1. The homeowner logs onto the SafeHome 

Products website.
 2. The homeowner enters his or her user ID.
 3. The homeowner enters two passwords 

(each at least eight characters in length).
 4. The system displays all major function 

buttons.
 5. The homeowner selects the “surveillance” 

button from the major function buttons.
 6. The homeowner selects “pick a camera.”
 7. The system displays the floor plan of the 

house.
 8. The homeowner selects a camera icon from 

the floor plan.
 9. The homeowner selects the “view” button.
 10. The system displays a viewing window that 

is identified by the camera ID.
 11. The system displays video output within 

the viewing window at one frame per second.

Exceptions:
 1. ID or passwords are incorrect or not 

recognized—see use case Validate ID 
and passwords.

 2. Surveillance function not configured for this 
system—system displays appropriate error 
message; see use case Configure 
surveillance function.

 3. Homeowner selects “View thumbnail 
snapshots for all camera”—see use case 
View thumbnail snapshots for all cameras.

 4. A floor plan is not available or has not been 
configured—display appropriate error 
message and see use case Configure 
floor plan.

 5. An alarm condition is encountered—see use 
case Alarm condition encountered.

Priority:   Moderate priority, to be 
implemented after basic 
functions.

When available:   Third increment.

Frequency of use:   Infrequent.

Channel to actor:   Via PC-based browser 
and Internet connection.

Secondary actors:   System administrator, 
cameras.

Channels to secondary actors:
 1. System administrator: PC-based system.
 2. Cameras: wireless connectivity.

Open issues:
 1. What mechanisms protect unauthorized 

use of this capability by employees of 
SafeHome Products?

 2. Is security sufficient? Hacking into this 
feature would represent a major invasion 
of privacy.

 3. Will system response via the Internet be 
acceptable given the bandwidth required 
for camera views?

 4. Will we develop a capability to provide video 
at a higher frames-per-second rate when 
high-bandwidth connections are available?

sAfeHome
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description is unclear, the use case can be misleading or ambiguous. A use case focuses 
on function and behavioral requirements and is generally inappropriate for nonfunctional 
requirements. For situations in which the requirements model must have significant 
detail and precision (e.g., safety critical systems), a use case may not be sufficient.

However, scenario-based modeling is appropriate for a significant majority of all 
situations that you will encounter as a software engineer. If developed properly, the 
use case can provide substantial benefit as a modeling tool.

 8 .3  cL A s s-BA s e d mo d e L i ng

If you look around a room, there is a set of physical objects that can be easily iden-
tified, classified, and defined (in terms of attributes and operations). But when you 
“look around” the problem space of a software application, the classes (and objects) 
may be more difficult to comprehend.

8.3.1 Identifying Analysis Classes
We can begin to identify classes by examining the usage scenarios developed as part 
of the requirements model (Section 8.2) and performing a “grammatical parse” 
[Abb83] on the use cases developed for the system to be built. Classes are determined 
by underlining each noun or noun phrase and entering it into a simple table. Synonyms 
should be noted. If the class (noun) is required to implement a solution, then it is part 
of the solution space; otherwise, if a class is necessary only to describe a solution, it 
is part of the problem space.

Homeowner

Access camera
surveillance via

the Internet

Configures
SafeHome

system
parameters

Sets alarm

Cameras

SafeHome

Figure 8.2
Preliminary 
use case 
diagram for 
the SafeHome 
system
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But what should we look for once all the nouns have been isolated? Analysis classes 
manifest themselves in one of the following ways:

∙ External entities (e.g., other systems, devices, people) that produce or con-
sume information to be used by a computer-based system.

∙ Things (e.g., reports, displays, letters, signals) that are part of the information 
domain for the problem.

∙ Occurrences or events (e.g., a property transfer or the completion of a series 
of robot movements) that occur within the context of system operation.

∙ Roles (e.g., manager, engineer, salesperson) played by people who interact 
with the system.

∙ Organizational units (e.g., division, group, team) that are relevant to an 
application.

∙ Places (e.g., manufacturing floor or loading dock) that establish the context 
of the problem and the overall function of the system.

∙ Structures (e.g., sensors, four-wheeled vehicles, or computers) that define a 
class of objects or related classes of objects.

This categorization is but one of many that have been proposed in the literature.8 For 
example, Budd [Bud96] suggests a taxonomy of classes that includes producers (sources) 
and consumers (sinks) of data, data managers, view or observer classes, and helper classes.

To illustrate how analysis classes might be defined during the early stages of mod-
eling, consider a grammatical parse (nouns are underlined, verbs italicized) for a 
processing narrative9 for the SafeHome security function.

The SafeHome security function enables the homeowner to configure the security system 
when it is installed, monitors all sensors connected to the security system, and interacts 
with the homeowner through the Internet, a PC or a control panel.

During installation, the SafeHome PC is used to program and configure the system. 
Each sensor is assigned a number and type, a master password is programmed for arm-
ing and disarming the system, and telephone number(s) are input for dialing when a 
sensor event occurs.

When a sensor event is recognized, the software invokes an audible alarm attached to 
the system. After a delay time that is specified by the homeowner during system configura-
tion activities, the software dials a telephone number of a monitoring service, provides 
information about the location, reporting the nature of the event that has been detected. The 
telephone number will be redialed every 20 seconds until telephone connection is obtained.

The homeowner receives security information via a control panel, the PC, or a 
browser, collectively called an interface. The interface displays prompting messages and 
system status information on the control panel, the PC, or the browser window. Home-
owner interaction takes the following form . . .

8 Another important categorization, defining entity, boundary, and controller classes, is 
discussed in Section 10.3.

9 A processing narrative is similar to the use case in style but somewhat different in purpose. 
The processing narrative provides an overall description of the function to be developed. It 
is not a scenario written from one actor’s point of view. It is important to note, however, 
that a grammatical parse can also be used for every use case developed as part of require-
ments gathering (elicitation).
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Extracting the nouns, we can propose several potential classes:

Potential Class General Classification

homeowner role or external entity

sensor external entity

control panel external entity

installation occurrence

system (alias security system) thing

number, type not objects, attributes of sensor

master password thing

telephone number thing

sensor event occurrence

audible alarm external entity

monitoring service organizational unit or external entity

The list would be continued until all nouns in the processing narrative have been 
considered. Note that we call each entry in the list a “potential” object. We must 
consider each further before a final decision is made.

Coad and Yourdon [Coa91] suggest six selection characteristics that should be used 
as you consider each potential class for inclusion in the analysis model:

 1. Retained information. The potential class will be useful during analysis 
only  if information about it must be remembered so that the system can  
function.

 2. Needed services. The potential class must have a set of identifiable opera-
tions that can change the value of its attributes in some way.

 3. Multiple attributes. During requirement analysis, the focus should be on 
“major” information; a class with a single attribute may, in fact, be useful 
during design but is probably better represented as an attribute of another 
class during the analysis activity.

 4. Common attributes. A set of attributes can be defined for the potential class, 
and these attributes apply to all instances of the class.

 5. Common operations. A set of operations can be defined for the potential 
class, and these operations apply to all instances of the class.

 6. Essential requirements. External entities that appear in the problem space 
and produce or consume information essential to the operation of any solution 
for the system will almost always be defined as classes in the requirements 
model.

To be considered a legitimate class for inclusion in the requirements model, a 
potential object should satisfy most of these characteristics. The decision for inclusion 
of potential classes in the analysis model is somewhat subjective, and later evaluation 
may cause an object to be discarded or reinstated. However, the first step of class-
based modeling is the definition of classes, and decisions (even subjective ones) must 
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be made. You should apply the selection characteristics to the list of potential 
SafeHome classes:

Potential Class Characteristic Number That Applies

homeowner rejected: 1, 2 fail even though 6 applies

sensor accepted: all apply

control panel accepted: all apply

installation rejected

system (alias security function) accepted: all apply

number, type rejected: 3 fails, attributes of sensor

master password rejected: 3 fails

telephone number rejected: 3 fails

sensor event accepted: all apply

audible alarm accepted: 2, 3, 4, 5, 6 apply

monitoring service rejected: 1, 2 fail even though 6 applies

It should be noted that: (1) the preceding list is not all-inclusive, so additional 
classes would have to be added to complete the model; (2) some of the rejected 
potential classes will become attributes for those classes that were accepted (e.g., 
number and type are attributes of Sensor, and master password and telephone number 
may become attributes of System); and (3) different statements of the problem might 
cause different “accept or reject” decisions to be made (e.g., if each homeowner had 
an individual password or was identified by voice print, the Homeowner class would 
satisfy characteristics 1 and 2 and would have been accepted).

8.3.2 Defining Attributes and Operations
Attributes describe a class that has been selected for inclusion in the analysis model. 
It is the attributes that define the class—that clarify what is meant by the class in the 
context of the problem space.

To develop a meaningful set of attributes for an analysis class, you should study 
each use case and select those “things” that reasonably “belong” to the class. In 
addition, the following question should be answered for each class: What data items 
(composite and/or elementary) fully define this class in the context of the problem 
at hand?

To illustrate, we consider the System class defined for SafeHome. A homeowner 
can configure the security function to reflect sensor information, alarm response infor-
mation, activation and deactivation information, identification information, and so 
forth. We can represent these composite data items in the following manner:

 identification information = system ID + verification phone number +  
system status

alarm response information = delay time + telephone number

 activation/deactivation information = master password + number of allowable tries +  
temporary password
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Each of the data items to the right of the equal sign could be further defined to 
an elementary level, but for our purposes, they constitute a reasonable list of attributes 
for the System class (Figure 8.3).

Sensors are part of the overall SafeHome system, and yet they are not listed as data 
items or as attributes in Figure 8.3. Sensor has already been defined as a class, and 
multiple Sensor objects will be associated with the System class. In general, we avoid 
defining an item as an attribute if more than one of the items is to be associated with 
the class.

Operations define the behavior of an object. Although many different types of 
operations exist, they can generally be divided into four broad categories: (1) opera-
tions that manipulate data in some way (e.g., adding, deleting, reformatting, selecting), 
(2) operations that perform a computation, (3) operations that inquire about the state 
of an object, and (4) operations that monitor an object for the occurrence of a control-
ling event. These functions are accomplished by operating on attributes and/or asso-
ciations (Section 8.3.3). Therefore, an operation must have “knowledge” of the nature 
of the class attributes and associations.

8.3.3 UML Class Models
As a first iteration at deriving a set of operations for an analysis class, you can again 
study a processing narrative (or use case) and select those operations that reasonably 
belong to the class. To accomplish this, the grammatical parse is again studied, and 
verbs are isolated. Some of these verbs will be legitimate operations and can be easily 

systemID
verificationPhoneNumber
systemStatus
delayTime
telephoneNumber
masterPassword
temporaryPassword
numberTries

program()
display()
reset()
query()
arm()
disarm()

System
Figure 8.3

Class diagram 
for the System 
class
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connected to a specific class. For example, from the SafeHome processing narrative 
presented earlier in this chapter, we see that “sensor is assigned a number and type” 
or “a master password is programmed for arming and disarming the system.” These 
phrases indicate several things:

∙ That an assign() operation is relevant for the Sensor class.
∙ That a program() operation will be applied to the System class.
∙ That arm() and disarm() are operations that apply to System class.

Class Models

The scene: Ed’s cubicle, as 
analysis modeling begins.

The players: Jamie, Vinod, and Ed, all members 
of the SafeHome software engineering team.

The conversation:
 [Ed has been working to extract classes from 
the use case template for ACS-DCV (presented 
in an earlier sidebar in this chapter) and is 
 presenting the classes he has extracted to 
his colleagues.]

Ed: So, when the homeowner wants to pick a 
camera, he or she must pick it from a floor 
plan. I’ve defined a FloorPlan class. Here’s the 
diagram.

 (They look at Figure 8.4.)

Jamie: So, FloorPlan is an object that is put to-
gether with walls, doors, windows, and cameras. 
That’s what those labeled lines mean, right?

Ed: Yeah, they’re called “associations.” One 
class is associated with another according to 
the associations I’ve shown. [Associations are 
discussed in Section 8.3.3.]

Vinod: So, the actual floor plan is made up of 
walls and contains cameras and sensors that 
are placed within those walls. How does the 
floor plan know where to put those objects?

Ed: It doesn’t, but the other classes do. See 
the attributes under, say, WallSegment, which 
is used to build a wall. The wall segment has 
start and stop coordinates and the draw() 
operation does the rest.

Jamie: And the same goes for windows and 
doors. Looks like camera has a few extra 
attributes.

Ed: Yeah, I need them to provide pan and 
zoom info.

Vinod: I have a question. Why does the cam-
era have an ID, but the others don’t? I notice 
you have an attribute called nextWall. How will 
WallSegment know what the next wall will be?

Ed: Good question, but as they say, that’s a 
design decision, so I’m going to delay that 
until . . .

Jamie: Give me a break . . . I’ll bet you’ve 
already figured it out.

Ed (smiling sheepishly): True, I’m gonna use a 
list structure which I’ll model when we get to 
design. If you get religious about separating 
analysis and design, the level of detail I have 
right here could be suspect.

Jamie: Looks pretty good to me, but I have a 
few more questions.

  (Jamie asks questions which result in minor 
modifications.)

Vinod: Do you have CRC cards for each of the 
objects? If so, we ought to role-play through 
them, just to make sure nothing has been 
omitted.

Ed: I’m not quite sure how to do them.

Vinod: It’s not hard and they really pay off. I’ll 
show you.

sAfeHome
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type
name
outsideDimensions

determineType()
positionFloorplan()
scale()
change color()

FloorPlan

type
ID
location
fieldView
panAngle
zoomSetting

determineType()
translateLocation()
displayID()
displayView()
displayZoom()

Camera
type
wallDimensions

determineType()
computeDimensions()

Wall

type
startCoordinates
stopCoordinates
nextWall

determineType()
draw()

WallSegment
type
startCoordinates
stopCoordinates
nextWindow

determineType()
draw()

Window

Is placed within

Is used to build Is used to build

Is used to build

type
startCoordinates
stopCoordinates
nextDoor

determineType()
draw()

Door

Is part of

Figure 8.4
Class diagram 
for FloorPlan 
(see sidebar 
discussion)

Upon further investigation, it is likely that the operation program() will be divided 
into several more specific suboperations required to configure the system. For example, 
program() implies specifying phone numbers, configuring system characteristics 
(e.g., creating the sensor table, entering alarm characteristics), and entering password(s). 
But for now, we specify program() as a single operation.

In addition to the grammatical parse, you can gain additional insight into other 
operations by considering the communication that occurs between objects. Objects 
communicate by passing messages to one another. Before continuing with the speci-
fication of operations, we explore this matter in a bit more detail.
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In many instances, two analysis classes are related to one another in some fashion. 
In UML, these relationships are called associations. Referring to Figure 8.4, the Floor-
Plan class is defined by identifying a set of associations between FloorPlan and two 
other classes, Camera and Wall. The class Wall is associated with three classes that 
allow a wall to be constructed, WallSegment, Window, and Door.

8.3.4 Class-Responsibility-Collaborator Modeling
Class-responsibility-collaborator (CRC) modeling [Wir90] provides a simple means 
for identifying and organizing the classes that are relevant to system or product 
requirements. A CRC model can be viewed as a collection of index cards. Each index 
card contains a list of responsibilities on the left side and the corresponding collabo-
rations that enable the responsibilities to be fulfilled on the right side (Figure 8.5). 
Responsibilities are the attributes and operations that are relevant for the class. Col-
laborators are those classes that provide a class with the information needed or action 
required to complete a responsibility. A simple CRC index card for the FloorPlan 
class is illustrated in Figure 8.5.

The list of responsibilities shown on the CRC card is preliminary and is subject to 
additions or modification. The classes Wall and Camera are noted next to the respon-
sibility that requires their collaboration.

Classes. Basic guidelines for identifying classes and objects were presented ear-
lier in Section 8.3.1.

Responsibilities. Basic guidelines for identifying responsibilities (attributes and 
operations) were presented in Section 8.3.2.

Collaborations. Classes fulfill their responsibilities in one of two ways: (1) A 
class can use its own operations to manipulate its own attributes, thereby fulfilling a 

Class:Class:

RRR

DDD
Class:Class:

RR

DD
Class: FloorPlan

Responsibility: Collaborator:

Description

Defines floor plan name/type
Manages floor plan positioning
Scales floor plan for display
Incorporates walls, doors, and windows

Shows position of video cameras

Wall
Camera

Figure 8.5
A CRC model 
index card
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responsibility itself, or (2) a class can collaborate with other classes. Collaborations 
are identified by determining whether a class can fulfill each responsibility itself. If 
it cannot, then it needs to interact with another class.

As an example, consider the SafeHome security function. As part of the activation 
procedure, the ControlPanel object must determine whether any sensors are open. 
A  responsibility named determine-sensor-status() is defined. If sensors are open, 
 ControlPanel must set a status attribute to “not ready.” Sensor information can be 
acquired from each Sensor object. The responsibility determine-sensor-status() can 
be fulfilled only if ControlPanel works in collaboration with Sensor.

Once a complete CRC model has been developed, the representatives from the 
stakeholders can review the model using the following approach [Amb95]:

 1. All participants in the review (of the CRC model) are given a subset of the 
CRC model index cards. No reviewer should have two cards that collaborate.

 2. The review leader reads the use case deliberately. As the review leader comes 
to a named object, she passes a token to the person holding the corresponding 
class index card.

 3. When the token is passed, the holder of the class card is asked to describe 
the responsibilities noted on the card. The group determines whether one (or 
more) of the responsibilities satisfies the use case requirement.

 4. If an error is found, modifications are made to the cards. This may include 
the definition of new classes (and corresponding CRC index cards) or revising 
lists of responsibilities or collaborations on existing cards.

CRC Models

The scene: Ed’s cubicle, as re-
quirements modeling begins.

The players: Vinod and Ed, members of the 
SafeHome software engineering team.

The conversation:
 (Vinod has decided to show Ed how to de-
velop CRC cards by showing him an example.)

Vinod: While you’ve been working on surveil-
lance and Jamie has been tied up with security, 
I’ve been working on the home management 
function.

Ed: What’s the status of that? Marketing kept 
changing its mind.

Vinod: Here’s the first-cut use case for the 
whole function . . . we’ve refined it a bit, but it 
should give you an overall view . . .

Use case: SafeHome home management 
function.

Narrative: We want to use the home manage-
ment interface on a mobile device or an Inter-
net connection to control electronic devices 
that have wireless interface controllers. The 
system should allow me to turn specific lights 
on and off, to control appliances that are con-
nected to a wireless interface, and to set my 
heating and air-conditioning system to tem-
peratures that I define. To do this, I want to se-
lect the devices from a floor plan of the house. 
Each device must be identified on the floor 
plan. As an optional feature, I want to control 
all audiovisual devices—audio, television, 
DVD, digital recorders, and so forth.

sAfeHome
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 8 .4  fu nc t i o nA L mo d e L i ng

The functional model addresses two application processing elements, each represent-
ing a different level of procedural abstraction: (1) user-observable functionality that 
is delivered by the app to end users, and (2) the operations contained within analysis 
classes that implement behaviors associated with the class.

User-observable functionality encompasses any processing functions that are 
 initiated directly by the user. For example, a financial mobile app might implement 
a  variety of financial functions (e.g., computation of mortgage payment). These 
 functions may be implemented using operations within analysis classes, but from 
the point of view of the end user, the function (more correctly, the data provided by 
the function) is the visible outcome.

At a lower level of procedural abstraction, the requirements model describes the 
processing to be performed by analysis class operations. These operations manipulate 
class attributes and are involved as classes collaborate with one another to accomplish 
some required behavior.

8.4.1 A Procedural View
Regardless of the level of procedural abstraction, the UML activity diagram can be 
used to represent processing details. At the analysis level, activity diagrams should be 
used only where the functionality is relatively complex. Much of the complexity of 
mobile apps occurs not in the functionality provided, but rather with the nature of the 
information that can be accessed and the ways in which this can be manipulated.

   With a single selection, I want to be able to 
set the entire house for various situations. One 
is home, another is away, a third is overnight 
travel, and a fourth is extended travel. All these 
situations will have settings that will be applied 
to all devices. In the overnight travel and ex-
tended travel states, the system should turn 
lights on and off at random intervals (to make it 
look like someone is home) and control the 
heating and air-conditioning system. I should 
be able to override these setting via the Inter-
net with appropriate password protection . . .

Ed: Do the hardware guys have all the wire-
less interfacing figured out?

Vinod (smiling): They’re working on it; say it’s 
no problem. Anyway, I extracted a bunch of 
classes for home management, and we can 
use one as an example. Let’s use the Home-
ManagementInterface class.

Ed: Okay . . . so the responsibilities are 
what . . . the attributes and operations for the 
class and the collaborations are the classes 
that the responsibilities point to.

Vinod: I thought you didn’t understand CRC.

Ed: So, looking at the HomeManagementInt-
erface card, when the operation accessFloor-
plan() is invoked, it collaborates with the 
FloorPlan object just like the one we devel-
oped for surveillance. Wait, I have a descrip-
tion of it here. (They look at Figure 8.4.)

Vinod: Exactly. And if we wanted to review the 
entire class model, we could start with this in-
dex card, then go to the collaborator’s index 
card, and from there to one of the collabora-
tor’s collaborators, and so on.

Ed: Good way to find omissions or errors.

Vinod: Yep.
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The UML activity diagram supplements the use case by providing a graphical 
representation of the flow of interaction within a specific scenario. An activity dia-
gram is like a flowchart. The activity diagram (Figure 8.6) uses rounded rectangles 
to imply a specific system function, arrows to represent flow through the system, 
decision diamonds to depict a branching decision (each arrow emanating from the 
diamond is labeled), and solid horizontal lines to indicate that parallel activities are 
occurring.

An example of a relatively complex functionality for SafeHomeAssured.com is 
addressed by a use case entitled Get recommendations for sensor layout for my space. 
The user has already developed a layout for the space to be monitored, and in this 
use case, selects that layout and requests recommended locations for sensors within 
the layout. SafeHomeAssured.com responds with a graphical representation of the 
layout with additional information on the recommended locations for sensors. The 
interaction is quite simple and the content is somewhat more complex, but the under-
lying functionality is very sophisticated. The system must undertake a relatively com-
plex analysis of the floor layout to determine the optimal set of sensors. It must 
examine room dimensions and the location of doors and windows and coordinate these 
with sensor capabilities and specifications. No small task! A set of activity diagrams 
can be used to describe processing for this use case.

The second example is the use case Control cameras. In this use case, the interac-
tion is relatively simple, but there is the potential for complex functionality, given that 
this “simple” operation requires complex communication with devices located remotely 
and accessible across the Internet. A further possible complication relates to negotia-
tion of control when multiple authorized people attempt to monitor and/or control a 
single sensor at the same time.

requestCameraLock()

Camera not in use

Lock available Lock unavailable

Camera in use

getCurrentCameraUser()

Report Camera in use
and name of current user

Report Camera
unavailable

Report Camera now
locked for user

L

Figure 8.6
Activity  
diagram  
for the  
takeControlOf 
Camera()  
operation
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Figure 8.6 depicts an activity diagram for the takeControlOfCamera() operation 
that is part of the Camera analysis class used within the Control cameras use case. 
It should be noted that two additional operations are invoked with the procedural flow: 
requestCameraLock(), which tries to lock the camera for this user, and getCurrent-
CameraUser(), which retrieves the name of the user who is currently controlling the 
camera. The construction details indicating how these operations are invoked and 
the  interface details for each operation are not considered until software design 
 commences.

8.4.2 UML Sequence Diagrams
The UML sequence diagram can be used for behavioral modeling. Sequence diagrams 
can also be used to show how events cause transitions from object to object. Once 
events have been identified by examining a use case, the modeler creates a sequence 
diagram—a representation of how events cause flow from one object to another as a 
function of time. The sequence diagram is a shorthand version of the use case. It 
represents key classes and the events that cause behavior to flow from class to class.

Figure 8.7 illustrates a partial sequence diagram for the SafeHome security func-
tion. Each of the arrows represents an event (derived from a use case) and indicates 
how the event channels behavior between SafeHome objects. Time is measured verti-
cally (downward), and the narrow vertical rectangles represent time spent in process-
ing an activity. States may be shown along a vertical time line.

Homeowner Control Panel

Reading

Comparing

Locked

Selecting

System Sensors

System Ready

Password Entered

Request Lookup

Password = correct

Request Activation

Result

Activation SuccessfulActivation Successful

numberOfTries > maxTries

Timer > lockedTime

A

T
A

Figure 8.7 Sequence diagram (partial) for the SafeHome security function
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The first event, system ready, is derived from the external environment and chan-
nels behavior to the Homeowner object. The homeowner enters a password. A request 
lookup event is passed to System, which looks up the password in a simple database 
and returns a result (found or not found) to ControlPanel (now in the comparing 
state). A valid password results in a password=correct event to System, which acti-
vates Sensors with a request activation event. Ultimately, control is passed back to 
the homeowner with the activation successful event.

Once a complete sequence diagram has been developed, all the events that cause 
transitions between system objects can be collated into a set of input events and out-
put events (from an object). This information is useful in the creation of an effective 
design for the system to be built.

 8 .5  Be H Av i o R A L mo d e L i ng

A behavioral model indicates how software will respond to internal or external events 
or stimuli. This information is useful in the creation of an effective design for the 
system to be built. UML activity diagrams can be used to model how system elements 
respond to internal events. UML state diagrams can be used to model how system 
elements respond to external events.

To create the model, you should perform the following steps: (1) evaluate all use 
cases to fully understand the sequence of interaction within the system, (2) identify 
events that drive the interaction sequence and understand how these events relate to 
specific objects, (3) create a sequence for each use case, (4) build a state diagram for 
the system, and (5) review the behavioral model to verify accuracy and consistency. 
Each of these steps is discussed in the sections that follow.

8.5.1 Identifying Events with the Use Case
In Section 8.3.3, you learned that the use case represents a sequence of activities that 
involves actors and the system. In general, an event occurs whenever the system and 
an actor exchange information. An event is not the information that has been exchanged, 
but rather the fact that information has been exchanged.

A use case is examined for points of information exchange. To illustrate, reconsider 
the use case for a portion of the SafeHome security function.

The homeowner uses the keypad to key in a four-digit password. The password is com-
pared with the valid password stored in the system. If the password is incorrect, the 
control panel will beep once and reset itself for additional input. If the password is cor-
rect, the control panel awaits further action.

The underlined portions of the use case scenario indicate events. An actor should 
be identified for each event; the information that is exchanged should be noted, and 
any conditions or constraints should be listed.

As an example of a typical event, consider the underlined use case phrase “home-
owner uses the keypad to key in a four-digit password.” In the context of the require-
ments model, the object, Homeowner,10 transmits an event to the object ControlPanel. 

10 In this example, we assume that each user (homeowner) that interacts with SafeHome has 
an identifying password and is therefore a legitimate object.
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The event might be called password entered. The information transferred is the four 
digits that constitute the password, but this is not an essential part of the behavioral 
model. It is important to note that some events have an explicit impact on the flow 
of control of the use case, while others have no direct impact on the flow of control. 
For example, the event password entered does not explicitly change the flow of 
control of the use case, but the results of the event password compared (derived from 
the interaction “password is compared with the valid password stored in the system”) 
will have an explicit impact on the information and control flow of the SafeHome 
software.

Once all events have been identified, they are allocated to the objects involved. 
Objects can be responsible for generating events (e.g., Homeowner generates the 
password entered event) or recognizing events that have occurred elsewhere (e.g., 
ControlPanel recognizes the binary result of the password compared event).

8.5.2 UML State Diagrams
In the context of behavioral modeling, two different characterizations of states must 
be considered: (1) the state of each class as the system performs its function and 
(2)  the state of the system as observed from the outside as the system performs its 
function.

The state of a class takes on both passive and active characteristics [Cha93]. A 
passive state is simply the current values assigned to an object’s attributes. The active 
state of an object indicates the status of the object as it undergoes a continuing trans-
formation or processing. An event (sometimes called a trigger) must occur to force 
an object to make a transition from one active state to another.

State Diagrams for Analysis Classes. One component of a behavioral model is a 
UML state diagram11 that represents active states for each class and the events (trig-
gers) that cause changes between these active states. Figure 8.8 illustrates a state 
diagram for the ControlPanel object in the SafeHome security function.

Each arrow shown in Figure 8.8 represents a transition from one active state of an 
object to another. The labels shown for each arrow represent the event that triggers 
the transition. Although the active state model provides useful insight into the “life 
history” of an object, it is possible to specify additional information to provide more 
depth in understanding the behavior of an object. In addition to specifying the event 
that causes the transition to occur, you can specify a guard and an action [Cha93]. A 
guard is a Boolean condition that must be satisfied for the transition to occur. For 
example, the guard for the transition from the “reading” state to the “comparing” state 
in Figure 8.8 can be determined by examining the use case:

if (password input = 4 digits) then compare to stored password

In general, the guard for a transition usually depends upon the value of one or 
more attributes of an object. In other words, the guard depends on the passive state 
of the object.

11 If you are unfamiliar with UML, a brief introduction to this important modeling notation is 
presented in Appendix 1.
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An action occurs concurrently with the state transition or because of it and gener-
ally involves one or more operations (responsibilities) of the object. For example, the 
action connected to the password entered event (Figure 8.8) is an operation named 
validatePassword() that accesses a password object and performs a digit-by-digit 
comparison to validate the entered password.

8.5.3 UML Activity Diagrams
The UML activity diagram supplements the use case by providing a graphical repre-
sentation of the flow of interaction within a specific scenario. Many software engi-
neers like to describe activity diagrams as a way of representing how a system reacts 
to internal events.

An activity diagram for the ACS-DCV use case is shown in Figure 8.9. It should 
be noted that the activity diagram adds additional detail not directly mentioned (but 
implied) by the use case. For example, a user may only attempt to enter userID and 
password a limited number of times. A decision diamond represents this below: 
“Prompt for reentry.”

The UML swimlane diagram is a useful variation of the activity diagram and 
allows you to represent the flow of activities described by the use case and at the 
same time indicate which actor (if there are multiple actors involved in a specific use 
case) or analysis class (Section 8.3.1) has responsibility for the action described by 
an activity rectangle. Responsibilities are represented as parallel segments that divide 
the diagram vertically, like the lanes in a swimming pool.

Reading
Comparing

Do: validatePassword

Locked

Selecting

Key Hit Password Entered

Password = incorrect
& numberOfTries > maxTries

Password = correct

Activation Successful

numberOfTries > maxTries

Timer > lockedTime

Timer > lockedTime

Figure 8.8 State diagram for the ControlPanel class
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Invalid passwords/ID
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Valid passwords/ID
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tries remain

Enter password
and user ID

Prompt for
reentry

Select major
function
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function
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View camera
output in
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Figure 8.10 Swimlane diagram for Access camera surveillance via the Internet—display camera 
views function

Three analysis classes—Homeowner, Camera, and Interface—have direct 
or  indirect responsibilities in the context of the activity diagram represented in 
Figure  8.9. Referring to Figure 8.10, the activity diagram is rearranged so that 
activities associated with an analysis class fall inside the swimlane for that class. 
For example, the Interface class represents the user interface as seen by the 
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 homeowner. The activity diagram notes two prompts that are the responsibility of 
the interface—“prompt for reentry” and “prompt for another view.” These prompts 
and the decisions associated with them fall within the Interface swimlane. How-
ever, arrows lead from that swimlane back to the Homeowner swimlane, where 
homeowner actions occur.

Use cases, along with the activity and swimlane diagrams, are procedurally ori-
ented. Taken together they can be used to represent the way various actors invoke 
specific functions (or other procedural steps) to meet the requirements of the system.

 8 .6  su m m A Ry

The objective of requirements modeling is to create a variety of representations 
that describe what the customer requires, establish a basis for the creation of a 
software design, and define a set of requirements that can be validated once the 
software is built. The requirements model bridges the gap between a system-level 
description that describes overall system and business functionality and a software 
design that describes the software’s application architecture, user interface, and 
component-level structure.

Scenario-based models depict software requirements from the user’s point of 
view. The use case—a narrative or template-driven description of an interaction 
between an actor and the software—is the primary modeling element. Derived dur-
ing requirements elicitation, the use case defines the key steps for a specific func-
tion or interaction. The degree of use case formality and detail varies, but they can 
provide necessary input to all other analysis modeling activities. Scenarios can also 
be described using an activity diagram—a graphical representation that depicts the 
processing flow within a specific scenario. Temporal relations in a use case can be 
modeled using sequence diagrams.

Class-based modeling uses information derived from use cases and other written 
application descriptions to identify analysis classes. A grammatical parse may be used 
to extract candidate classes, attributes, and operations from text-based narratives. 
Criteria for the definition of a class are defined using the parse results.

A set of class-responsibility-collaborator index cards can be used to define relation-
ships between classes. In addition, a variety of UML modeling notation can be applied 
to define hierarchies, relationships, associations, aggregations, and dependencies 
among classes.

Behavioral modeling during requirements analysis depicts dynamic behavior of the 
software. The behavioral model uses input from scenario-based or class-based ele-
ments to represent the states of analysis classes. To accomplish this, states are identi-
fied, the events that cause a class (or the system) to make a transition from one state 
to another are defined, and the actions that occur as transition is accomplished are 
also identified. UML state diagrams, activity diagrams, swim lane diagrams, and 
sequence diagrams can be used for behavioral modeling.
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Pro b l e m s a n d Po i n t s to Po n d e r

8.1. Is it possible to begin coding immediately after a requirements model has been created? 
Explain your answer, and then argue the counterpoint.

8.2. An analysis rule of thumb is that the model “should focus on requirements that are visible 
within the problem or business domain.” What types of requirements are not visible in these 
domains? Provide a few examples.

8.3. The department of public works for a large city has decided to develop a Web-based 
pothole tracking and repair system (PHTRS). A description follows:

   Citizens can log onto a website and report the location and severity of potholes. As pot-
holes are reported they are logged within a “public works department repair system” and 
are assigned an identifying number, stored by street address, size (on a scale of 1 to 10), 
location (middle, curb, etc.), district (determined from street address), and repair priority 
(determined from the size of the pothole). Work order data are associated with each pothole 
and include pothole location and size, repair crew identifying number, number of people 
on crew, equipment assigned, hours applied to repair, hole status (work in progress, 
repaired, temporary repair, not repaired), amount of filler material used, and cost of repair 
(computed from hours applied, number of people, material and equipment used). Finally, 
a damage file is created to hold information about reported damage due to the pothole and 
includes citizen’s name, address, phone number, type of damage, and dollar amount of 
damage. PHTRS is an online system; all queries are to be made interactively.

 Draw a UML use case diagram PHTRS system. You’ll have to make a number of assumptions 
about the manner in which a user interacts with this system.

8.4. Write two or three use cases that describe the roles of various actors in the PHTRS 
described in Problem 8.3.

8.5. Develop an activity diagram for one aspect of PHTRS.

8.6. Develop a swimlane diagram for one or more aspects of PHTRS.

8.7. Develop a class model for the PHTRS system presented in Problem 8.3.

8.8. Develop a complete set of CRC model index cards on the product or system you chose as 
part of Problem 8.3.

8.9. Conduct a review of the CRC index cards with your colleagues. How many additional 
classes, responsibilities, and collaborators were added as a consequence of the review?

8.10. How does a sequence diagram differ from a state diagram? How are they similar?

Design element: Quick Look icon magnifying glass: © Roger Pressman
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What is it? Design is what almost every engi-
neer wants to do. It is the place where 
creativity rules—where requirements and 
technical considerations come together in 
the formulation of a product or system. De-
sign creates a representation or model of the 
software and provides detail about software 
architecture, data structures, interfaces, and 
components that are necessary to imple-
ment the system.

Who does it? Software engineers conduct 
each of the design tasks while continuing 
communication with the stakeholders.

Why is it important? During the design phase, 
you model the system or product that needs 
to be built. The design model can be assessed 
for quality and improved before code is gener-
ated, tests are conducted, and end users be-
come involved in large numbers.

What are the steps? Design makes use of sev-
eral different representations of the software. 

First, the architecture of the system or product 
must be modeled. Then, the interfaces that 
connect the software to end users, to other sys-
tems and devices, and to its own constituent 
components are represented. Finally, the soft-
ware components that are used to construct 
the system are designed. 

What is the work product? A design model 
that encompasses architectural, interface, 
component-level, and deployment represen-
tations is the primary work product that is 
produced during software design.

How do I ensure that I’ve done it right? The 
design model is assessed by the software 
team (including relevant stakeholders) in an 
effort to determine whether it contains er-
rors, inconsistencies, or omissions; whether 
better alternatives exist; and whether the 
model can be implemented within the con-
straints, schedule, and cost that have been 
established.
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C H A P T E R 

9
Software design encompasses the set of principles, concepts, and practices that 
lead to the development of a high-quality system or product. Design principles 
establish an overriding philosophy that guides the design work you must perform. 
Design concepts must be understood before the mechanics of design practice are 
applied, and design practice leads to the creation of various representations of 
the software that serve as a guide for the construction activity that follows.

Design  
Concepts



CHAPTER 9 DESIGN CONCEPTS  157

Design is pivotal to successful software engineering. Some developers are tempted 
to begin programming once the use cases have been created, without regard to how 
the software components needed to implement the use cases relate to one another. It 
is possible to do analysis, design, and implementation iteratively by creating several 
software increments. It is a bad idea to ignore the design considerations needed to 
create an appropriate architecture for the evolving software product. Technical debt is 
a concept in software development that refers to costs associated with rework caused 
by choosing a “quick and dirty” solution right now instead of using a better approach 
that would take more time. It is impossible to avoid creating technical debt when build-
ing a software product incrementally. However, a good development team must try to 
pay down this technical debt by refactoring (Section 9.3.9) the software on a regular 
basis. Just like taking out a loan, you can wait until the loan is due and pay a lot of 
interest or you can pay the loan off a little at a time and pay less interest overall.

One strategy to keep technical debt in check without delaying coding is to make use 
of the design practices of diversification and convergence. Diversification is the practice 
of identifying possible design alternatives suggested by the elements of the requirements 
model. Convergence is the process of evaluating and rejecting design alternatives that do 
not meet the constraints imposed by the nonfunctional requirements defined for the soft-
ware solution. Diversification and convergence combine (1) intuition and judgment based 
on experience in building similar entities, (2) a set of principles and/or heuristics that 
guide the way in which the model evolves, (3) a set of criteria that enables quality to be 
judged, and (4) a process of iteration that ultimately leads to a final design representation. 
Once a viable design alternative is identified this way, the developers are in a good posi-
tion to create a software increment that is not likely to be a throwaway prototype.

Software design changes continually as new methods, better analysis, and broader 
understanding evolve.1 Even today, most software design methodologies lack the 
depth, flexibility, and quantitative nature that are normally associated with more clas-
sical engineering design disciplines. However, methods for software design do exist, 
criteria for design quality are available, and design notation can be applied.

In this chapter, we explore the fundamental concepts and principles that are appli-
cable to all software design, the elements of the design model, and the impact of pat-
terns on the design process. In Chapters 10 through 14 we’ll present a variety of 
software design methods as they are applied to architectural, interface, and component-
level design as well as pattern-based, mobile, and user experience design approaches.

 9 .1   De s i g n Wi t h i n t h e co n t e x t o f so f t Wa r e  
eng i n e e r i ng

Software design sits at the technical kernel of software engineering and is applied 
regardless of the software process model that is used. Beginning once software 
requirements have been analyzed and modeled, software design is the last software 
engineering action within the modeling activity and sets the stage for construction 
(code generation and testing).

1 Those readers with further interest in the philosophy of software design might have interest 
in Philippe Kruchen’s intriguing discussion of “postmodern” design [Kru05].
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Each of the elements of the requirements model (Chapter 8) provide information 
that is necessary to create the four design models required for a complete specification 
of design. The flow of information during software design is illustrated in Figure 9.1. 
The requirements model, manifested by scenario-based, class-based, and behavioral 
elements, feed the design task. Using design notation and design methods discussed 
in later chapters, design produces a data/class design, an architectural design, an inter-
face design, and a component design.

The data/class design transforms class models (Chapter 8) into design class realiza-
tions and the requisite data structures required to implement the software. The objects 
and relationships defined in the CRC model and the detailed data content depicted by 
class attributes and other notation provide the basis for the data design activity. Part 
of class design may occur in conjunction with the design of software architecture. 
More detailed class design occurs as each software component is designed.

The architectural design defines the relationship between major structural elements of 
the software, the architectural style, and patterns (Chapter 14) that can be used to achieve 
the requirements defined for the system, and the constraints that affect the way in which 
architecture can be implemented [Sha15]. The architectural design representation—the 
framework of a computer-based system—is derived from the requirements model.

The interface design describes how the software communicates with systems that 
interoperate with it, and with humans who use it. An interface implies a flow of informa-
tion (e.g., data and/or control) and a specific type of behavior. Therefore, usage scenarios 
and behavioral models provide much of the information required for interface design.

The component-level design transforms structural elements of the software architec-
ture into a procedural description of software components. Information obtained from 
the class-based models and behavioral models serve as the basis for component design.

Component-
Level Design

Interface
Design

Data/Class Design

Design ModelAnalysis Model

Architectural Design

Use cases - test
Use case diagrams
Swimlane diagrams
Sequence diagrams

Scenario-Based
Elements

Class diagrams
Analysis packages
CRC models
Collaboration diagrams

Class-Based
Elements

State diagrams
Activity diagrams

Behavioral
Elements

Figure 9.1 Translating the requirements model into the design model
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During design you make decisions that will ultimately affect the success of soft-
ware construction and, just as important, the ease with which software can be main-
tained. But why is design so important?

The importance of software design can be stated with a single word—quality. Design 
is the place where quality is fostered in software engineering. It provides you with 
representations of software that can be assessed for quality. Design is the only way that 
you can accurately translate stakeholders’ requirements into a finished software product 
or system. Software design serves as the foundation for all the software engineering and 
software support activities that follow. Without design, you risk building an unstable 
system—one that will fail when small changes are made; one that may be difficult to 
test; one whose quality cannot be assessed until late in the software process. Late in the 
project is when time is short, and many budgeted dollars have already been spent.

Design Versus Coding

The scene: Jamie’s cubicle, as 
the team prepares to translate 

requirements into design.

The players: Jamie, Vinod, and Ed, all members 
of the SafeHome software engineering team.

The conversation:
Jamie: You know, Doug [the team manager] is 
obsessed with design. I gotta be honest, what 
I really love doing is coding. Give me C++ or 
Java, and I’m happy.

Ed: Nah . . . you like to design.

Jamie: You’re not listening—coding is where 
it’s at.

Vinod: I think what Ed means is that you don’t 
really like coding; you like to design and ex-
press it in code. Code is the language you use 
to represent the design.

Jamie: And what’s wrong with that?

Vinod: Level of abstraction.

Jamie: Huh?

Ed: A programming language is good for rep-
resenting details like data structures and algo-
rithms, but it’s not so good for representing 
architecture or component-to-component 
collaboration . . . stuff like that.

Vinod: And a screwed-up architecture can 
ruin even the best code.

Jamie (thinking for a minute): So, you’re 
 saying that I can’t represent architecture in 
code . . . that’s not true.

Vinod: You can certainly imply architecture in 
code, but in most programming languages, it’s 
difficult to get a quick, big-picture read on 
 architecture by examining the code.

Ed: And that’s what we want before we begin 
coding.

Jamie: Okay, maybe design and coding are 
different, but I still like coding better.

safehome

 9.2 th e De s i g n pro c e s s

Software design is an iterative process through which requirements are translated into 
a “blueprint” for constructing the software. Initially, the blueprint depicts a holistic 
view of software. That is, the design is represented at a high level of abstraction—a 
level that can be directly traced to the specific system objective and more detailed 
data, functional, and behavioral requirements. As design iterations occur, subsequent 
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refinement leads to design representations at much lower levels of abstraction. These 
can still be traced to requirements, but the connections may not be obvious at these 
lower levels of abstraction.

9.2.1 Software Quality Guidelines and Attributes
Throughout the design process, the quality of the evolving design is assessed with a 
series of technical reviews discussed in Chapter 16. McGlaughlin [McG91] suggests 
three characteristics that serve as a guide for the evaluation of a good design:

∙ The design should implement all explicit requirements contained in the 
requirements model, and it must accommodate all the implicit requirements 
desired by stakeholders.

∙ The design should be a readable, understandable guide for those who generate 
code and for those who test and subsequently support the software.

∙ The design should provide a complete picture of the software, addressing the 
data, functional, and behavioral domains from an implementation perspective.

Each of these characteristics is a goal of the design process. But how is each of these 
goals achieved?

Quality Guidelines. To evaluate the quality of a design representation, you and 
other members of the software team must establish technical criteria for good design. 
In Section 9.3, we discuss design concepts that also serve as software quality criteria. 
For the time being, consider the following guidelines:

 1. A design should exhibit an architecture that (a) has been created using recog-
nizable architectural styles or patterns, (b) is composed of components that 
exhibit good design characteristics (these are discussed later in this chapter), 
and (c) can be implemented in an evolutionary fashion,2 thereby facilitating 
implementation and testing.

 2. A design should be modular; that is, the software should be logically 
partitioned into elements or subsystems.

 3. A design should contain distinct representations of data, architecture, 
interfaces, and components.

 4. A design should lead to data structures that are appropriate for the classes to 
be implemented and are drawn from recognizable data patterns.

 5. A design should lead to components that exhibit independent functional 
characteristics.

 6. A design should lead to interfaces that reduce the complexity of connections 
between components and with the external environment.

 7. A design should be derived using a repeatable method that is driven by 
information obtained during software requirements analysis.

 8. A design should be represented using a notation that effectively communicates 
its meaning.

2 For smaller systems, design can sometimes be developed linearly.
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Chance alone will not achieve these design guidelines. They are achieved through the 
application of fundamental design principles, systematic methodology, and thorough 
review.

Assessing Design Quality—The 
Technical Review

Design is important because it allows 
a software team to assess the quality3 

of the software before it is implemented—at a time 
when errors, omissions, or inconsistencies are 
easy and inexpensive to correct. But how do we 
assess quality during design? The software can’t 
be tested, because there is no executable soft-
ware to test. What to do?

During design, quality is assessed by conduct-
ing a series of technical reviews (TRs). TRs are dis-
cussed in detail in Chapter 16,4 but it’s worth 
providing a summary of the technique at this 
point. A technical review is a meeting conducted 
by members of the software team. Usually two, 
three, or four people participate depending on the 

scope of the design information to be reviewed. 
Each person plays a role. The review leader plans 
the meeting, sets an agenda, and runs the meet-
ing; the recorder takes notes so that nothing is 
missed; and the producer is the person whose 
work product (e.g., the design of a software com-
ponent) is being reviewed. Prior to the meeting, 
each person on the review team is given a copy of 
the design work product and is asked to read it, 
looking for errors, omissions, or ambiguity. When 
the meeting commences, the intent is to note all 
problems with the work product so that they can 
be corrected before implementation begins. The 
TR typically lasts between 60 to 90 minutes. After 
the TR concludes, the review team determines 
whether further actions are required from the 
producer before the design work product can be 
approved as part of the final design model.

info

3 The quality factors discussed in Chapter 23 can assist the review team as it assesses quality.
4 You might consider looking ahead to Chapter 16 at this time. Technical reviews are a critical 

part of the design process and are an important mechanism for achieving design quality.

9.2.2 The Evolution of Software Design
The evolution of software design is a continuing process that has now spanned more 
than six decades. Early design work concentrated on criteria for the development of 
modular programs [Den73] and methods for refining software structures in a top-down 
“structured” manner ([Wir71], [Dah72], [Mil72]). Newer design approaches (e.g., 
[Jac92], [Gam95]) proposed an object-oriented approach to design derivation. More 
recent emphasis in software design has been on software architecture [Kru06] and the 
design patterns that can be used to implement software architectures and lower levels 
of design abstractions (e.g., [Hol06], [Sha05]). There is a growing emphasis on aspect-
oriented methods (e.g., [Cla05], [Jac04]), model-driven development [Sch06], and 
test-driven development [Ast04], which focus on techniques for achieving more effec-
tive modularity and architectural structure in the designs that are created.

In the past 10 years, Search-Based Software Engineering (SBSE) techniques have been 
applied to all phases of the software engineering life cycle, including design [Har12]. 
SBSE attempts to solve software engineering problems using automated search tech-
niques augmented by operations research and machine learning algorithms to provide 
design recommendations to software developers. Many modern software systems must 
accommodate a high degree of variability, both in their deployment environments and 
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the number of usage scenarios they expected to satisfy. Design of variability-intensive 
systems5 requires developers to anticipate future changes in the features to be modified 
in future versions of the product being designed today [Gal16]. A detailed discussion of 
the design of variability-intensive systems is beyond the scope of this book.

Several design methods, growing out of the work just noted, are being applied through-
out the industry. Like the analysis methods presented in Chapter 8, each software design 
method introduces unique heuristics and notation, as well as a somewhat parochial view 
of what characterizes design quality. Yet, each of these methods has common character-
istics: (1) a mechanism for the translation of the requirements model into a design rep-
resentation, (2) a notation for representing functional components and their interfaces, 
(3) heuristics for refinement and partitioning, and (4) guidelines for quality assessment.

Regardless of the design method that is used, you should apply a set of basic 
concepts to data, architectural, interface, and component-level design. These concepts 
are considered in the sections that follow.

5 Variability-intensive systems refers to systems that may be required to be self-modifying 
based on changes in the run-time environment or families of software products resulting 
from product line engineering practices for building specialized product variants out of 
existing software products.

Generic Task Set for Design
Please note: These tasks are often per-
formed iteratively and in parallel. They 

are rarely completed sequentially and in isolation 
from one another unless you are following the 
waterfall process model.

 1. Examine the information model, and design 
appropriate data structures for data objects 
and their attributes.

 2. Using the analysis model, select an architec-
tural style (pattern) that is appropriate for the 
software.

 3. Partition the analysis model into design 
subsystems and allocate these subsystems 
within the architecture:

Be certain that each subsystem is func-
tionally cohesive.

Design subsystem interfaces.
Allocate analysis classes or functions to 

each subsystem.
 4. Create a set of design classes or components:

Translate an analysis class description into 
a design class.

Check each design class against design 
criteria; consider inheritance issues.

Define methods and messages associated 
with each design class.

Evaluate and select design patterns for a 
design class or a subsystem.

Review design classes and revise as 
required.

 5. Design any interface required with external 
systems or devices.

 6. Design the user interface:
Review results of task analysis.
Specify action sequence based on user 

scenarios.
Create a behavioral model of the interface.
Define interface objects and control 

mechanisms.
Review the interface design, and revise as 

required.
 7. Conduct component-level design. Specify 

all algorithms at a relatively low level of 
abstraction.

Refine the interface of each component.
Define component-level data structures.
Review each component, and correct all 

errors uncovered.
 8. Develop a deployment model.

task set
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 9 .3  De s i g n co nc e p t s

Several fundamental software design concepts have evolved over the history of soft-
ware engineering. Although the degree of interest in these concepts has varied over 
the years, each has stood the test of time. Each provides the software designer with 
a foundation from which more sophisticated design methods can be applied. Each 
helps you define criteria that can be used to partition software into individual com-
ponents, separate out data structure detail from a conceptual representation of the 
software, and establish uniform criteria that define the technical quality of a software 
design. These concepts help developers design the software actually needed, rather 
than simply focusing on creating any old working program.

9.3.1 Abstraction
When you consider a modular solution to any problem, many levels of abstraction can 
be posed. At the highest level of abstraction, a solution is stated in broad terms using 
the language of the problem environment (e.g., a user story). At lower levels of 
abstraction, a more detailed description of the solution is provided. Problem-oriented 
terminology is coupled with implementation-oriented terminology to state a solution 
(e.g., use case). Finally, at the lowest level of abstraction, the solution is stated in a 
manner that can be directly implemented (e.g., pseudocode).

As different levels of abstraction are developed, you work to create both procedural 
and data abstractions. A procedural abstraction refers to a sequence of instructions 
that have a specific and limited function. The name of a procedural abstraction implies 
these functions, but specific details are suppressed. An example of a procedural 
abstraction would be the word use for a camera in the SafeHome system. Use implies 
a long sequence of procedural steps (e.g., activate the SafeHome system on a mobile 
device, log on to the SafeHome system, select a camera to preview, locate the camera 
controls on mobile app user interface, etc.).6

A data abstraction is a named collection of data that describes a data object. In 
the context of the procedural abstraction open, we can define a data abstraction called 
camera. Like any data object, the data abstraction for camera would encompass a 
set of attributes that describe the camera (e.g., camera ID, location, field view, pan 
angle, zoom). It follows that the procedural abstraction use would make use of infor-
mation contained in the attributes of the data abstraction camera.

9.3.2 Architecture
Software architecture alludes to “the overall structure of the software and the ways in 
which that structure provides conceptual integrity for a system” [Sha15]. In its sim-
plest form, architecture is the structure or organization of program components (mod-
ules), the ways in which these components interact, and the structure of data that are 

6 It should be noted, however, that one set of operations can be replaced with another, if the 
function implied by the procedural abstraction remains the same. Therefore, the steps 
required to implement use would change dramatically if the camera were automatic and 
attached to a sensor that automatically triggered an alert on your mobile device.
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used by the components. In a broader sense, however, components can be generalized 
to represent major system elements and their interactions.

One goal of software design is to derive an architectural rendering of a system. 
This rendering serves as a framework from which more detailed design activities are 
conducted. A set of architectural patterns enables a software engineer to reuse design-
level concepts.

Shaw and Garlan [Sha15] describe a set of properties that should be specified as 
part of an architectural design. Structural properties define “the components of a 
system (e.g., modules, objects, filters) and the manner in which those components are 
packaged and interact with one another.” Extra-functional properties address “how 
the  design architecture achieves requirements for performance, capacity, reliability, 
security, adaptability, and other system characteristics (e.g., nonfunctional system 
requirements).” Families of related systems “draw upon repeatable patterns that are 
commonly encountered in the design of families of similar systems.”7

Given the specification of these properties, the architectural design can be repre-
sented using one or more of several different models [Gar95]. Structural models rep-
resent architecture as an organized collection of program components. Framework 
models increase the level of design abstraction by attempting to identify repeatable 
architectural design frameworks (patterns) that are encountered in similar types of 
applications. Dynamic models address the behavioral aspects of the program architec-
ture, indicating how the structure or system configuration may change as a function 
of external events. Process models focus on the design of the business or technical 
process that the system must accommodate. Finally, functional models can be used to 
represent the functional hierarchy of a system.

Several different architectural description languages (ADLs) have been developed 
to represent these models [Sha15]. Although many different ADLs have been pro-
posed, the majority provide mechanisms for describing system components and the 
ways in which they are connected to one another.

You should note that there is some debate about the role of architecture in design. 
Some researchers argue that the derivation of software architecture should be sepa-
rated from design and occurs between requirements engineering actions and more 
conventional design actions. Others believe that the derivation of architecture is an 
integral part of the design process. The ways in which software architecture is char-
acterized and its role in design are discussed in Chapter 10.

9.3.3 Patterns
Brad Appleton defines a design pattern in the following manner: “A pattern is a named 
nugget of insight which conveys the essence of a proven solution to a recurring prob-
lem within a certain context amidst competing concerns” [App00]. Stated in another 
way, a design pattern describes a design structure that solves a well-defined design 
problem within a specific context and amid “forces” that may have an impact on the 
manner in which the pattern is applied and used.

7 These families of related software products sharing common features are called software 
product lines.
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The intent of each design pattern is to provide a description that enables a designer 
to determine (1) whether the pattern is applicable to the current work, (2) whether 
the pattern can be reused (hence, saving design time), and (3) whether the pattern can 
serve as a guide for developing a similar, but functionally or structurally different, 
pattern. Design patterns are discussed in detail in Chapter 14.

9.3.4 Separation of Concerns
Separation of concerns is a design concept [Dij82] that suggests that any complex prob-
lem can be more easily handled if it is subdivided into pieces that can each be solved 
and/or optimized independently. A concern is a feature or behavior that is specified as 
part of the requirements model for the software. By separating concerns into smaller and 
therefore more manageable pieces, a problem takes less effort and time to solve.

It follows that the perceived complexity of two problems when they are combined 
is often greater than the sum of the perceived complexity when each is taken sepa-
rately. This leads to a divide-and-conquer strategy—it’s easier to solve a complex 
problem when you break it into manageable pieces. This has important implications 
for software modularity.

Separation of concerns is manifested in other related design concepts: modularity, 
functional independence, and refinement. Each will be discussed in the subsections 
that follow.

9.3.5 Modularity
Modularity is the most common manifestation of separation of concerns. Software 
is  divided into separately named and addressable components, sometimes called 
 modules, that are integrated to satisfy problem requirements.

It has been stated that “modularity is the single attribute of software that allows a 
program to be intellectually manageable” [Mye78]. Monolithic software (i.e., a large 
program composed of a single module) cannot be easily grasped by a software engi-
neer. The number of control paths, span of reference, number of variables, and over-
all complexity would make understanding close to impossible. In almost all instances, 
you should break the design into many modules, hoping to make understanding easier 
and reduce the cost required to build the software.

Recalling our discussion of separation of concerns, it is possible to conclude that 
if you subdivide software indefinitely the effort required to develop it will become 
negligibly small! Unfortunately, other forces come into play, causing this conclusion 
to be (sadly) invalid. Referring to Figure 9.2, the effort (cost) to develop an individual 
software module tends to decrease as the total number of modules increases.

Given the same set of requirements, the more modules used in your program means 
smaller individual sizes. However, as the number of modules grows, the effort (cost) 
associated with integrating modules with each other grows. These characteristics lead 
to a total cost or effort curve, shown in Figure 9.2. There is a number, M, of modules 
that would result in minimum development cost, but we do not have the necessary 
sophistication to predict M with assurance.

The curves shown in Figure 9.2 do provide useful qualitative guidance when mod-
ularity is considered. You should modularize, but care should be taken to stay in 
the  vicinity of M. Using too few modules or too many modules should be avoided. 
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But how do you know the vicinity of M? How modular should you make software? 
The answers to these questions require an understanding of other design concepts 
considered in Sections 9.3.6 through 9.3.9.

You modularize a design (and the resulting program) so that development can be 
more easily planned, software increments can be defined and delivered, changes can 
be more easily accommodated, testing and debugging can be conducted more effi-
ciently, and long-term maintenance can be conducted without serious side effects.

9.3.6 Information Hiding
The concept of modularity leads you to a fundamental question: “How do I decompose 
a software solution to obtain the best set of modules?” The principle of information 
hiding [Par72] suggests that modules should be “characterized by design decisions 
that (each) hides from all others.” In other words, modules should be specified and 
designed so that information (algorithms and data) contained within a module is inac-
cessible to other modules that have no need for such information.

Hiding implies that effective modularity can be achieved by defining a set of inde-
pendent modules that communicate with one another only that information necessary 
to achieve software function. Abstraction helps to define the procedural (or informa-
tional) entities that make up the software. Hiding defines and enforces access con-
straints to both procedural detail within a module and any local data structure used 
by the module [Ros75].

The use of information hiding as a design criterion for modular systems provides 
the greatest benefits when modifications are required during testing and later during 
software maintenance. Because most data and procedural detail are hidden from other 
parts of the software, inadvertent errors introduced during modification are less likely 
to propagate to other locations within the software.
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9.3.7 Functional Independence
The concept of functional independence is a direct outgrowth of separation of con-
cerns, modularity, and the concepts of abstraction and information hiding. In landmark 
papers on software design, Wirth [Wir71] and Parnas [Par72] each allude to refine-
ment techniques that enhance module independence. Later work by Stevens, Myers, 
and Constantine [Ste74] solidified the concept.

Functional independence is achieved by developing modules with “single-minded” 
function and an “aversion” to excessive interaction with other modules. Stated another 
way, you should design software so that each module addresses a specific subset of 
requirements and has a simple interface when viewed from other parts of the program 
structure.

It is fair to ask why independence is important. Software with effective modularity, 
that is, independent modules, is easier to develop because function can be compart-
mentalized and interfaces are simplified (consider the ramifications when development 
is conducted by a team). Independent modules are easier to maintain (and test) because 
secondary effects caused by design or code modification are limited, error propagation 
is reduced, and reusable modules are possible. To summarize, functional independence 
is a key to good design, and design is the key to software quality. Evaluation of your 
CRC card model (Chapter 8) can help you spot problems with functional independence. 
User stories that contain many instances of words such as and or except are not likely 
to encourage you to design modules that are “single-minded” system functions.

Independence is assessed using two qualitative criteria: cohesion and coupling. 
Cohesion is an indication of the relative functional strength of a module. Coupling is 
an indication of the relative interdependence among modules.

Cohesion is a natural extension of the information-hiding concept described in Sec-
tion 9.3.6. A cohesive module performs a single task, requiring little interaction with 
other components in other parts of a program. Stated simply, a cohesive module should 
(ideally) do just one thing. Although you should always strive for high cohesion (i.e., 
single-mindedness), it is often necessary and advisable to have a software component 
perform multiple functions. However, “schizophrenic” components (modules that per-
form many unrelated functions) are to be avoided if a good design is to be achieved.

Coupling is an indication of interconnections among modules in a software struc-
ture. Coupling depends on the interface complexity between modules, the point at 
which entry or reference is made to a module, and what data pass across the interface. 
In software design, you should strive for the lowest possible coupling. Simple con-
nectivity among modules results in software that is easier to understand and less likely 
to propagate errors found in one module to other system modules.

9.3.8 Stepwise Refinement
Stepwise refinement is a top-down design strategy originally proposed by Niklaus 
Wirth [Wir71]. Successively refining levels of procedural detail is a good way to 
develop an application. A hierarchy is developed by decomposing a macroscopic 
statement of function (a procedural abstraction) in a stepwise fashion until program-
ming language statements are reached.

Refinement is a process of elaboration. You begin with a statement of function (or 
description of information) that is defined at a high level of abstraction. That is, the 
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statement describes function or information conceptually but provides no indication 
of the internal workings of the function or the internal structure of the information. 
You then elaborate on the original statement, providing more detail as each successive 
refinement (elaboration) occurs.

Abstraction and refinement are complementary concepts. Abstraction enables you 
to specify procedure and data internally but suppress the need for “outsiders” to have 
knowledge of low-level details. Refinement helps you to reveal low-level details as 
design progresses. Both concepts allow you to create a complete design model as the 
design evolves.

9.3.9 Refactoring
An important design activity suggested for many agile methods (Chapter 3), refactor-
ing is a reorganization technique that simplifies the design (or code) of a component 
without changing its function or behavior. Fowler [Fow00] defines refactoring in the 
following manner: “Refactoring is the process of changing a software system in such 
a way that it does not alter the external behavior of the code [design] yet improves 
its internal structure.”

When software is refactored, the existing design is examined for redundancy, 
unused design elements, inefficient or unnecessary algorithms, poorly constructed or 
inappropriate data structures, or any other design failure that can be corrected to yield 
a better design. For example, a first design iteration might yield a large component 
that exhibits low cohesion (i.e., it performs three functions that have only a limited 
relationship to one another). After careful consideration, you may decide that the 
component should be refactored into three separate components, each of which exhib-
its high cohesion. The result will be software that is easier to integrate, easier to test, 
and easier to maintain.

Although the intent of refactoring is to modify the code in a manner that does not 
alter its external behavior, inadvertent side effects can and do occur. Refactoring tools 
[Soa10] are sometimes used to analyze code changes automatically and to “generate 
a test suite suitable for detecting behavioral changes.”

Design Concepts

The scene: Vinod’s cubicle, as 
design modeling begins.

The players: Vinod, Jamie, and Ed—members 
of the SafeHome software engineering team. 
Also, Shakira, a new member of the team.

The conversation:
 (All four team members have just returned 
from a morning seminar entitled “Applying 
Basic Design Concepts,” offered by a local 
computer science professor.)

Vinod: Did you get anything out of the seminar?

Ed: Knew most of the stuff, but it’s not a bad 
idea to hear it again, I suppose.

Jamie: When I was an undergrad CS major, 
I never really understood why information 
hiding was as important as they say it is.

Vinod: Because . . . bottom line . . . it’s a 
technique for reducing error propagation in a 
program. Actually, functional independence 
also accomplishes the same thing.

safehome
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9.3.10 Design Classes
The analysis model defines a set of analysis classes (Chapter 8). Each of these classes 
describes some element of the problem domain, focusing on aspects of the problem 
that are user visible. The level of abstraction of an analysis class is relatively high.

As the design model evolves, you will define a set of design classes that refine the 
analysis classes by providing design detail that will enable the classes to be imple-
mented and to create a software infrastructure that supports the business solution.

As the software architecture forms, the level of abstraction is reduced as each 
analysis class (Chapter 8) is transformed into a design representation. That is, analy-
sis classes represent data objects and associated services that are applied to them. 
Design classes present significantly more technical detail as a guide for implementation.

Arlow and Neustadt [Arl02] suggest that each design class be reviewed to ensure 
that it is “well-formed.” They define four characteristics of a well-formed design class:

Complete and sufficient. A design class should be the complete encapsulation of 
all attributes and methods that can reasonably be expected (based on a knowledgeable 
interpretation of the class name) to exist for the class. For example, the class Floor-
Plan (Figure 9.3) defined for the SafeHome room layout software is complete only if 
it contains all attributes and methods that can reasonably be associated with the cre-
ation of a floor plan. Sufficiency ensures that the design class contains only those 
methods that are sufficient to achieve the intent of the class, no more and no less.

Primitiveness. Methods associated with a design class should be focused on 
accomplishing one service for the class. Once the service has been implemented 
with a method, the class should not provide another way to accomplish the same 
thing. For example, the class Segment (Figure 9.3) for use by the room layout 

Shakira: I wasn’t an SE grad, so a lot of the 
stuff the instructor mentioned is new to me. I 
can generate good code and fast. I don’t see 
why this stuff is so important.

Jamie: I’ve seen your work, Shak, and you 
know what, you do a lot of this stuff natu-
rally . . . that’s why your designs and code work.

Shakira (smiling): Well, I always do try to parti-
tion the code, keep it focused on one thing, 
keep interfaces simple and constrained, reuse 
code whenever I can . . . that sort of thing.

Ed: Modularity, functional independence, 
hiding, patterns . . . see.

Jamie: I still remember the very first program-
ming course I took . . . they taught us to refine 
the code iteratively.

Vinod: Same thing can be applied to design, 
you know.

Jamie: The only concepts I hadn’t heard 
of before were “design classes” and 
“refactoring.”

Shakira: Refactoring is used in Extreme 
Programming, I think she said.

Ed: Yep. It’s not a whole lot different than 
refinement, only you do it after the design or 
code is completed. Kind of like an 
optimization pass through the software,  
if you ask me.

Jamie: Let’s get back to the SafeHome de-
sign. I think we should put these concepts on 
our review checklist as we develop the design 
model for SafeHome.

Vinod: I agree. But as important, let’s all 
commit to think about them as we develop 
the design.
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software might have attributes startCoordinate and endCoordinate to indicate 
the start and end points of the segment to be drawn. The method setCoordinates() 
provides the only means for establishing start and end points for the segment.

High cohesion. A cohesive design class has a small, focused set of responsibili-
ties and single-mindedly applies attributes and methods to implement those respon-
sibilities. For example, the class FloorPlan (Figure 9.3) might contain a set of 
methods for editing the house floor plan. As long as each method focuses solely 
on attributes associated with the floor plan, cohesion is maintained.

Low coupling. Within the design model, it is necessary for design classes to col-
laborate with one another. However, collaboration should be kept to an acceptable 
minimum. If a design model is highly coupled (all design classes collaborate with all 
other design classes), the system is difficult to implement, to test, and to maintain 
over time. In general, design classes within a subsystem should have only limited 
knowledge of other classes. This restriction, called the Law of Demeter [Lie03], sug-
gests that a method should only send messages to methods in neighboring classes.8

8 A less formal way of stating the Law of Demeter is “Each unit should only talk to its friends; 
don’t talk to strangers.”
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Design class 
for FloorPlan 
and composite 
aggregation 
for the class 
(see sidebar 
discussion)
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 9 .4  th e De s i g n mo D e L

The software design model is the equivalent of an architect’s plans for a house. It 
begins by representing the totality of the thing to be built (e.g., a three-dimensional 
rendering of the house) and slowly refines the thing to provide guidance for construct-
ing each detail (e.g., the plumbing layout). Similarly, the design model that is created 
for software provides a variety of different views of the system.

The design model can be viewed in two different dimensions, as illustrated in 
Figure  9.4. The process dimension indicates the evolution of the design model as 
design tasks are executed as part of the software process. The abstraction dimension 
represents the level of detail as each element of the analysis model is transformed 
into a design equivalent and then refined iteratively. Referring to the figure, the 
dashed line indicates the boundary between the analysis and design models. In some 
cases, a clear distinction between the analysis and design models is possible. In other 
cases, the analysis model slowly blends into the design and a clear distinction is less 
obvious.

Refining an Analysis Class into a Design Class

The scene: Ed’s cubicle, as 
design modeling begins.

The players: Vinod and Ed, members of the 
SafeHome software engineering team.

The conversation:
 [Ed is working on the FloorPlan class (see side-
bar discussion in Section 8.3.3 and Figure 8.4) 
and has refined it for the design model.]

Ed: So you remember the FloorPlan class, 
right? It’s used as part of the surveillance and 
home management functions.

Vinod (nodding): Yeah, I seem to recall that 
we used it as part of our CRC discussions for 
home management.

Ed: We did. Anyway, I’m refining it for design. 
I want to show how we’ll actually implement the 
FloorPlan class. My idea is to implement it as a 
set of linked lists [a specific data structure]. 
So . . . I had to refine the analysis class Floor-
Plan (Figure 8.4) and actually, sort of simplify it.

Vinod: The analysis class showed only things 
in the problem domain, well, actually on the 

computer screen, that were visible to the end 
user, right?

Ed: Yep, but for the FloorPlan design class, 
I’ve got to add some things that are implemen-
tation specific. I needed to show that Floor-
Plan is an aggregation of segments—hence 
the Segment class—and that the Segment 
class is composed of lists for wall segments, 
windows, doors, and so on. The class Camera 
collaborates with FloorPlan, and obviously, 
there can be many cameras in the floor plan.

Vinod: Phew, let’s see a picture of this new 
FloorPlan design class.

 (Ed shows Vinod the drawing shown in 
Figure 9.3.)

Vinod: Okay, I see what you’re trying to do. 
This allows you to modify the floor plan easily 
because new items can be added to or de-
leted from the list—the aggregation—without 
any problems.

Ed (nodding): Yeah, I think it’ll work.

Vinod: So do I.

safehome
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The elements of the design model use many of the same UML diagrams9 that 
were used in the analysis model. The difference is that these diagrams are refined 
and elaborated as part of design; more implementation-specific detail is provided, 
and architectural structure and style, components that reside within the architec-
ture, and interfaces between the components and with the outside world are all 
emphasized.

You should note, however, that model elements indicated along the horizontal axis 
are not always developed in a sequential fashion. In most cases, preliminary architec-
tural design sets the stage and is followed by interface design and component-level 
design, which often occur in parallel. The deployment model is usually delayed until 
the design has been fully developed.

You can apply design patterns (Chapter 14) at any point during design. These pat-
terns enable you to apply design knowledge to domain-specific problems that have 
been encountered and solved by others.
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Figure 9.4 Dimensions of the design model

9 Appendix 1 provides a tutorial on basic UML concepts and notation.
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9.4.1 Design Modeling Principles
There is no shortage of methods for deriving the various elements of a software design 
model. Some methods are data driven, allowing the data structure to dictate the 
program architecture and the resultant processing components. Others are pattern 
driven, using information about the problem domain (the requirements model) to 
develop architectural styles and processing patterns. Still others are object oriented, 
using problem domain objects as the driver for the creation of data structures and the 
methods that manipulate them. Yet all embrace a set of design principles that can be 
applied, regardless of the method that is used:

Principle 1. Design should be traceable to the requirements model. The 
requirements model describes the information domain of the problem, user- 
visible functions, system behavior, and a set of requirements classes that package 
business objects with the methods that service them. The design model translates 
this information into an architecture, a set of subsystems that implement major 
functions, and a set of components that are the realization of requirements 
classes. The elements of the design model should be traceable to the require-
ments model.

Principle 2. Always consider the architecture of the system to be built. Soft-
ware architecture (Chapter 10) is the skeleton of the system to be built. It affects 
interfaces, data structures, program control flow and behavior, the manner in 
which testing can be conducted, the maintainability of the resultant system, and 
much more. For all these reasons, design should start with architectural consider-
ations. Only after the architecture has been established should component-level 
issues be considered.

Principle 3. Design of data is as important as design of processing functions. 
Data design is an essential element of architectural design. The ways in which data 
objects are realized within the design cannot be left to chance. A well-structured 
data design helps to simplify program flow, makes the design and implementation 
of software components easier, and makes overall processing more efficient.

Principle 4. Interfaces (both internal and external) must be designed with care. 
The ways in which data flows between the components of a system has much to 
do with processing efficiency, error propagation, and design simplicity. A well-
designed interface makes integration easier and assists the tester in validating 
 component  functions.

Principle 5. User interface design should be tuned to the needs of the end 
user. However, in every case, it should stress ease of use. The user interface is 
the visible manifestation of the software. No matter how sophisticated its internal 
functions, no matter how comprehensive its data structures, no matter how 
well designed its architecture, a poor interface design often leads to the 
 perception  that the software is “bad.”

Principle 6. Component-level design should be functionally independent. 
 Functional independence is a measure of the “single-mindedness” of a software 
component. The functionality that is delivered by a component should be cohesive—
that is, it should focus on one and only one function.
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Principle 7. Components should be loosely coupled to one another and to the 
external environment. Coupling is achieved in many ways—via a component interface, 
by messaging, and through global data. As the level of coupling increases, the likeli-
hood of error propagation also increases and the overall maintainability of the software 
decreases. Therefore, component coupling should be kept as low as is reasonable.

Principle 8. Design representations (models) should be easily understandable. 
The purpose of design is to communicate information to practitioners who will gen-
erate code, to those who will test the software, and to others who may maintain the 
software in the future. If the design is difficult to understand, it will not serve as an 
effective communication medium.

Principle 9. The design should be developed iteratively. With each iteration, the 
designer should strive for greater simplicity. Like almost all creative activities, 
design occurs iteratively. The first iterations work to refine the design and correct 
errors, but later iterations should strive to make the design as simple as is possible.

Principle 10. Creation of a design model does not preclude an agile approach. 
Some proponents of agile software development (Chapter 3) insist that the code is 
the only design documentation that is needed. Yet the purpose of a design model is 
to help others who must maintain and evolve the system. It is extremely difficult to 
understand either the higher-level purpose of a code fragment or its interactions 
with other modules in a modern multithreaded run-time environment.

Agile design documentation should be kept in sync with the design and develop-
ment, so that at the end of the project the design is documented at a level that allows 
the code to be understood and maintained. The design model provides benefit because 
it is created at a level of abstraction that is stripped of unnecessary technical detail 
and is closely coupled to the application concepts and requirements. Complementary 
design information can incorporate a design rationale, including the descriptions of 
rejected architectural design alternatives.

9.4.2 Data Design Elements
Like other software engineering activities, data design (sometimes referred to as data 
architecting) creates a model of data and/or information that is represented at a high 
level of abstraction (the customer or user’s view of data). This data model is then 
refined into progressively more implementation-specific representations that can be 
processed by the computer-based system. In many software applications, the architec-
ture of the data will have a profound influence on the architecture of the software that 
must process it.

The structure of data has always been an important part of software design. At the 
program-component level, the design of data structures and the associated algorithms 
required to manipulate them is essential to the creation of high-quality applications. 
At the application level, the translation of a data model (derived as part of require-
ments engineering) into a database is pivotal to achieving the business objectives of 
a system. At the business level, the collection of information stored in disparate data-
bases and reorganized into a “data warehouse” enables data mining or knowledge 
discovery that can have an impact on the success of the business itself. In every case, 
data design plays an important role. Data design is discussed in more detail in 
Chapter 10.
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9.4.3 Architectural Design Elements
The architectural design for software is the equivalent to the floor plan of a house. 
The floor plan depicts the overall layout of the rooms; their size, shape, and relation-
ship to one another; and the doors and windows that allow movement into and out of 
the rooms. The floor plan gives us an overall view of the house. Architectural design 
elements give us an overall view of the software.

The architectural model [Sha15] is derived from three sources: (1) information 
about the application domain for the software to be built, (2) specific requirements 
model elements such as use cases or analysis classes, their relationships, and col-
laborations for the problem at hand, and (3) the availability of architectural styles 
(Chapter 10) and patterns (Chapter 14).

The architectural design element is usually depicted as a set of interconnected sub-
systems, often derived from analysis packages within the requirements model. Each 
subsystem may have its own architecture (e.g., a graphical user interface might be 
structured according to a preexisting architectural style for user interfaces). Techniques 
for deriving specific elements of the architectural model are presented in Chapter 10.

9.4.4 Interface Design Elements
The interface design for software is analogous to a set of detailed drawings (and 
specifications) for the doors, windows, and external utilities of a house. The detailed 
drawings (and specifications) for the doors, windows, and external utilities tell us how 
things and information flow into and out of the house and within the rooms that are 
part of the floor plan. The interface design elements for software depict information 
flows into and out of a system and how it is communicated among the components 
defined as part of the architecture.

There are three important elements of interface design: (1) the user interface (UI); 
(2) external interfaces; to other systems, devices, networks, or other producers or 
consumers of information; and (3) internal interfaces between various design compo-
nents. These interface design elements allow the software to communicate externally 
and enable internal communication and collaboration among the components that 
populate the software architecture.

UI design (increasingly called UX or user experience design) is a major software 
engineering action and is considered in detail in Chapter 12. UX design focuses on 
ensuring the usability of the UI design. A usable design incorporates carefully chosen 
aesthetic elements (e.g., layout, color, graphics, information layout), ergonomic ele-
ments (e.g., interaction mechanisms, information placement, metaphors, UI naviga-
tion), and technical elements (e.g., UX patterns, reusable components). In general, the 
UI is a unique subsystem within the overall application architecture designed to pro-
vide the end user with a satisfying user experience.

The design of external interfaces requires definitive information about the entity 
to which information is sent or received. In every case, this information should be 
collected during requirements engineering (Chapter 7) and verified once the interface 
design commences.10 The design of external interfaces should incorporate error check-
ing and appropriate security features.

10 Interface characteristics can change with time. Therefore, a designer should ensure that the 
specification for the interface is accurate and complete.
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The design of internal interfaces is closely aligned with component-level design 
(Chapter 11). Design realizations of analysis classes represent all operations and the 
messaging schemes required to enable communication and collaboration between 
operations in various classes. Each message must be designed to accommodate the 
requisite information transfer and the specific functional requirements of the operation 
that has been requested.

In some cases, an interface is modeled in much the same way as a class. An inter-
face is a set of operations that describes some part of the behavior of a class and 
provides access to these operations.

For example, the SafeHome security function makes use of a control panel that 
allows a homeowner to control certain features of the security function. In an advanced 
version of the system, control panel functions may be implemented via a mobile 
platform (e.g., smartphone or tablet) and are represented in Figure 9.5.

9.4.5 Component-Level Design Elements
The component-level design for software is the equivalent to a set of detailed drawings 
(and specifications) for each room in a house. These drawings depict wiring and 
plumbing within each room, the location of electrical receptacles and wall switches, 
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faucets, sinks, showers, tubs, drains, cabinets, and closets, and every other detail asso-
ciated with a room.

The component-level design for software fully describes the internal detail of each 
software component. To accomplish this, the component-level design defines data 
structures for all local data objects and algorithmic detail for all processing that occurs 
within a component and an interface that allows access to all component operations 
(behaviors).

Within the context of object-oriented software engineering, a component is repre-
sented in UML diagrammatic form, as shown in Figure 9.6. In this figure, a component 
named SensorManagement (part of the SafeHome security function) is represented. 
A dashed arrow connects the component to a class named Sensor that is assigned to it. 
The SensorManagement component performs all functions associated with Safe-
Home sensors including monitoring and configuring them. Further discussion of com-
ponent design is presented in Chapter 11.

The design details of a component can be modeled at many different levels of 
abstraction. A UML activity diagram can be used to represent processing logic. Algo-
rithmic structure details for a component can be represented using either pseudocode 
(a programming languagelike representation described in Chapter 11) or some other 
diagrammatic form (e.g., flowchart). Data structure details are usually modeled using 
pseudocode or the programming language to be used for implementation.

9.4.6 Deployment-Level Design Elements
Deployment-level design elements indicate how software functionality and subsystems 
will be allocated within the physical computing environment that will support the 
software. For example, the elements of the SafeHome product are configured to oper-
ate within three primary computing environments—a mobile device—in this case a 
PC, the SafeHome control panel, and a server housed at CPI Corp. (providing Internet-
based access to the system).

During design, a UML deployment diagram is developed and then refined, as shown 
in Figure 9.7. In the figure, three computing environments are shown (in the full 
design there would be more details included: sensors, cameras, and the functionality 
delivered by mobile platforms). The subsystems (functionality) housed within each 
computing element are indicated. For example, the personal computer houses subsys-
tems that implement security, surveillance, home management, and communications 
features. In addition, an external access subsystem has been designed to manage all 
attempts to access the SafeHome system from an external source. Each subsystem 
would be elaborated to indicate the components that it implements.

SensorManagement Sensor

Figure 9.6
A UML 
component 
diagram
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The diagram shown in Figure 9.7 is in descriptor form. This means that the deploy-
ment diagram shows the computing environment but does not explicitly indicate con-
figuration details. For example, the “personal computer” is not further identified. It 
could be a Mac, a Windows-based PC, a Linux box, or a mobile platform with its 
associated operating system. These details are provided when the deployment diagram 
is revisited in instance form during the latter stages of design or as construction 
begins. Each instance of the deployment (a specific, named hardware configuration) 
is identified.

 9 .5  su m m a ry

Software design commences as the first iteration of requirements engineering con-
cludes. The intent of software design is to apply a set of principles, concepts, and 
practices that lead to the development of a high-quality system or product. The goal 
of design is to create a model of software that will implement all customer requirements 
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correctly and bring delight to those who use it. Software designers must sift through 
many design alternatives and converge on a solution that best suits the needs of proj-
ect stakeholders.

The design process moves from a “big picture” view of software to a narrower 
view that defines the detail required to implement a system. The process begins by 
focusing on architecture. Subsystems are defined, communication mechanisms among 
subsystems are established, components are identified, and a detailed description of 
each component is developed. In addition, external, internal, and user interfaces are 
designed at the same time.

Design concepts have evolved over the first 60 years of software engineering work. 
They describe attributes of computer software that should be present regardless of the 
software engineering process that is chosen, the design methods that are applied, or 
the programming languages that are used. In essence, design concepts emphasize the 
need for abstraction as a mechanism for creating reusable software components; the 
importance of architecture as a way to better understand the overall structure of a 
system; the benefits of pattern-based engineering as a technique for designing software 
with proven capabilities; the value of separation of concerns and effective modularity 
as a way to make software more understandable, more testable, and more maintain-
able; the consequences of information hiding as a mechanism for reducing the propa-
gation of side effects when errors do occur; the impact of functional independence as 
a criterion for building effective modules; the use of refinement as a design mecha-
nism; the application of refactoring for optimizing the design that is derived; the 
importance of object-oriented classes and the characteristics that are related to them; 
the need to use abstraction to reduce coupling between components; and the impor-
tance of design for testing.

The design model encompasses four different elements. As each of these elements 
is developed, a more complete view of the design evolves. The architectural element 
uses information derived from the application domain, the requirements model, and 
available catalogs for patterns and styles to derive a complete structural representation 
of the software, its subsystems, and components. Interface design elements model 
external and internal interfaces and the user interface. Component-level elements 
define each of the modules (components) that populate the architecture. Finally, 
deployment-level design elements allocate the architecture, its components, and the 
interfaces to the physical configuration that will house the software.

pro b L e m s a n D po i n t s to po n D e r

9.1. Do you design software when you “write” a program? What makes software design dif-
ferent from coding?

9.2. If a software design is not a program (and it isn’t), then what is it?

9.3. How do we assess the quality of a software design?

9.4. Describe software architecture in your own words.

9.5. Describe separation of concerns in your own words. Is there a case when a “divide and 
conquer” strategy may not be appropriate? How might such a case affect the argument for 
modularity?
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9.6. Discuss the relationship between the concept of information hiding as an attribute of 
effective modularity and the concept of module independence.

9.7. How are the concepts of coupling and software portability related? Provide examples to 
support your discussion.

9.8. Apply a “stepwise refinement approach” to develop three different levels of procedural 
abstractions for one or more of the following programs: (1) Develop a check writer that, 
given a numeric dollar amount, will print the amount in words normally required on a check. 
(2)  Iteratively solve for the roots of a transcendental equation. (3) Develop a simple task-
scheduling algorithm for an operating system.

9.9. Does refactoring mean that you modify the entire design iteratively? If not, what does 
it mean?

9.10. Briefly describe each of the four elements of the design model.

Design element: Quick Look icon magnifying glass: © Roger Pressman
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What is it? Architectural design represents the struc-
ture of data and program components that are 
required to build a computer-based system. It con-
siders the architectural style that the system will 
take, the structure and properties of the compo-
nents that constitute the system, and the interrela-
tionships that occur among all architectural 
components of a system.

Who does it? Although a software engineer can de-
sign both data and architecture, the job is often 
allocated to specialists when large, complex sys-
tems are to be built. A database or data ware-
house designer creates the data architecture for a 
system. The “system architect” selects an appro-
priate architectural style from the requirements 
derived during software requirements analysis.

Why is it important? You wouldn’t attempt to build 
a house without a blueprint, would you? You also 
wouldn’t begin drawing blueprints by sketching 
the plumbing layout for the house. You’d need to 
look at the big picture—the house itself—before 
you worry about details. That’s what architectural 

design does—it provides you with the big picture 
and ensures that you’ve got it right.

What are the steps? Architectural design begins 
with data design and then proceeds to the deri-
vation of one or more representations of the ar-
chitectural structure of the system. Alternative 
architectural styles or patterns are analyzed to 
derive the structure that is best suited to cus-
tomer requirements and quality attributes. Once 
an alternative has been selected, the architec-
ture is elaborated, using an architectural design 
method.

What is the work product? An architecture model 
encompassing data architecture and program 
structure is created during architectural design. 
In addition, component properties and relation-
ships (interactions) are described.

How do I ensure that I’ve done it right? At each 
stage, software design work products are re-
viewed for clarity, correctness, completeness, 
and consistency with requirements and with one 
another.

Q u i c k  L o o k

Design has been described as a multistep process in which representations of 
data and program structure, interface characteristics, and procedural detail are 
synthesized from information requirements. As we noted in Chapter 9, design is 
information driven. Software design methods are derived from consideration of 
each of the three domains of the analysis model. The decisions made while 
considering the data, functional, and behavioral domains serve as guides for the 
creation of the software architectural design.

Architectural Design—A 
Recommended Approach

agility and architecture  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 185
archetypes .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 196
architectural considerations .  .  .  .  .  .  .  .  .  .  .  .  .  . 193
architectural decisions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 195
architectural description language  .  .  .  .  .  .  .  . 184
architectural descriptions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 184
architectural design  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 196
architectural patterns  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 187

architectural styles  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 186
architecture  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 182
architecture conformance checking  .  .  .  .  .  .  .204
architecture trade-off analysis  
method (ATAM)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 201
layered architectures  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 189
refining the architecture  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 198
taxonomy of architectural styles  .  .  .  .  .  .  .  .  .  . 187

k e y 
c o n c e p t s



182 PART TWO MODELING

Philippe Kruchten, Grady Booch, Kurt Bittner, and Rich Reitman [Mic09] suggest 
that software architecture identifies a system’s “structural elements and their 
interfaces,” along with the “behavior” of individual components and subsystems. They 
write that the job of architectural design is to create “coherent, well-planned repre-
sentations” of the system and software.

Methods to create such representations of the data and architectural layers of the 
design model are presented in this chapter. The objective is to provide a systematic 
approach for the derivation of the architectural design—the preliminary blueprint from 
which software is constructed.

 10.1 so f t wa r e arc h i t e c t u r e

In their landmark book on the subject, Shaw and Garlan [Sha15] argue that since the 
earliest days of computer programming, “software systems have had architectures, and 
programmers have been responsible for the interactions among the modules and the 
global properties of the assemblage.” Today, effective software architecture and its 
explicit representation and design have become dominant themes in software engineering.

10.1.1 What Is Architecture?
When you consider the architecture of a building, many different attributes come to 
mind. At the most simplistic level, you think about the overall shape of the physical 
structure. But in reality, architecture is much more. It is the manner in which the 
various components of the building are integrated to form a cohesive whole. It is the 
way in which the building fits into its environment and meshes with other buildings 
in its vicinity. It is the degree to which the building meets its stated purpose and 
satisfies the needs of its owner. It is the aesthetic feel of the structure—the visual 
impact of the building—and the way textures, colors, and materials are combined to 
create the external facade and the internal “living environment.” It is small details—
the design of lighting fixtures, the type of flooring, the placement of wall hangings; 
the list is almost endless. And finally, it is art.

Architecture is also something else. It is “thousands of decisions, both big and 
small” [Tyr05]. Some of these decisions are made early in design and can have a 
profound impact on all other design actions. Others are delayed until later, thereby 
eliminating overly restrictive constraints that would lead to a poor implementation of 
the architectural style.

Just like the plans for a house are merely a representation of the building, the 
software architecture representation is not an operational product. Rather, it is a rep-
resentation that enables you to (1) analyze the effectiveness of the design in meeting 
its stated requirements, (2) consider architectural alternatives at a stage when making 
design changes is still relatively easy, and (3) reduce the risks associated with the 
construction of the software.

This definition emphasizes the role of “software components” in any architectural 
representation. In the context of architectural design, a software component can be 
something as simple as a program module or an object-oriented class, but it can also 
be extended to include databases and “middleware” that enable the configuration of 
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a network of clients and servers. The properties of components are those characteris-
tics that are necessary to an understanding of how the components interact with other 
components. At the architectural level, internal properties (e.g., details of an algo-
rithm) are not specified. The relationships between components can be as simple as 
a procedure call from one module to another or as complex as a database access 
protocol.

We believe that a software design can be thought of as an instance of some software 
architecture. However, the elements and structures that are defined as parts of par-
ticular software architectures are the root of every design. It is our recommendation 
that design should begin with a consideration of the software architecture.

10.1.2 Why Is Architecture Important?
In a book dedicated to software architecture, Bass and his colleagues [Bas12] identify 
three key reasons that software architecture is important:

∙ Software architecture provides a representation that facilitates communication 
among all stakeholders.

∙ The architecture highlights early design decisions that will have a profound 
impact on all software engineering work that follows.

∙ The architecture constitutes a relatively small model of how the system com-
ponents are structured and work together.

The architectural design model and the architectural patterns contained within it 
are transferable. That is, architecture genres, styles, and patterns (Sections 10.3 through 
10.6) can be applied to the design of other systems and represent a set of abstractions 
that enable software engineers to describe architecture in predictable ways.

Making good decisions while defining the software architecture is critical to the 
success of a software product. The software architecture sets the structure of the 
system and determines its quality [Das15].

10.1.3 Architectural Descriptions
Each of us has a mental image of what the word architecture means. The implication 
is that different stakeholders will see a given software architecture from different 
viewpoints that are driven by different sets of concerns. This implies that an archi-
tectural description is actually a set of work products that reflect different views of 
the system.

Smolander, Rossi, and Purao [Smo08] have identified multiple metaphors, repre-
senting different views of the same architecture that stakeholders use to understand 
the term software architecture. The blueprint metaphor seems to be most familiar to 
the stakeholders who write programs to implement a system. Developers regard archi-
tecture descriptions as a means of transferring explicit information from architects to 
designers to software engineers charged with producing the system components.

The language metaphor views architecture as a facilitator of communication across 
stakeholder groups. This view is preferred by stakeholders with a high customer focus 
(e.g., managers or marketing experts). The architectural description needs to be con-
cise and easy to understand because it forms the basis for negotiation, particularly in 
determining system boundaries.
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The decision metaphor represents architecture as the product of decisions involving 
trade-offs among properties such as cost, usability, maintainability, and performance 
that have resource consequences for the system being designed. Stakeholders such as 
project managers view architectural decisions as the basis for allocating project 
resources and tasks. These decisions may affect the sequence of tasks and shape the 
structure of the software team.

The literature metaphor is used to document architectural solutions constructed in 
the past. This view supports the construction of artifacts and the transfer of knowledge 
between designers and software maintenance staff. It also supports stakeholders whose 
concern is reuse of components and designs.

An architectural description (AD) represents a system using multiple views, where 
each view is “a representation of a whole system from the perspective of a related set 
of [stakeholder] concerns.” The IEEE Computer Society standard IEEE-Std-
42010:2011(E), Systems and software engineering—Architectural description [IEE11], 
describes the use of architecture viewpoints, architecture frameworks, and architecture 
description languages as a means of codifying the conventions and common practices 
for architectural description.

10.1.4 Architectural Decisions
Each view developed as part of an architectural description addresses a specific stake-
holder concern. To develop each view (and the architectural description as a whole), 
the system architect considers a variety of alternatives and ultimately decides on the 
specific architectural features that best meet the concern. Architectural decisions them-
selves can be considered to be one view of the architecture. The reasons that decisions 
were made provide insight into the structure of a system and its conformance to 
stakeholder concerns.

As a system architect, you can use the template suggested in the sidebar to docu-
ment each major decision. By doing this, you provide a rationale for your work and 
establish a historical record that can be useful when design modifications must be 
made. For agile developers, a lightweight architectural decision record (ADR) might 
simply contain a title, a context (assumptions and constraints), the decision (resolu-
tion), status (proposed accepted rejected), and consequences (implications) [Nyg11].

Grady Booch [Boo11a] writes that when setting out to build an innovative prod-
uct, software engineers often feel compelled to plunge right in, build stuff, fix what 
doesn’t work, improve what does work, and then repeat the process. After doing 
this a few times, they begin to recognize that the architecture should be defined first 
and decisions associated with architectural choices must be stated explicitly. It may 
not be possible to predict the right choices before building a new product. However, 
if innovators find that architectural decisions are worth repeating after testing their 
prototypes in the field, then a dominant design1 for this type of product may begin 
to emerge. Without documenting what worked and what did not, it is hard for soft-
ware engineers to decide when to innovate and when to use previously created 
architecture.

1 Dominant design describes an innovative software architecture or process that becomes an 
industry standard after a period of successful adaptation and use in the marketplace.



CHAPTER 10 ARCHITECTURAL DESIGN—A RECOMMENDED APPROACH  185

 10.2 ag i L i t y a n d arc h i t e c t u r e

The view of some agile developers is that architectural design is equated with “big 
design upfront.” In their view, this leads to unnecessary documentation and the imple-
mentation of unnecessary features. However, most agile developers would agree 
[Fal10] that it is important to focus on software architecture when a system is complex 
(i.e., when a product has a large number of requirements, lots of stakeholders, or a 
large number of global users). For this reason, it is important to integrate new archi-
tectural design practices into agile process models.

To make early architectural decisions and avoid the rework required to correct the 
quality problems encountered when the wrong architecture is chosen, agile developers 

Architecture Decision 
Description Template
Each major architectural decision can 

be documented for later review by stakeholders 
who want to understand the architecture descrip-
tion that has been proposed. The template 
 presented in this sidebar is an adapted and 
 abbreviated version of a template proposed 
 by Tyree and Ackerman [Tyr05].

Design issue:  Describe the architectural 
design issues that are to be 
addressed.

Resolution:  State the approach you’ve 
chosen to address the 
design issue.

Category:  Specify the design category 
that the issue and resolution 
address (e.g., data design, 
content structure, compo-
nent structure, integration, 
presentation).

Assumptions:  Indicate any assumptions 
that helped shape the 
decision.

Constraints:  Specify any environmental 
constraints that helped 
shape the decision (e.g., 
technology standards, 
available patterns, project-
related issues).

Alternatives:  Briefly describe the architec-
tural design alternatives that 
were considered and why 
they were rejected.

Argument:  State why you chose the 
resolution over other 
alternatives.

Implications:  Indicate the design 
consequences of making 
the decision. How will the 
resolution affect other 
architectural design issues? 
Will the resolution constrain 
the design in any way?

Related decisions:  What other documented 
decisions are related to  
this decision?

Related concerns:  What other requirements 
are related to this  
decision?

Work products:  Indicate where this  
decision will be reflected  
in the architecture 
description.

Notes:  Reference any team notes 
or other documentation that 
was used to make the 
decision.

info
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need to anticipate architectural elements2 and implied structure that emerges from the 
collection of user stories gathered (Chapter 7). By creating an architectural prototype 
(e.g., a walking skeleton) and developing explicit architectural work products to com-
municate the right information to the necessary stakeholders, an agile team can satisfy 
the need for architectural design.

Using a technique called storyboarding, the architect contributes architectural user 
stories to the project and works with the product owner to prioritize the architectural 
stories with the business user stories as “sprints” (work units) are planned. The archi-
tect works with the team during the sprint to ensure that the evolving software con-
tinues to show high architectural quality as defined by the nonfunctional product 
requirements. If quality is high, the team is left alone to continue development on its 
own. If not, the architect joins the team for the duration of the sprint. After the sprint 
is completed, the architect reviews the working prototype for quality before the team 
presents it to the stakeholders in a formal sprint review. Well-run agile projects make 
use of iterative work product delivery (including architectural documentation) with 
each sprint. Reviewing the work products and code as it emerges from each sprint is 
a useful form of architectural review.

Responsibility-driven architecture (RDA) is a process that focuses on when, how, 
and who should make the architectural decisions on a project team. This approach 
also emphasizes the role of architect as being a servant-leader rather than an autocratic 
decision maker and is consistent with the agile philosophy. The architect acts as 
facilitator and focuses on how the development team works to accommodate stake-
holder’s nontechnical concerns (e.g., business, security, usability).

Agile teams usually have the freedom to make system changes as new requirements 
emerge. Architects want to make sure that the important parts of the architecture were 
carefully considered and that developers have consulted the appropriate stakeholders. 
Both concerns may be satisfied by making use of a practice called progressive sign-off 
in which the evolving product is documented and approved as each successive proto-
type is completed [Bla10].

Using a process that is compatible with the agile philosophy provides verifiable 
sign-off for regulators and auditors, without preventing the empowered agile teams 
from making the decisions needed. At the end of the project, the team has a com-
plete set of work products and the architecture has been reviewed for quality as 
it  evolved.

 10.3 arc h i t e c t u r a L st y L e s

When a builder uses the phrase “center hall colonial” to describe a house, most 
people familiar with houses in the United States will be able to conjure a general 
image of what the house will look like and what the floor plan is likely to be. The 
builder has used an architectural style as a descriptive mechanism to differentiate the 
house from other styles (e.g., A-frame, raised ranch, Cape Cod). But more important, 

2 An excellent discussion of architectural agility can be found in [Bro10a].
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the architectural style is also a template for construction. Further details of the house 
must be defined, its final dimensions must be specified, customized features may 
be added, building materials are to be determined, but the style—a “center hall 
colonial”—guides the builder in his work.

The software that is built for computer-based systems also exhibits one of many 
architectural styles. Each style describes a system category that encompasses (1) a set 
of components (e.g., a database, computational modules) that perform a function 
required by a system, (2) a set of connectors that enable “communication, coordination 
and cooperation” among components, (3) constraints that define how components can 
be integrated to form the system, and (4) semantic models that enable a designer to 
understand the overall properties of a system by analyzing the known properties of 
its constituent parts [Bas12].

An architectural style is a transformation that is imposed on the design of an entire 
system. The intent is to establish a structure for all components of the system. In the 
case where an existing architecture is to be refactored (Chapter 27), the imposition of 
an architectural style will result in fundamental changes to the structure of the software 
including a reassignment of the functionality of components [Bos00].

An architectural pattern, like an architectural style, imposes a transformation on 
the design of an architecture. However, a pattern differs from a style in a number of 
fundamental ways: (1) the scope of a pattern is less broad, focusing on one aspect of 
the architecture rather than the architecture in its entirety, (2) a pattern imposes a rule 
on the architecture, describing how the software will handle some aspect of its func-
tionality at the infrastructure level (e.g., concurrency) [Bos00], and (3) architectural 
patterns (Section 10.3.2) tend to address specific behavioral issues within the context 
of the architecture (e.g., how real-time applications handle synchronization or inter-
rupts). Patterns can be used in conjunction with an architectural style to shape the 
overall structure of a system.

10.3.1 A Brief Taxonomy of Architectural Styles
Although millions of computer-based systems have been created over the past 
60  years, the vast majority can be categorized into one of a relatively small 
number of architectural styles.

Data-Centered Architectures. A data store (e.g., a file or database) resides at the 
center of this architecture and is accessed frequently by other components that update, 
add, delete, or otherwise modify data within the store. Figure 10.1 illustrates a typical 
data-centered style. Client software accesses a central repository. In some cases, the 
data repository is passive. That is, client software accesses the data independent of 
any changes to the data or the actions of other client software. A variation on this 
approach transforms the repository into a “blackboard” that sends notifications to 
client software when data of interest to the client changes.

Data-centered architectures promote integrability [Bas12]. That is, existing compo-
nents can be changed and new client components added to the architecture without 
concern about other clients (because the client components operate independently). In 
addition, data can be passed among clients using the blackboard mechanism (i.e., the 
blackboard component serves to coordinate the transfer of information between 
clients). Client components independently execute processes.
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Data-Flow Architectures. This architecture is applied when input data are to be 
transformed through a series of computational or manipulative components into output 
data. A pipe-and-filter pattern (Figure 10.2) has a set of components, called filters, 
connected by pipes that transmit data from one component to the next. Each filter 
works independently of those components upstream and downstream, is designed to 
expect data input of a certain form, and produces data output (to the next filter) of a 
specified form. However, the filter does not require knowledge of the workings of its 
neighboring filters.

Client
Software

Client
Software

Client
Software

Client
Software

Client
Software

Client
Software

Client
Software

Client
Software

Data store
(repository or blackboard)

Figure 10.1
Data-centered 
architecture

Filter Filter

Filter

Filter

Filter

Filter

Filter

Filter

Filter

Filter

Pipes

Figure 10.2 Data-flow architecture
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Call-and-Return Architectures. This architectural style enables you to achieve a 
program structure that is relatively easy to modify and scale. Two substyles [Bas12] 
that exist within this category:

∙ Main program/subprogram architectures. This classic program structure 
decomposes function into a control hierarchy where a “main” program 
invokes several program components, which in turn may invoke still other 
components. Figure 10.3 illustrates an architecture of this type.

∙ Remote procedure call architectures. The components of a main program/
subprogram architecture are distributed across multiple computers on a 
network.

Object-Oriented Architectures. The components of a system encapsulate data 
and the operations that must be applied to manipulate the data. Communication 
and coordination between components are accomplished via message passing. Fig-
ure 10.4 contains a UML communication diagram that shows the message passing 
for the login portion of a system implemented using an object-oriented architec-
ture. Communications diagrams are described in more details in Appendix 1 of 
this book.

Layered Architectures. The basic structure of a layered architecture is illustrated 
in Figure 10.5. A number of different layers are defined, each accomplishing opera-
tions that progressively become closer to the machine instruction set. At the outer 
layer, components service user interface operations. At the inner layer, components 
perform operating system interfacing. Intermediate layers provide utility services and 
application software functions.

Model-View-Controller (MVC) architecture [Kra88] is one of a number of sug-
gested mobile infrastructure models often used in Web development. The model con-
tains all application-specific content and processing logic. The view contains all 
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Figure 10.3 Main program/subprogram architecture
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Core layer

Utility layer

Application layer

User interface layer
Components

Figure 10.5
Layered 
architecture
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: SecurityLogon
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: System

1 : requestLogon()
2: Logon(name,pass)

3: isValid():boolean

4: userType(name):string

1.2: displayLogon()
3.1 : displayMessage()
4.1 : display()

Figure 10.4
UML  
communication  
diagram
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interface-specific functions and enables the presentation of content and processing 
logic required by the end user. The controller manages access to the model and the 
view and coordinates the flow of data between them. A schematic representation of 
the MVC architecture is shown in Figure 10.6.

Referring to the figure, user requests are handled by the controller. The controller 
also selects the view object that is applicable based on the user request. Once the type 
of request is determined, a behavior request is transmitted to the model, which imple-
ments the functionality or retrieves the content required to accommodate the request. 
The model object can access data stored in a corporate database, as part of a local 
data store, or as a collection of independent files. The data developed by the model 
must be formatted and organized by the appropriate view object and then transmitted 
from the application server back to the client-based browser for display on the cus-
tomer’s machine.

These architectural styles are only a small subset of those available.3 Once require-
ments engineering uncovers the characteristics and constraints of the system to be 
built, the architectural style and/or combination of patterns that best fits those char-
acteristics and constraints can be chosen. In many cases, more than one pattern might 
be appropriate and alternative architectural styles can be designed and evaluated. For 
example, a layered style (appropriate for most systems) can be combined with a data-
centered architecture in many database applications.

View
Prepares data from model
Requests updates from model
Presents view selected by controller

Controller
Manages user requests
Selects model behavior
Selects view response

Model
Encapsulates functionality
Encapsulates content objects
Incorporates all WebApp states

Server

Client

Browser

Update request
External data

Data from model

View selection
Behavior request

(state change)
User

request
or data

HTML data

Figure 10.6 The MVC architecture

Source: Adapted from Jacyntho, Mark Douglas, Schwabe, Daniel and Rossi, Gustavo, “An Architecture for Structuring 
Complex Web Applications,” 2002, available at http://www-di.inf.puc-rio.br/schwabe/papers/OOHDMJava2%20Report.pdf

3 See [Roz11], [Tay09], [Bus07], [Gor06], or [Bas12] for a detailed discussion of architectural 
styles and patterns.
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Choosing the right architecture style can be tricky. Real-world problems often follow 
more than one problem frame, and a combination architectural model may result. For 
example, the model-view-controller (MVC) architecture used in WebApp design4 might 
be viewed as combining two problem frames (command behavior and information dis-
play). In MVC, the end user’s command is sent from the browser window to a command 
processor (controller) that manages access to the content (model) and instructs the infor-
mation rendering model (view) to translate it for display by the browser software.

10.3.2 Architectural Patterns
As the requirements model is developed, you’ll notice that the software must address 
several broad problems that span the entire application. For example, the requirements 
model for virtually every e-commerce application is faced with the following problem: 
How do we offer a broad array of goods to many different customers and allow those 
customers to find and purchase our goods easily?

The requirements model also defines a context in which this question must be 
answered. For example, an e-commerce business that sells golf equipment to consum-
ers will operate in a different context than an e-commerce business that sells high-
priced industrial equipment to medium and large corporations. In addition, a set of 
limitations and constraints may affect the way you address the problem to be solved.

Choosing an Architectural Style

The scene: Jamie’s cubicle, as 
design modeling begins.

The players: Jamie and Ed—members of the 
SafeHome software engineering team.

The conversation:
Ed (frowning): We’ve been modeling the 
security function using UML . . . you know, 
classes, relationships, that sort of stuff. So 
I guess the object-oriented architecture is 
the right way to go.

Jamie: But . . .?

Ed: But . . . I have trouble visualizing what an 
object-oriented architecture is. I get the call-
and-return architecture, sort of a conventional 
process hierarchy, but OO . . . I don’t know, it 
seems sort of amorphous.

Jamie (smiling): Amorphous, huh?

Ed: Yeah . . . what I mean is I can’t visualize a real 
structure, just design classes floating in space.

Jamie: Well, that’s not true. There are class 
hierarchies . . . think of the hierarchy (aggre-
gation) we did for the FloorPlan object 
[Figure 9.3]. An OO architecture is a combina-
tion of that structure and the interconnections—
you know, collaborations—between the 
classes. We can show it by fully describing 
the attributes and operations, the messaging 
that goes on, and the structure of the 
classes.

Ed: I’m going to spend an hour mapping out a 
call-and-return architecture; then I’ll go back 
and consider an OO architecture.

Jamie: Doug’ll have no problem with that. 
He said that we should consider architectural 
alternatives. By the way, there’s absolutely no 
reason why both of these architectures 
couldn’t be used in combination with one 
another.

Ed: Good. I’m on it.

safehome

4 The MVC architecture is considered in more detail in Chapter 13.
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Architectural patterns address an application-specific problem within a specific 
context and under a set of limitations and constraints. The pattern proposes an archi-
tectural solution that can serve as the basis for architectural design.

Previously in this chapter, we noted that most applications fit within a specific domain 
or genre and that one or more architectural styles may be appropriate for that genre. For 
example, the overall architectural style for an application might be call and return or 
object oriented. But within that style, you will encounter a set of common problems that 
might best be addressed with specific architectural patterns. Some of these problems and 
a more complete discussion of architectural patterns are presented in Chapter 14.

10.3.3 Organization and Refinement
Because the design process often leaves you with a number of architectural alterna-
tives, it is important to establish a set of design criteria that can be used to assess an 
architectural design that is derived. The following questions [Bas12] provide insight 
into an architectural style:

Control. How is control managed within the architecture? Does a distinct 
control hierarchy exist, and if so, what is the role of components within this 
control hierarchy? How do components transfer control within the system? 
How is control shared among components? What is the control topology 
(i.e.,  the geometric form that the control takes)? Is control synchronized, 
or do components operate asynchronously?
Data. How are data communicated between components? Is the flow of data 
continuous, or are data objects passed to the system sporadically? What is the 
mode of data transfer (i.e., are data passed from one component to another or 
are data available globally to be shared among system components)? Do data 
components (e.g., a blackboard or repository) exist, and if so, what is their 
role? How do functional components interact with data components? Are data 
components passive or active (i.e., does the data component actively interact 
with other components in the system)? How do data and control interact 
within the system?

The answers to these questions provide the designer with an early assessment of 
design quality and lay the foundation for more detailed analysis of the architecture.

Evolutionary process models (Chapter 2) have become very popular. This implies 
the software architectures may need to evolve as each product increment is planned 
and implemented. In Chapter 9, we described this process as refactoring—improving 
the internal structure of the system without changing its external behavior.

 10.4 arc h i t e c t u r a L co n s i d e r at i o n s

Buschmann and Henny [Bus10a, Bus10b] suggest several architectural considerations 
that can provide software engineers with guidance as architecture decisions are made.

∙ Economy. The best software is uncluttered and relies on abstraction to reduce 
unnecessary detail. It avoids complexity due to unnecessary functions and 
features.
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∙ Visibility. As the design model is created, architectural decisions and the 
reasons for them should be obvious to software engineers who examine the 
model later. Important design and domain concepts must be communicated 
effectively.

∙ Spacing. Separation of concerns (Chapter 9) in a design is sometimes referred 
to as spacing. Sufficient spacing leads to modular designs, but too much 
spacing leads to fragmentation and loss of visibility.

∙ Symmetry. Architectural symmetry implies that a system is consistent and 
balanced in its attributes. Symmetric designs are easier to understand, com-
prehend, and communicate. As an example of architectural symmetry, con-
sider a customer account object whose life cycle is modeled directly by a 
software architecture that requires both open() and close() methods. Architec-
tural symmetry can be both structural and behavioral.

∙ Emergence. Emergent, self-organized behavior and control are often the key 
to creating scalable, efficient, and economic software architectures. For exam-
ple, many real-time software applications are event driven. The sequence and 
duration of these events that define the system’s behavior is an emergent 
quality. Because it is very difficult to plan for every possible sequence of 
events, a system architect should create a flexible system that accommodates 
this emergent behavior.

These considerations do not exist in isolation. They interact with each other and are 
moderated by each other. For example, spacing can be both reinforced and reduced 
by economy. Visibility can be balanced by spacing.

The architectural description for a software product is not explicitly visible in the 
source code used to implement it. As a consequence, code modifications made over 
time (e.g., software maintenance activities) can cause slow erosion of the software 
architecture. The challenge for a designer is to find suitable abstractions for the archi-
tectural information. These abstractions have the potential to add structuring that 
improves readability and maintainability of the source code [Bro10b].

Evaluating Architectural Decisions

The scene: Jamie’s cubicle, as 
design modeling continues.

The players: Jamie and Ed, members of the 
SafeHome software engineering team.

The conversation:
Ed: I finished my call-return architectural 
model of the security function.

Jamie: Great! Do you think it meets our 
needs?

Ed: It doesn’t introduce any unneeded features, 
so it seems to be economic.

Jamie: How about visibility?

Ed: Well, I understand the model, and there’s 
no problem implementing the security require-
ments needed for this product.

Jamie: I get that you understand the architec-
ture, but you may not be the programmer for 
this part of the project. I’m a little worried 

safehome
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 10.5 arc h i t e c t u r a L de c i s i o n s

Decisions about system architecture identify key design issues and the rationale behind 
chosen architectural solutions. System architecture decisions encompass software sys-
tem organization, selection of structural elements and their interfaces as defined by 
their intended collaborations, and the composition of these elements into increasingly 
larger subsystems [Kru09]. In addition, choices of architectural patterns, application 
technologies, middleware assets, and programming language can also be made. The 
outcome of the architectural decisions influences the system’s nonfunctional charac-
teristics and many of its quality attributes [Zim11] and can be documented with 
developer notes. These notes document key design decisions along with their justifi-
cation, provide a reference for new project team members, and serve as a repository 
for lessons learned.

In general, software architectural practice focuses on architectural views that rep-
resent and document the needs of various stakeholders. It is possible, however, to 
define a decision view that cuts across several views of information contained in 
traditional architectural representations. The decision view captures both the architec-
ture design decisions and their rationale.

Service-oriented architecture decision (SOAD)5 modeling [Zim11] is a knowledge 
management framework that provides support for capturing architectural decision 
dependencies in a manner that allows them to guide future development activities.

about spacing. This design may not be as 
modular as an object-oriented design.

Ed: Maybe, but that may limit our ability to re-
use some of our code when we have to create 
the mobile version of SafeHome.

Jamie: What about symmetry?

Ed: Well, that’s harder for me to assess. It 
seems to me the only place for symmetry in 
the security function is adding and deleting 
PIN information.

Jamie: That will get more complicated when 
we add remote security features to the 
mobile app.

Ed: That’s true, I guess.

 (They both pause for a moment, pondering the 
architectural issues.)

Jamie: SafeHome is a real-time system, so 
state transition and sequencing of events will 
be tough to predict.

Ed: Yeah, but the emergent behavior of this 
system can be handled with a finite state 
model.

Jamie: How?

Ed: The model can be implemented based on 
the call-return architecture. Interrupts can be 
handled easily in many programming 
languages.

Jamie: Do you think we need to do the same 
kind of analysis for the object-oriented archi-
tecture we were initially considering?

Ed: I suppose it might be a good idea, 
because architecture is hard to change once 
implementation starts.

Jamie: It’s also important for us to map the 
nonfunctional requirements besides security 
on top of these architectures to be sure they 
have been considered thoroughly.

Ed: Also, true.

5 SOAD is analogous to the use of architecture patterns discussed in Chapter 14.
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A SOAD guidance model contains knowledge about architectural decisions required 
when applying an architectural style in a particular application genre. It is based on 
architectural information obtained from completed projects that employed the archi-
tectural style in that genre. The guidance model documents places where design prob-
lems exist and architectural decisions must be made, along with quality attributes that 
should be considered in selecting from among potential alternatives. Potential alterna-
tive solutions (with their pros and cons) from previous software applications are 
included to assist the architect in making the best decision possible.

A SOAD decision model documents both the architectural decisions required and 
records the decisions actually made on previous projects with their justifications. The 
guidance model feeds the architectural decision model in a tailoring step that allows 
the architect to delete irrelevant issues, enhance important issues, or add new issues. 
A decision model can make use of more than one guidance model and provides feed-
back to the guidance model after the project is completed. This feedback may be 
accomplished by harvesting lessons learned from project postmortem reviews.

 10.6 arc h i t e c t u r a L de s i g n

As architectural design begins, context must be established. To accomplish this, the 
external entities (e.g., other systems, devices, people) that interact with the software 
and the nature of their interaction are described. This information can generally be 
acquired from the requirements model. Once context is modeled and all external soft-
ware interfaces have been described, you can identify a set of architectural archetypes.

An archetype is an abstraction (similar to a class) that represents one element of 
system behavior. The set of archetypes provides a collection of abstractions that must 
be modeled architecturally if the system is to be constructed, but the archetypes them-
selves do not provide enough implementation detail. Therefore, the designer specifies 
the structure of the system by defining and refining software components that imple-
ment each archetype. This process continues iteratively until a complete architectural 
structure has been derived.

Several questions [Boo11b] must be asked and answered as a software engineer 
creates meaningful architectural diagrams. Does the diagram show how the system 
responds to inputs or events? What visualizations might there be to help emphasize 
areas of risk? How can hidden system design patterns be made more obvious to other 
developers? Can multiple viewpoints show the best way to refactor specific parts of 
the system? Can design trade-offs be represented in a meaningful way? If a diagram-
matic representation of software architecture answers these questions, it will have 
value to software engineers that use it.

10.6.1 Representing the System in Context
UML does not contain specific diagrams that represent the system in context. Software 
engineers wishing to stick with UML and represent the system in context would do 
so with a combination of use case, class, component, activity, sequence, and collabo-
ration diagrams. Some software architects may make use of an architectural context 
diagram (ACD) to model the manner in which software interacts with entities external 
to its boundaries. An architectural context diagram for the SafeHome security func-
tions is shown in Figure 10.7.
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To illustrate the use of the ACD, consider the home security function of the Safe-
Home product shown in Figure 10.7. The overall SafeHome product controller and the 
Internet-based system are both superordinate to the security function and are shown 
above the function. The surveillance function is a peer system and uses (is used by) 
the home security function in later versions of the product. The homeowner and con-
trol panels are actors that produce and consume information that is, respectively, used 
and produced by the security software. Finally, sensors are used by the security soft-
ware and are shown as subordinate to it (by drawing them below the target system).

As part of the architectural design, the details of each interface shown in Figure 10.7 
would have to be specified. All data that flow into and out of the target system must 
be identified at this stage.

10.6.2 Defining Archetypes
An archetype is a class or pattern that represents a core abstraction that is critical to 
the design of an architecture for the target system. In general, a relatively small set 
of archetypes is required to design even relatively complex systems. The target system 
architecture is composed of these archetypes, which represent stable elements of the 
architecture but may be instantiated many different ways based on the behavior of the 
system.

In many cases, archetypes can be derived by examining the analysis classes defined 
as part of the requirements model. Continuing the discussion of the SafeHome home 
security function, you might define the following archetypes:

∙  Node. Represents a cohesive collection of input and output elements of 
the home security function. For example, a node might be composed of 
(1) various sensors and (2) a variety of alarm (output) indicators.

∙  Detector. An abstraction that encompasses all sensing equipment that feeds 
information into the target system.

Uses

Uses

Uses

Peers

Figure 10.7
Architectural 
context 
diagram for  
the SafeHome 
security 
function
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∙  Indicator. An abstraction that represents all mechanisms (e.g., alarm siren, 
flashing lights, bell) for indicating that an alarm condition is occurring.

∙  Controller. An abstraction that depicts the mechanism that allows the 
arming or disarming of a node. If controllers reside on a network, they 
have the ability to communicate with one another.

Each of these archetypes is depicted using UML notation, as shown in Figure 10.8. 
Recall that the archetypes form the basis for the architecture but are abstractions that 
must be further refined as architectural design proceeds. For example, Detector might 
be refined into a class hierarchy of sensors.

10.6.3 Refining the Architecture into Components
As the software architecture is refined into components, the structure of the system 
begins to emerge. But how are these components chosen? To answer this question, 
you begin with the classes that were described as part of the requirements model.6 
These analysis classes represent entities within the application (business) domain that 
must be addressed within the software architecture. Hence, the application domain is 
one source for the derivation and refinement of components. Another source is the 
infrastructure domain. The architecture must accommodate many infrastructure com-
ponents that enable application components but have no business connection to the 
application domain. For example, memory management components, communication 
components, database components, and task management components are often inte-
grated into the software architecture.

Detector Indicator

Controller

Communicates with

Node

Figure 10.8
UML 
relationships 
for SafeHome 
security 
function 
archetype
Source: Adapted 
from Bosch, Jan, 
Design & Use of 
Software Architec-
tures. Pearson 
Education, 2000.

6 If a conventional (non-object-oriented) approach is chosen, components may be derived from 
the subprogram calling hierarchy (see Figure 10.3).



CHAPTER 10 ARCHITECTURAL DESIGN—A RECOMMENDED APPROACH  199

The interfaces depicted in the architecture context diagram (Section 10.6.1) imply 
one or more specialized components that process the data that flows across the inter-
face. In some cases (e.g., a graphical user interface), a complete subsystem architec-
ture with many components must be designed.

Continuing the SafeHome home security function example, you might define the 
set of top-level components that addresses the following functionality:

∙  External communication management. Coordinates communication of the 
security function with external entities such as other Internet-based systems 
and external alarm notification.

∙  Control panel processing. Manages all control panel functionality.
∙  Detector management. Coordinates access to all detectors attached to the 

system.
∙  Alarm processing. Verifies and acts on all alarm conditions.

Each of these top-level components would have to be elaborated iteratively and 
then positioned within the overall SafeHome architecture. Design classes (with appro-
priate attributes and operations) would be defined for each. It is important to note, 
however, that the design details of all attributes and operations would not be specified 
until component-level design (Chapter 11).

The overall architectural structure (represented as a UML component diagram) is 
illustrated in Figure 10.9. Transactions are acquired by external communication man-
agement as they move in from components that process the SafeHome GUI and the 
Internet interface. This information is managed by a SafeHome executive component 
that selects the appropriate product function (in this case security). The control panel 
processing component interacts with the homeowner to arm and disarm the security 

SafeHome
Executive

GUI Internet
interface

Security Surveillance

Function
selection

Home
management

External
communication
management

Control
panel

processing

Detector
management

Alarm
processing

Figure 10.9 Overall architectural structure for SafeHome with top-level components



200 PART TWO MODELING

function. The detector management component polls sensors to detect an alarm condi-
tion, and the alarm processing component produces output when an alarm is detected.

10.6.4 Describing Instantiations of the System
The architectural design that has been modeled to this point is still relatively high 
level. The context of the system has been represented, archetypes that indicate the 
important abstractions within the problem domain have been defined, the overall struc-
ture of the system is apparent, and the major software components have been identi-
fied. However, further refinement (recall that all design is iterative) is still necessary.

To accomplish this, an actual instantiation of the architecture is developed. By this 
we mean that the architecture is applied to a specific problem with the intent of 
demonstrating that the structure and components are appropriate.

Figure 10.10 illustrates an instantiation of the SafeHome architecture for the secu-
rity system. Components shown in Figure 10.9 are elaborated to show additional 
detail. For example, the detector management component interacts with a scheduler 
infrastructure component that implements polling of each sensor object used by the 
security system. Similar elaboration is performed for each of the components repre-
sented in Figure 10.10.
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Figure 10.10 An instantiation of the security function with component elaboration



CHAPTER 10 ARCHITECTURAL DESIGN—A RECOMMENDED APPROACH  201

 10.7 as s e s s i ng aLt e r nat i v e arc h i t e c t u r a L de s i g n s

In their book on the evaluation of software architectures, Clements and his colleagues 
[Cle03] state, “To put it bluntly, an architecture is a bet, a wager on the success of a 
system.”

The big question for a software architect and the software engineers who will work 
to build a system is simple: Will the architectural bet pay off?

To help answer this question, architectural design should result in a number of 
architectural alternatives that are each assessed to determine which is the most appro-
priate for the problem to be solved.

The Software Engineering Institute (SEI) has developed an architecture trade-off 
analysis method (ATAM) [Kaz98] that establishes an iterative evaluation process for 
software architectures. The design analysis activities that follow are performed 
iteratively:

 1. Collect scenarios. A set of use cases (Chapters 7 and 8) is developed to 
represent the system from the user’s point of view.

 2. Elicit requirements, constraints, and environment description. This infor-
mation is required as part of requirements engineering and is used to be 
certain that all stakeholder concerns have been addressed.

 3. Describe the architectural styles and patterns that have been chosen to 
address the scenarios and requirements. The architectural style(s) should be 
described using one of the following architectural views:
∙ Module view for analysis of work assignments with components and the 

degree to which information hiding has been achieved.
∙ Process view for analysis of system performance.
∙ Data flow view for analysis of the degree to which the architecture meets 

functional requirements.
 4. Evaluate quality attributes by considering each attribute in isolation. The 

number of quality attributes chosen for analysis is a function of the time 
available for review and the degree to which quality attributes are relevant to 
the system at hand. Quality attributes for architectural design assessment 
include reliability, performance, security, maintainability, flexibility, testability, 
portability, reusability, and interoperability.

 5. Identify the sensitivity of quality attributes to various architectural attri-
butes for a specific architectural style. This can be accomplished by making 
small changes in the architecture and determining how sensitive a quality 
attribute, say performance, is to the change. Any attributes that are signifi-
cantly affected by variation in the architecture are termed sensitivity points.

 6. Critique candidate architectures (developed in step 3) using the sensitivity 
analysis conducted in step 5. The SEI describes this approach in the follow-
ing manner [Kaz98]:

Once the architectural sensitivity points have been determined, finding trade-off 
points is simply the identification of architectural elements to which multiple attri-
butes are sensitive. For example, the performance of a client-server architecture might 
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be highly sensitive to the number of servers (performance increases, within some 
range, by increasing the number of servers).  .  .  . The number of servers, then, is a 
trade-off point with respect to this architecture.

These six steps represent the first ATAM iteration. Based on the results of steps 5 
and 6, some architecture alternatives may be eliminated, one or more of the remaining 
architectures may be modified and represented in more detail, and then the ATAM 
steps are reapplied.

Architecture Assessment

 The scene: Doug Miller’s office 
as architectural design modeling 
proceeds.

The players: Vinod, Jamie, and Ed, members 
of the SafeHome software engineering team. 
Also Doug Miller, manager of the software 
engineering group.

The conversation:
Doug: I know you guys are deriving a couple 
of different architectures for the SafeHome 
product, and that’s a good thing. I guess my 
question is, how are we going to choose the 
one that’s best?

Ed: I’m working on a call-and-return style, 
and then either Jamie or I will derive an OO 
architecture.

Doug: Okay, and how do we choose?

Jamie: I took a CS course in design in my 
senior year, and I remember that there are a 
number of ways to do it.

Vinod: There are, but they’re a bit academic. 
Look, I think we can do our assessment and 
choose the right one using use cases and 
scenarios.

Doug: Isn’t that the same thing?

Vinod: Not when you’re talking about 
architectural assessment. We already have a 

complete set of use cases. So we apply each 
to both architectures and see how the system 
reacts, how components and connectors work 
in the use case context.

Ed: That’s a good idea. Make sure we didn’t 
leave anything out.

Vinod: True, but it also tells us whether the 
architectural design is convoluted, whether the 
system has to twist itself into a pretzel to get 
the job done.

Jamie: Aren’t scenarios just another name for 
use cases?

Vinod: No, in this case a scenario implies 
something different.

Doug: You’re talking about a quality scenario 
or a change scenario, right?

Vinod: Yes. What we do is go back to the 
stakeholders and ask them how SafeHome is 
likely to change over the next, say, 3 years. 
You know, new versions, features, that sort of 
thing. We build a set of change scenarios. We 
also develop a set of quality scenarios that 
defines the attributes we’d like to see in the 
software architecture.

Jamie: And we apply them to the alternatives.

Vinod: Exactly. The style that handles the use 
cases and scenarios best is the one we choose.

safehome

10.7.1 Architectural Reviews
Architectural reviews are a type of specialized technical review (Chapter 16) that 
provide a means of assessing the ability of a software architecture to meet the system’s 
quality requirements (e.g., scalability or performance) and to identify any potential 
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risks. Architectural reviews have the potential to reduce project costs by detecting 
design problems early.

Unlike requirements reviews that involve representatives of all stakeholders, archi-
tecture reviews often involve only software engineering team members supplemented 
by independent experts. However, software-based systems are built by people with a 
variety of different needs and points of view. Architects often focus on the long-term 
impact of the system’s nonfunctional requirements as the architecture is created. 
Senior managers assess the architecture within the context of business goals and objec-
tives. Project managers are often driven by short-term considerations of delivery dates 
and budget. Software engineers are often focused on their own technology interests 
and feature delivery. Each of these (and other) constituencies must agree that the 
software architecture chosen has distinct advantages over any other alternatives. There-
fore, a wise software architect should build consensus among members of the software 
team (and other stakeholders) to achieve the architectural vision for the final software 
product [Wri11].

The most common architectural review techniques used in industry are: experience-
based reasoning, prototype evaluation, scenario review (Chapter 8), and use of check-
lists. Many architectural reviews occur early in the project life cycle; they should also 
occur after new components or packages are acquired in component-based design 
(Chapter 11). One of the most commonly cited problems facing software engineers 
when conducting architectural reviews is missing or inadequate architectural work 
products, thereby making review difficult to complete [Bab09].

10.7.2 Pattern-Based Architecture Review
Formal technical reviews (Chapter 16) can be applied to software architecture and 
provide a means for managing system quality attributes, uncovering errors, and avoid-
ing unnecessary rework. However, in situations in which short build cycles, tight 
deadlines, volatile requirements, and/or small teams are the norm, a lightweight archi-
tectural review process known as pattern-based architecture review (PBAR) might be 
the best option.

PBAR is an evaluation method based on architectural patterns7 that leverages the 
patterns’ relationships to quality attributes. A PBAR is a face-to-face audit meeting 
involving all developers and other interested stakeholders. An external reviewer with 
expertise in architecture, architecture patterns, quality attributes, and the application 
domain is also in attendance. The system architect is the primary presenter.

A PBAR should be scheduled after the first working prototype or walking skeleton8 
is completed. The PBAR encompasses the following iterative steps [Har11]:

 1. Identify and discuss the quality attributes most important to the system by 
walking through the relevant use cases (Chapter 8).

 2. Discuss a diagram of the system’s architecture in relation to its requirements.

7 An architectural pattern is a generalized solution to an architectural design problem with a 
specific set of conditions or constraints. Patterns are discussed in detail in Chapter 14.

8 A walking skeleton contains a baseline architecture that supports the functional requirements 
with the highest priorities in the business case and the most challenging quality attributes.
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 3. Help the reviewer identify the architecture patterns used and match the 
system’s structure to the patterns’ structure.

 4. Using existing documentation and past use cases, examine the architecture 
and quality attributes to determine each pattern’s effect on the system’s 
quality attributes.

 5. Identify and discuss all quality issues raised by architecture patterns used in 
the design.

 6. Develop a short summary of the issues uncovered during the meeting, and 
make appropriate revisions to the walking skeleton.

PBARs are well suited to small, agile teams and require a relatively small amount 
of extra project time and effort. With its short preparation and review time, PBAR 
can accommodate changing requirements and short build cycles and, at the same time, 
help improve the team’s understanding of the system architecture.

10.7.3 Architecture Conformance Checking
As the software process moves through design and into construction, software engi-
neers must work to ensure that an implemented and evolving system conforms to its 
planned architecture. Many things (e.g., conflicting requirements, technical difficul-
ties, deadline pressures) cause deviations from a defined architecture. If architecture 
is not checked for conformance periodically, uncontrolled deviations can cause archi-
tecture erosion and affect the quality of the system [Pas10].

Static architecture-conformance analysis (SACA) assesses whether an implemented 
software system is consistent with its architectural model. The formalism (e.g., UML) 
used to model the system architecture presents the static organization of system compo-
nents and how the components interact. Often the architectural model is used by a proj-
ect manager to plan and allocate work tasks, as well as to assess implementation progress.

 10.8 su m m a ry

Software architecture provides a holistic view of the system to be built. It depicts the 
structure and organization of software components, their properties, and the connec-
tions between them. Software components include program modules and the various 
data representations that are manipulated by the program. Therefore, data design is 
an integral part of the derivation of the software architecture. Architecture highlights 
early design decisions and provides a mechanism for considering the benefits of alter-
native system structures.

Architectural design can coexist with agile methods by applying a hybrid architec-
tural design framework that makes use of existing techniques derived from popular 
agile methods. Once an architecture is developed, it can be assessed to ensure con-
formance with business goals, software requirements, and quality attributes.

Several different architectural styles and patterns are available to the software engi-
neer and may be applied within a given architectural genre. Each style describes a 
system category that encompasses a set of components that perform a function required 
by a system; a set of connectors that enable communication, coordination, and coop-
eration among components; constraints that define how components can be integrated 
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to form the system; and semantic models that enable a designer to understand the 
overall properties of a system.

In a general sense, architectural design is accomplished using four distinct steps. 
First, the system must be represented in context. That is, the designer should define 
the external entities that the software interacts with and the nature of the interaction. 
Once context has been specified, the designer should identify a set of top-level abstrac-
tions, called archetypes, that represent pivotal elements of the system’s behavior or 
function. After abstractions have been defined, the design begins to move closer to 
the implementation domain. Components are identified and represented within the 
context of an architecture that supports them. Finally, specific instantiations of the 
architecture are developed to “prove” the design in a real-world context.

Pro b l e m s a n d Po i n t s to Po n d e r

10.1. Using the architecture of a house or building as a metaphor, draw comparisons with 
software architecture. How are the disciplines of classical architecture and the software archi-
tecture similar? How do they differ?

10.2. Present two or three examples of applications for each of the architectural styles noted 
in Section 10.3.1.

10.3. Some of the architectural styles noted in Section 10.3.1 are hierarchical in nature, and 
others are not. Make a list of each type. How would the architectural styles that are not 
hierarchical be implemented?

10.4. The terms architectural style, architectural pattern, and framework (not discussed in this 
book) are often encountered in discussions of software architecture. Do some research, and 
describe how each of these terms differs from its counterparts.

10.5. Select an application with which you are familiar. Answer each of the questions posed 
for control and data in Section 10.3.3.

10.6. Research the ATAM (using [Kaz98]), and present a detailed discussion of the six steps 
presented in Section 10.7.1.

10.7. If you haven’t done so, complete Problem 8.3. Use the design approach described in this 
chapter to develop a software architecture for the pothole tracking and repair system (PHTRS).

10.8. Use the architectural decision template from Section 10.1.4 to document one of the 
architectural decisions for PHTRS architecture developed in Problem 10.7.

10.9. Select a mobile application you are familiar with, and assess it using the architecture 
considerations (economy, visibility, spacing, symmetry, emergence) from Section 10.4.

10.10. List the strengths and weakness of the PHTRS architecture you created for Problem 10.7.

Design element: Quick Look icon magnifying glass: © Roger Pressman



206

What is it? A complete set of software com-
ponents is defined during architectural de-
sign. But the internal data structures and 
processing details of each component are 
not represented at a level of abstraction 
that is close to code. Component-level de-
sign defines the data structures, algorithms, 
interface characteristics, and communica-
tion mechanisms allocated to each soft-
ware component.

Who does it? A software engineer performs 
component-level design.

Why is it important? You need to determine 
whether the software will work before you 
build it. The component-level design repre-
sents the software in a way that allows you to 
review the details of the design for correct-
ness and consistency with other design repre-
sentations.

What are the steps? Design representations 
of data, architecture, and interfaces form the 
foundation for component-level design. The 
class definition or processing narrative for 
each component is translated into a detailed 
design that makes use of diagrammatic or 
text-based forms that specify internal data 
structures, local interface detail, and process-
ing logic. 

What is the work product? The design for 
each component, represented in graphical, 
tabular, or text-based notation, is the primary 
work product produced during component-
level design.

How do I ensure that I’ve done it right? A 
design review is conducted. The design is ex-
amined to determine whether data structures, 
interfaces, processing sequences, and logical 
conditions are correct.
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C H A P T E R

11 Component-Level  
Design

Component-level design occurs after the first iteration of architectural design has 
been completed. At this stage, the overall data and program structure of the soft-
ware has been established. The intent is to translate the design model into opera-
tional software. But the level of abstraction of the existing design model is relatively 
high, and the abstraction level of the operational program is low. The translation 
can be challenging, opening the door to the introduction of subtle errors that are 
difficult to find and correct in later stages of the software process. Component-level 
design bridges the gap between architectural design and coding.
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Component-level design will reduce the number of errors introduced during coding. As 
you translate the design model into source code, you should follow a set of design prin-
ciples that not only perform the translation but also do not “introduce bugs to start with.”

 11.1 Wh at is  a co m p o n e n t?
A component is a modular building block for computer software. More formally, the 
OMG Unified Modeling Language Specification [OMG03a] defines a component as 
“a modular, deployable, and replaceable part of a system that encapsulates implemen-
tation and exposes a set of interfaces.”

As we discussed in Chapter 10, components populate the software architecture and 
play a role in achieving the objectives and requirements of the system to be built. 
Because components reside within the software architecture, they must communicate 
and collaborate with other components and with entities (e.g., other systems, devices, 
people) that exist outside the boundaries of the software.

The true meaning of the term component will differ depending on the point of 
view of the software engineer who uses it. In the sections that follow, we examine 
three important views of what a component is and how it is used as design modeling 
proceeds.

11.1.1 An Object-Oriented View
In the context of object-oriented software engineering, a component contains a set of 
collaborating classes.1 Each class within a component has been fully elaborated to 
include all attributes and operations that are relevant to its implementation. As part 
of the design elaboration, all interfaces that enable the classes to communicate and 
collaborate with other design classes must also be defined. To accomplish this, you 
begin with the analysis model and elaborate analysis classes (for components that 
relate to the problem domain) and infrastructure classes (for components that provide 
support services for the problem domain).

Recall that analysis modeling and design modeling are both iterative actions. Elab-
orating the original analysis class may require additional analysis steps, which are then 
followed with design modeling steps to represent the elaborated design class (the 
details of the component). To illustrate this process of design elaboration, consider 
software to be built for a sophisticated print shop. The overall intent of the software 
is to collect the customer’s requirements at the front counter, cost a print job, and 
then pass the job on to an automated production facility. During requirements engi-
neering, an analysis class called PrintJob was derived.

The attributes and operations defined during analysis are noted at the top of 
Figure 11.1. During architectural design, PrintJob is defined as a component within 
the software architecture and is represented using the shorthand UML notation2 shown 
in the middle right of the figure. Note that PrintJob has two interfaces, computeJob, 

1 In some cases, a component may contain a single class.
2 Readers who are unfamiliar with UML notation should refer to Appendix 1.
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which provides job costing capability, and initiateJob, which passes the job along to 
the production facility. These are represented using the “lollipop” symbols shown to 
the left of the component box.

Component-level design begins at this point. The details of the component Print-
Job must be elaborated to provide sufficient information to guide implementation. 
The original analysis class is elaborated to flesh out all attributes and operations 
required to implement the class as the component PrintJob. Referring to the lower 
right portion of Figure 11.1, the elaborated design class PrintJob contains more 
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detailed attribute information as well as an expanded description of operations required 
to implement the component. The interfaces computeJob and initiateJob imply 
communication and collaboration with other components (not shown here). For 
example, the operation computePageCost() (part of the computeJob interface) might 
collaborate with a PricingTable component that contains job pricing information. 
The checkPriority() operation (part of the initiateJob interface) might collaborate 
with a JobQueue component to determine the types and priorities of jobs currently 
awaiting production.

This elaboration activity is applied to every component defined as part of the 
architectural design. Once it is completed, further elaboration is applied to each attri-
bute, operation, and interface. The data structures appropriate for each attribute must 
be specified. In addition, the algorithmic detail required to implement the processing 
logic associated with each operation is designed. This procedural design activity is 
discussed later in this chapter. Finally, the mechanisms required to implement the 
interface are designed. For object-oriented software, this may encompass the descrip-
tion of all messaging that is required to effect communication between objects within 
the system.

11.1.2 The Traditional View
In the context of traditional software engineering, a component is a functional element 
of a program that incorporates processing logic, the internal data structures that are 
required to implement the processing logic, and an interface that enables the compo-
nent to be invoked and data to be passed to it. A traditional component, also called 
a module, resides within the software architecture and serves one of three important 
roles: (1) a control component that coordinates the invocation of all other problem 
domain components, (2) a problem domain component that implements a complete or 
partial function that is required by the customer, or (3) an infrastructure component 
that is responsible for functions that support the processing required in the problem 
domain.

Like object-oriented components, traditional software components are derived from 
the analysis model. In this case, however, the component elaboration element of the 
analysis model serves as the basis for the derivation. Each component representing 
the component hierarchy is mapped (Section 10.6) into a module hierarchy. Control 
components (modules) reside near the top of the hierarchy (program architecture), and 
problem domain components tend to reside toward the bottom of the hierarchy. To 
achieve effective modularity, design concepts like functional independence (Chapter 9) 
are applied as components are elaborated.

To illustrate this process of design elaboration for traditional components, again 
consider software to be built for the print shop noted earlier. A hierarchical archi-
tecture is derived and shown in Figure 11.2. Each box represents a software com-
ponent. Note that the shaded boxes are equivalent in function to the operations 
defined for the PrintJob class discussed in Section 11.1.1. In this case, however, 
each operation is represented as a separate module that is invoked as shown in the 
figure. Other modules are used to control processing and are therefore control 
components.
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During component-level design, each module in Figure 11.2 is elaborated. The 
module interface is defined explicitly. That is, each data or control object that flows 
across the interface is represented. The data structures that are used internal to the 
module are defined. The algorithm that allows the module to accomplish its intended 
function is designed using the stepwise refinement approach discussed in Chapter 9. 
The behavior of the module is sometimes represented using a state diagram.

To illustrate this process, consider the module ComputePageCost. The intent of 
this module is to compute the printing cost per page based on specifications pro-
vided by the customer. Data required to perform this function are: number of 
pages in the document, total number of documents to be produced, one- or 
two-side printing, color requirements, and size requirements. These data are 
passed to ComputePageCost via the module’s interface. ComputePageCost uses 
these data to determine a page cost that is based on the size and complexity of the 
job—a function of all data passed to the module via the interface. Page cost is 
inversely proportional to the size of the job and directly proportional to the com-
plexity of the job.

As the design for each software component is elaborated, the focus shifts to the 
design of specific data structures and procedural design to manipulate the data struc-
tures. Figure 11.3 represents the component-level design using a modified UML 
notation. The ComputePageCost module accesses data by invoking the module get-
JobData, which allows all relevant data to be passed to the component, and a data-
base interface, accessCostsDB, which enables the module to access a database that 
contains all printing costs. As design continues, the ComputePageCost module is 
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Figure 11.2 Structure chart for a traditional system
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elaborated to provide algorithm detail and interface detail (Figure 11.3). Algorithm 
detail can be represented using the pseudocode text shown in the figure or with a 
UML activity diagram. The interfaces are represented as a collection of input and 
output data objects or items. Design elaboration continues until sufficient detail is 
provided to guide construction of the component. However, don’t forget the architec-
ture that must house the components or the global data structures that may serve 
many components.

11.1.3 A Process-Related View
The object-oriented and traditional views of component-level design presented in 
Sections 11.1.1 and 11.1.2 assume that the component is being designed from scratch. 
That is, you always create a new component based on specifications derived from the 
requirements model. There is, of course, another approach.

ComputePageCost
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in:   color = 1, 2
in:   color = 1, 2, 3, 4

getJobData (numberPages,
numberDocs, sides, color,
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accessCostDB (JS, color, size)

job complexity factor (JCF) =
1  + [(sides-1)*sideCost + SF]

pageCost = BPC * JCF

El b d d lElaborated module

accessCostDB

getJobData Design component

out: page cost
in:   job size
in:   color = 1, 2, 3, 4
in:   pageSize = A, B, C, D
out: BPC
out: SF

Figure 11.3 Component-level design for ComputePageCost
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Over the past four decades, the software engineering community has emphasized 
the need to build systems that make use of existing software components or design 
patterns. To do this, a catalog of proven design or code-level components needs to be 
made available to you as design work proceeds. As the software architecture is devel-
oped, you choose components or design patterns from the catalog and use them to 
populate the architecture. Because these components have been created with reus-
ability in mind, a complete description of their interface, the function(s) they perform, 
and the communication and collaboration they require are all available to you. We 
will save a discussion on the pros and cons of component-based software engineering 
(CBSE) for Section 11.4.4.

 11.2 De s i g n i ng cL a s s-Ba s e D co m p o n e n t s

As we have already noted, component-level design draws on information developed as 
part of the requirements model (Chapter 8) and represented as part of the architectural 
model (Chapter 10). When an object-oriented software engineering approach is chosen, 
component-level design focuses on the elaboration of problem domain specific classes 
and the definition and refinement of infrastructure classes contained in the requirements 
model. The detailed description of the attributes, operations, and interfaces used by 
these classes is the design detail required as a precursor to the construction activity.

11.2.1 Basic Design Principles
Four basic design principles are applicable to component-level design and have been 
widely adopted when object-oriented software engineering is applied. The underlying 
motivation for the application of these principles is to create designs that are more 
amenable to change and to reduce the propagation of side effects when changes do 
occur. You can use these principles as a guide as each software component is developed.

The Open-Closed Principle (OCP). “A module [component] should be open for 
extension but closed for modification” [Mar00]. This statement seems to be a contra-
diction, but it represents one of the most important characteristics of a good component-
level design. Stated simply, you should specify the component in a way that allows it 
to be extended (within the functional domain that it addresses) without the need to 
make internal (code or logic-level) modifications to the component itself. To accom-
plish this, you create abstractions that serve as a buffer between the functionality that 
is likely to be extended and the design class itself.

For example, assume that the SafeHome security function makes use of a Detector 
class that must check the status of each type of security sensor. It is likely that as 
time passes, the number and types of security sensors will grow. If internal processing 
logic is implemented as a sequence of if-then-else constructs, each addressing a dif-
ferent sensor type, the addition of a new sensor type will require additional internal 
processing logic (still another if-then-else). This is a violation of OCP.

One way to accomplish OCP for the Detector class is illustrated in Figure 11.4. 
The sensor interface presents a consistent view of sensors to the detector component. 
If a new type of sensor is added, no change is required for the Detector class 
(component). The OCP is preserved.
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Figure 11.4 Following the OCP

The OCP in Action

The scene: Vinod’s cubicle.

The players: Vinod and Shakira, members of 
the SafeHome software engineering team.

The conversation:
Vinod: I just got a call from Doug [the team 
manager]. He says marketing wants to add a 
new sensor.

Shakira (smirking): Not again, jeez!

Vinod: Yeah . . . and you’re not going to 
believe what these guys have come up with.

Shakira: Amaze me.

Vinod (laughing): They call it a doggie angst 
sensor.

Shakira: Say what?

Vinod: It’s for people who leave their pets 
home in apartments or condos or houses that 
are close to one another. The dog starts to 
bark. The neighbor gets angry and complains. 
With this sensor, if the dog barks for more 
than, say, a minute, the sensor sets a special 
alarm mode that calls the owner on his or her 
cell phone.

Shakira: You’re kidding me, right?

Vinod: Nope. Doug wants to know how much 
time it’s going to take to add it to the security 
function.

Shakira (thinking a moment): Not much . . . 
look. [She shows Vinod Figure 11.4.] We’ve 
isolated the actual sensor classes behind the 
sensor interface. As long as we have specs for 
the doggie sensor, adding it should be a piece 
of cake. Only thing I’ll have to do is create an 
appropriate component . . . uh, class, for it. No 
change to the Detector component at all.

Vinod: So I’ll tell Doug it’s no big deal.

Shakira: Knowing Doug, he’ll keep us focused 
and not deliver the doggie thing until the next 
release.

Vinod: That’s not a bad thing, but can you 
implement now if he wants you to?

Shakira: Yeah, the way we designed the 
interface lets me do it with no hassle.

Vinod (thinking a moment): Have you ever 
heard of the open-closed principle?

Shakira (shrugging): Never heard of it.

Vinod (smiling): Not a problem.

safehome
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The Liskov Substitution Principle (LSP). “Subclasses should be substitutable for 
their base classes” [Mar00]. This design principle, originally proposed by Barbara 
Liskov [Lis88], suggests that a component that uses a base class should continue to 
function properly if a class derived from the base class is passed to the component 
instead. LSP demands that any class derived from a base class must honor any implied 
contract between the base class and the components that use it. In the context of this 
discussion, a “contract” is a precondition that must be true before the component uses 
a base class and a postcondition that should be true after the component uses a base 
class. When you create derived classes, be sure they conform to the pre- and post-
conditions.

The Dependency Inversion Principle (DIP). “Depend on abstractions. Do not 
depend on concretions” [Mar00]. As we have seen in the discussion of the OCP, 
abstractions are the place where a design can be extended without great complica-
tion. The more a component depends on other concrete components (rather than on 
abstractions such as an interface), the more difficult it will be to extend. Just remem-
ber that code is the ultimate concretion. If you dispense with design and hack out 
code, you’re violating DIP.

The Interface Segregation Principle (ISP). “Many client-specific interfaces 
are better than one general purpose interface” [Mar00]. There are many instances 
in which multiple client components use the operations provided by a server class. 
ISP suggests that you should create a specialized interface to serve each major 
category of clients. Only those operations that are relevant to an individual client 
category should be specified in the interface for that client. If multiple clients 
require the same operations, it should be specified in each of the specialized 
interfaces.

As an example, consider the FloorPlan class that is used for the SafeHome secu-
rity and surveillance functions (Chapter 10). For the security functions, FloorPlan is 
used only during configuration activities and uses the operations placeDevice(), show-
Device(), groupDevice(), and removeDevice() to place, show, group, and remove sen-
sors from the floor plan. The SafeHome surveillance function uses the four operations 
noted for security, but also requires special operations to manage cameras: showFOV() 
and showDeviceID(). Hence, the ISP suggests that client components from the two 
SafeHome functions have specialized interfaces defined for them. The interface for 
security would encompass only the operations placeDevice(), showDevice(), group-
Device(), and removeDevice(). The interface for surveillance would incorporate the 
operations placeDevice(), showDevice(), groupDevice(), and removeDevice(), along 
with showFOV() and showDeviceID().

Although component-level design principles provide useful guidance, components 
themselves do not exist in a vacuum. In many cases, individual components or classes 
are organized into subsystems or packages. It is reasonable to ask how this packaging 
activity should occur. Exactly how should components be organized as the design 
proceeds? Martin [Mar00] suggests additional packaging principles that are applicable 
to component-level design. These principles follow.

The Reuse/Release Equivalency Principle (REP). “The granule of reuse is the 
granule of release” [Mar00]. When classes or components are designed for reuse, 
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an implicit contract is established between the developer of the reusable entity and 
the people who will use it. The developer commits to establish a release control 
system that supports and maintains older versions of the entity while the users slowly 
upgrade to the most current version. Rather than addressing each class individually, 
it is often advisable to group reusable classes into packages that can be managed and 
controlled as newer versions evolve. Designing components for reuse requires more 
than good technical design. It also requires effective configuration control mecha-
nisms (Chapter 22).

The Common Closure Principle (CCP). “Classes that change together belong 
together” [Mar00]. Classes should be packaged cohesively. That is, when classes are 
packaged as part of a design, they should address the same functional or behavioral 
area. When some characteristic of that area must change, it is likely that only those 
classes within the package will require modification. This leads to more effective 
change control and release management.

The Common Reuse Principle (CRP). “Classes that aren’t reused together should 
not be grouped together” [Mar00]. When one or more classes with a package changes, 
the release number of the package changes. All other classes or packages that rely on 
the package that has been changed must now update to the most recent release of the 
package and be tested to ensure that the new release operated without incident. If 
classes are not grouped cohesively, it is possible that a class with no relationship to 
other classes within a package is changed. This will precipitate unnecessary integra-
tion and testing. For this reason, only classes that are reused together should be 
included within a package.

11.2.2 Component-Level Design Guidelines
In addition to the principles discussed in Section 11.2.1, a set of pragmatic design 
guidelines can be applied as component-level design proceeds. These guidelines apply 
to components, their interfaces, and the dependencies and inheritance characteristics 
that have an impact on the resultant design. Ambler [Amb02b] suggests the following 
guidelines:

Components. Naming conventions should be established for components that are 
specified as part of the architectural model and then refined and elaborated as part of 
the component-level model. Architectural component names should be drawn from 
the problem domain and should have meaning to all stakeholders who view the archi-
tectural model. For example, the class name FloorPlan is meaningful to everyone 
reading it regardless of technical background. On the other hand, infrastructure 
components or elaborated component-level classes should be named to reflect 
implementation-specific meaning. If a linked list is to be managed as part of the 
FloorPlan implementation, the operation manageList() is appropriate, even if a 
nontechnical person might misinterpret it.3

You can choose to use stereotypes to help identify the nature of components at the 
detailed design level. For example, <<infrastructure>> might be used to identify an 

3 It is unlikely that someone from marketing or the customer organization (a nontechnical 
type) would examine detailed design information.
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infrastructure component, <<database>> could be used to identify a database that 
services one or more design classes or the entire system, and <<table>> can be used 
to identify a table within a database.

Interfaces. Interfaces provide important information about communication and 
collaboration (as well as helping us to achieve the OPC). However, unfettered 
representation of interfaces tends to complicate component diagrams. Ambler 
[Amb02c] recommends that (1) lollipop representation of an interface should be 
used in lieu of the more formal UML box and dashed arrow approach, when dia-
grams grow complex, (2) for consistency, interfaces should flow from the left-hand 
side of the component box, (3) only those interfaces that are relevant to the com-
ponent under consideration should be shown, even if other interfaces are available. 
These recommendations are intended to simplify the visual nature of UML 
component diagrams.

Dependencies and Inheritance. For improved readability, it is a good idea to model 
dependencies from left to right and inheritance from bottom (derived classes) to top 
(base classes). In addition, components’ interdependencies should be represented via 
interfaces, rather than by representation of a component-to-component dependency. 
Following the philosophy of the OCP, this will help to make the system more 
maintainable.

11.2.3 Cohesion
In Chapter 9, we described cohesion as the “single-mindedness” of a component. 
Within the context of component-level design for object-oriented systems, cohesion 
implies that a component or class encapsulates only attributes and operations that are 
closely related to each other and to the class or component itself. Lethbridge and 
Laganiére [Let04] define several different types of cohesion (listed in order of the 
level of the cohesion):4

Functional. Exhibited primarily by operations, this level of cohesion occurs 
when a module performs one and only one computation and then returns a 
result.
Layer. Exhibited by packages, components, and classes, this type of cohe-
sion occurs when a higher layer accesses the services of a lower layer, but 
lower layers do not access higher layers. Consider, for example, the SafeHome 
security function requirement to make an outgoing phone call if an alarm is 
sensed. It might be possible to define a set of layered packages, as shown in 
Figure 11.5. The shaded packages contain infrastructure components. Access 
is from the control panel package downward.
Communicational. All operations that access the same data are defined 
within one class. In general, such classes focus solely on the data in question, 
accessing and storing it.

4 In general, the higher the level of cohesion, the easier the component is to implement, test, 
and maintain.
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Cohesion in Action

The scene: Jamie’s cubicle.

The players: Jamie and Ed, members of the 
SafeHome software engineering team who are 
working on the surveillance function.

The conversation:
Ed: I have a first-cut design of the camera 
component.

Jamie: Wanna do a quick review?

Ed: I guess . . . but really, I’d like your input on 
something.

 (Jamie gestures for him to continue.)

Ed: We originally defined five operations for 
camera. Look . . .

 determineType() tells me the type of camera.

 translateLocation() allows me to move the 
camera around the floor plan.

 displayID() gets the camera ID and 
displays it near the camera icon.

 displayView() shows me the field of view 
of the camera graphically.

 displayZoom() shows me the magnification 
of the camera graphically.

safehome

Classes and components that exhibit functional, layer, and communicational cohesion 
are relatively easy to implement, test, and maintain. You should strive to achieve these 
levels of cohesion whenever possible. It is important to note, however, that pragmatic 
design and implementation issues sometimes force you to opt for lower levels of 
cohesion.
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11.2.4 Coupling
In earlier discussions of analysis and design, we noted that communication and col-
laboration are essential elements of any object-oriented system. There is, however, a 
darker side to this important (and necessary) characteristic. As the amount of com-
munication and collaboration increases (i.e., as the degree of “connectedness” between 
classes increases), the complexity of the system also increases. And as complexity 
increases, the difficulty of implementing, testing, and maintaining software grows.

Coupling is a qualitative measure of the degree to which classes are connected to 
one another. As classes (and components) become more interdependent, coupling 
increases. An important objective in component-level design is to keep coupling as 
low as possible.

Class coupling can manifest itself in a variety of ways. Lethbridge and Laganiére 
[Let04] define a spectrum of coupling categories. For example, content coupling 
occurs when one component “surreptitiously modifies data that is internal to another 
component” [Let04]. This violates information hiding—a basic design concept. Con-
trol coupling occurs when operation A() invokes operation B() and passes a control 
flag to B. The control flag then “directs” logical flow within B. The problem with 
this form of coupling is that an unrelated change in B can result in the necessity to 
change the meaning of the control flag that A passes. If this is overlooked, an error 
will result. External coupling occurs when a component communicates or collaborates 
with infrastructure components (e.g., operating system functions, database capability, 
telecommunication functions). Although this type of coupling is necessary, it should 
be limited to a small number of components or classes within a system.

Ed: I’ve designed each separately, and they’re 
pretty simple operations. So I thought it might 
be a good idea to combine all of the display 
operations into just one that’s called display-
Camera()—it’ll show the ID, the view, and the 
zoom. Whaddaya think?

Jamie (grimacing): Not sure that’s such a 
good idea.

Ed (frowning): Why? All of these little ops 
can cause headaches.

Jamie: The problem with combining  
them is we lose cohesion, you know, 
the displayCamera() op won’t be  
single-minded.

Ed (mildly exasperated): So what? The whole 
thing will be less than 100 source lines, max. 
It’ll be easier to implement, I think.

Jamie: And what if marketing decides to 
change the way that we represent the view 
field?

Ed: I just jump into the displayCamera() op 
and make the mod.

Jamie: What about side effects?

Ed: Whaddaya mean?

Jamie: Well, say you make the change but 
inadvertently create a problem with the ID 
display.

Ed: I wouldn’t be that sloppy.

Jamie: Maybe not, but what if some support 
person 2 years from now has to make the mod? 
He might not understand the op as well as you 
do, and, who knows, he might be sloppy.

Ed: So you’re against it?

Jamie: You’re the designer . . . it’s your 
decision . . . just be sure you understand the 
consequences of low cohesion.

Ed (thinking a moment): Maybe we’ll go with 
separate display ops.

Jamie: Good decision.
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Software must communicate internally and externally. Therefore, coupling is a fact 
of life. However, a designer should work to reduce coupling whenever possible and 
understand the ramifications of high coupling when it cannot be avoided.

Coupling in Action

The scene: Shakira’s cubicle.

The players: Vinod and Shakira, members of 
the SafeHome software team who are working 
on the security function.

The conversation:
Shakira: I had what I thought was a great 
idea . . . then I thought about it a little, and it 
seemed like a not-so-great idea. I finally re-
jected it, but I just thought I’d run it by you.

Vinod: Sure. What’s the idea?

Shakira: Well, each of the sensors recognizes 
an alarm condition of some kind, right?

Vinod (smiling): That’s why we call them sen-
sors, Shakira.

Shakira (exasperated): Sarcasm, Vinod, 
you’ve got to work on your interpersonal skills.

Vinod: You were saying?

Shakira: Okay, anyway, I figured . . . why not 
create an operation within each sensor object 
called makeCall() that would collaborate 
directly with the OutgoingCall component, 

well, with an interface to the OutgoingCall 
component.

Vinod (pensive): You mean rather than having 
that collaboration occur out of a component 
like ControlPanel or something?

Shakira: Yeah . . . but then, I said to myself, 
that means that every sensor object will be 
connected to the OutgoingCall component, 
and that means that it’s indirectly coupled to 
the outside world and . . . well, I just thought it 
made things complicated.

Vinod: I agree. In this case, it’s a better idea 
to let the sensor interface pass info to the 
ControlPanel and let it initiate the outgoing 
call. Besides, different sensors might result in 
different phone numbers. You don’t want the 
sensor to store that information because if it 
changes . . .

Shakira: It just didn’t feel right.

Vinod: Design heuristics for coupling tell us 
it’s not right.

Shakira: Whatever . . .

safehome

 11.3 co n D u c t i ng co m p o n e n t-Le v e L De s i g n

Earlier in this chapter we noted that component-level design is elaborative in nature. 
You must transform information from requirements and architectural models into a 
design representation that provides sufficient detail to guide the construction (coding 
and testing) activity. The following steps represent a typical task set for component-
level design, when it is applied for an object-oriented system.

Step 1. Identify all design classes that correspond to the problem domain. Using 
the requirements and architectural model, each analysis class and architectural com-
ponent is elaborated as described in Section 11.1.1.

Step 2. Identify all design classes that correspond to the infrastructure 
domain. These classes are not described in the requirements model and are often 
missing from the architecture model, but they must be described at this point. As we 
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have noted earlier, classes and components in this category include GUI components 
(often available as reusable components), operating system components, and object 
and data management components.

Step 3. Elaborate all design classes that are not acquired as reusable components.  
Elaboration requires that all interfaces, attributes, and operations necessary to imple-
ment the class be described in detail. Design heuristics (e.g., component cohesion and 
coupling) must be considered as this task is conducted.

Step 3a. Specify message details when classes or components collaborate. The 
requirements model makes use of a collaboration diagram to show how analysis 
classes collaborate with one another. As component-level design proceeds, it is some-
times useful to show the details of these collaborations by specifying the structure of 
messages that are passed between objects within a system. Although this design activ-
ity is optional, it can be used as a precursor to the specification of interfaces that 
show how components within the system communicate and collaborate.

Figure 11.6 illustrates a simple collaboration diagram for the printing system dis-
cussed earlier. Three objects, ProductionJob, WorkOrder, and JobQueue, collaborate 
to prepare a print job for submission to the production stream. Messages are passed 
between objects as illustrated by the arrows in the figure. During requirements model-
ing the messages are specified as shown in the figure. However, as design proceeds, 
each message is elaborated by expanding its syntax in the following manner [Ben10a]:

[guard condition] sequence expression (return value) :=  
message name (argument list)

where a [guard condition] is written in Object Constraint Language (OCL)5 and 
specifies any set of conditions that must be met before the message can be sent; 
sequence expression is an integer value (or other ordering indicator, e.g., 3.1.2) that 
indicates the sequential order in which a message is sent; (return value) is the name 
of the information that is returned by the operation invoked by the message; message 
name identifies the operation that is to be invoked; and (argument list) is the list of 
attributes that are passed to the operation.

: ProductionJob

: WorkOrder : JobQueue

2: submitJob
(WOnumber)

1: buildJob
(WOnumber)

Figure 11.6
Collaboration 
diagram with 
messaging

5 OCL is discussed briefly in Appendix 1.
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Step 3b. Identify appropriate interfaces for each component. Within the context 
of component-level design, a UML interface is “a group of externally visible (i.e., 
public) operations. The interface contains no internal structure, it has no attributes, 
no associations . . .” [Ben10a]. Stated more formally, an interface is the equivalent of 
an abstract class that provides a controlled connection between design classes. The 
elaboration of interfaces is illustrated in Figure 11.1. The operations defined for the 
design class are categorized into one or more abstract classes. Every operation within 
the abstract class (the interface) should be cohesive; that is, it should exhibit process-
ing that focuses on one limited function or subfunction.

Referring to Figure 11.1, it can be argued that the interface initiateJob does not 
exhibit sufficient cohesion. It performs three different subfunctions—building a work 
order, checking job priority, and passing a job to production. The interface design 
should be refactored. One approach might be to reexamine the design classes and 
define a new class WorkOrder that would take care of all activities associated with 
the assembly of a work order. The operation buildWorkOrder() becomes a part of that 
class. Similarly, we might define a class JobQueue that would incorporate the oper-
ation checkPriority(). A class ProductionJob would encompass all information asso-
ciated with a production job to be passed to the production facility. The interface 
initiateJob would then take the form shown in Figure 11.7. The interface initiateJob 
is now cohesive, focusing on one function. The interfaces associated with Produc-
tionJob, WorkOrder, and JobQueue are similarly single-minded.

Step 3c. Elaborate attributes and define data types and data structures required 
to implement them. In general, data structures and types used to define attributes 
are defined within the context of the programming language that is to be used for 
implementation. UML defines an attribute’s data type using the following syntax:

name : type-expression = initial-value {property-string}

where name is the attribute name, type expression is the data type, initial value is 
the value that the attribute takes when an object is created, and property-string 
defines a property or characteristic of the attribute.

ProductionJob
submitJob

buildJob
accessCostDB

PrintJob
initiateJob

computeJob

WorkOrder

appropriate attributes

checkPriority( )

JobQueue

appropriate attributes

checkPriority( )

<<interface>>
initiateJob

passJobToProduction( )

Figure 11.7 Refactoring interfaces and class definitions for PrintJob
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During the first component-level design iteration, attributes are normally described 
by name. Referring once again to Figure 11.1, the attribute list for PrintJob lists only 
the names of the attributes. However, as design elaboration proceeds, each attribute 
is defined using the UML attribute format noted. For example, paperType-weight is 
defined in the following manner:

paperType-weight: string = “A” {contains 1 of 4 values – A, B, C, or D}

which defines paperType-weight as a string variable initialized to the value A that 
can take on one of four values from the set {A, B, C, D}.

If an attribute appears repeatedly across several design classes, and it has a relatively 
complex structure, it is best to create a separate class to accommodate the attribute.

Step 3d. Describe processing flow within each operation in detail. This may be 
accomplished using a programming language-based pseudocode or with a UML activ-
ity diagram. Each software component is elaborated through several iterations that 
apply the stepwise refinement concept (Chapter 9).

The first iteration defines each operation as part of the design class. In every case, 
the operation should be characterized in a way that ensures high cohesion; that is, the 
operation should perform a single targeted function or subfunction. The next iteration 
does little more than expand the operation name. For example, the operation compute-
PaperCost() noted in Figure 11.1 can be expanded in the following manner:

computePaperCost (weight, size, color): numeric

This indicates that computePaperCost() requires the attributes weight, size, and color 
as input and returns a value that is numeric (actually a dollar value) as output.

If the algorithm required to implement computePaperCost() is simple and widely 
understood, no further design elaboration may be necessary. The software engineer who 
does the coding will provide the detail necessary to implement the operation. However, 
if the algorithm is more complex or arcane, further design elaboration is required at this 
stage. Figure 11.8 depicts a UML activity diagram for computePaperCost(). When activ-
ity diagrams are used for component-level design specification, they are generally 
represented at a level of abstraction that is somewhat higher than source code.

Step 4. Describe persistent data sources (databases and files) and identify the 
classes required to manage them. Databases and files normally transcend the 
design description of an individual component. In most cases, these persistent data 
stores are initially specified as part of architectural design. However, as design elabo-
ration proceeds, it is often useful to provide additional detail about the structure and 
organization of these persistent data sources.

Step 5. Develop and elaborate behavioral representations for a class or 
component. UML state diagrams were used as part of the requirements model to 
represent the externally observable behavior of the system and the more localized 
behavior of individual analysis classes. During component-level design, it is some-
times necessary to model the behavior of a design class.

The dynamic behavior of an object (an instantiation of a design class as the pro-
gram executes) is affected by events that are external to it and the current state (mode 
of behavior) of the object. To understand the dynamic behavior of an object, you 
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should examine all use cases that are relevant to the design class throughout its life. 
These use cases provide information that helps you to delineate the events that affect 
the object and the states in which the object resides as time passes and events occur. 
The transitions between states (driven by events) is represented using a UML statechart 
[Ben10a], as illustrated in Figure 11.9.

paperCostPerPage=
paperCostPerPage×1.2

paperCostPerPage=
baseCostPerPage

Returns
(paperCostPerPage)

paperCostPerPage=
paperCostPerPage×1.14

Validate attributes input

accessPaperDB(weight)

Size = B

Size = C

S

S

Size = DS

Color is custom

Color is standard

paperCostPerPage=
paperCostPerPage×1.6

paperCostPerPage=
paperCostPerPage×1.4

Returns baseCostPerPage

Figure 11.8
UML activity 
diagram for  
computePaperCost()
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The transition from one state (represented by a rectangle with rounded corners) to 
another occurs following an event that takes the form of:

Event-name (parameter-list) [guard-condition] / action expression

where event-name identifies the event, parameter-list incorporates data that are asso-
ciated with the event, guard-condition is written in Object Constraint Language 
(OCL) and specifies a condition that must be met before the event can occur, and 
action expression defines an action that occurs as the transition takes place.

dataInputIncomplete

dataInputCompleted [all data items
consistent]/displayUserOptions

jobCostAccepted [customer is
authorized]/getElectronicSignature

deliverDateAccepted [customer is
authorized]/printJobEstimate

jobSubmitted [all authorizations
acquired]/printWorkOrder

Behavior within the
state buildingJobData

buildingJobData

entry/readJobData( )
exit/displayJobData( )
do/checkConsistency( )
include/dataInput

computingJobCost

entry/computeJob
exit/save totalJobCost

formingJob

entry/buildJob
exit/save WOnumber
do/

submittingJob

entry/submitJob
exit/initiateJob
do/place on JobQueue

Figure 11.9
Statechart 
fragment for 
PrintJob class
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Referring to Figure 11.9, each state may define entry/ and exit/ actions that occur 
as transition into the state occurs and as transition out of the state occurs, respec-
tively. In most cases, these actions correspond to operations that are relevant to the 
class that is being modeled. The do/ indicator provides a mechanism for indicating 
activities that occur while in the state, and the include/ indicator provides a means 
for elaborating the behavior by embedding more statechart detail within the definition 
of a state.

It is important to note that the behavioral model often contains information that is 
not immediately obvious in other design models. For example, careful examination of 
the statechart in Figure 11.9 indicates that the dynamic behavior of the PrintJob class 
is contingent upon two customer approvals as costs and schedule data for the print 
job are derived. Without approvals (the guard condition ensures that the customer is 
authorized to approve), the print job cannot be submitted because there is no way to 
reach the submittingJob state.

Step 6. Elaborate deployment diagrams to provide additional implementation 
detail. Deployment diagrams (Chapter 9) are used as part of architectural design 
and are represented in descriptor form. In this form, major system functions are rep-
resented (often as subsystems) within the context of the computing environment that 
will house them.

During component-level design, deployment diagrams can be elaborated to repre-
sent the location of key packages of components. However, components generally are 
not represented individually within a component diagram. The reason for this is to 
avoid diagrammatic complexity. In some cases, deployment diagrams are elaborated 
into instance form at this time. This means that the specific hardware and operating 
system environment(s) that will be used is (are) specified and the location of compo-
nent packages within this environment is indicated.

Step 7. Refactor every component-level design representation and always consider 
alternatives. Throughout this book, we emphasize that design is an iterative process. 
The first component-level model you create will not be as complete, consistent, or 
accurate as the nth iteration you apply to the model. It is essential to refactor as design 
work is conducted.

In addition, you should not suffer from tunnel vision. There are always alternative 
design solutions, and the best designers consider all (or most) of them before settling 
on the final design model. Develop alternatives and consider each carefully, using the 
design principles and concepts presented in Chapter 9 and in this chapter.

 11.4 sp e c i a L i z e D co m p o n e n t-Le v e L De s i g n

There are many programming languages and many ways to create the components 
required to implement a software architectural design. The principles described in this 
chapter provide general advice for designing components. Many software products 
require the use of specialized program development environments to allow their 
deployment on targeted end user devices such as cell phones or digital assistants. In 
this section, we present overviews of some specialized component design techniques.
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11.4.1 Component-Level Design for WebApps
The boundary between content and function is often blurred when Web-based systems 
and applications (WebApps) are considered. Therefore, it is reasonable to ask: What 
is a WebApp component?

In the context of this chapter, a WebApp component is (1) a well-defined cohesive 
function that manipulates content or provides computational or data processing for an 
end user or (2) a cohesive package of content and functionality that provides the end 
user with some required capability. Therefore, component-level design for WebApps 
often incorporates elements of content design and functional design.

Content design at the component level focuses on content objects and the ways 
they may be packaged for presentation to a WebApp end user. The formality of con-
tent design at the component level should be tuned to the characteristics of the 
WebApp to be built. In many cases, content objects need not be organized as com-
ponents and can be manipulated individually. However, as the size and complexity (of 
the WebApp, content objects, and their interrelationships) grows, it may be necessary 
to organize content in a way that allows easier reference and design manipulation.6 In 
addition, if content is highly dynamic (e.g., the content for an online auction site), it 
becomes important to establish a clear structural model that incorporates content 
components.

A good example of a component that might be part of an e-commerce WebApp is 
the “shopping cart.” A shopping cart provides a convenient way for e-commerce 
customers to store and review their selected items prior to checking out. They can 
then pay for their selections with a single transaction at the end of their e-commerce 
session. A carefully designed shopping cart can be reused in several Web store appli-
cations by simply editing its content model.

WebApp functionality can be delivered as a series of components developed in 
parallel with the information architecture to ensure consistency. The shopping cart 
component described previously contains both content and algorithmic elements. You 
begin by considering both the requirements model and the initial information archi-
tecture. Next, you examine how functionality affects the user’s interaction with the 
application, the information that is presented, and the user tasks that are conducted.

During architectural design, WebApp content and functionality are combined to 
create a functional architecture. A functional architecture is a representation of the 
functional domain of the WebApp and describes the key functional components in the 
WebApp and how these components interact with each other.

11.4.2 Component-Level Design for Mobile Apps
Mobile apps are typically structured using multilayered architectures, including a 
user interface layer, a business layer, and a data layer. If you are building a mobile 
app as a thin Web-based client, the only components residing on a mobile device 
are those required to implement the user interface. Some mobile apps may incor-
porate the components required to implement the business and/or data layers on the 
mobile device, subjecting these layers to the limitations of the physical characteristics 
of the device.

6 Content components can also be reused in other WebApps.
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Considering the user interface layer first, it is important to recognize that a small 
display area requires the designer to be more selective in choosing the content (text 
and graphics) to be displayed. It may be helpful to tailor the content to a specific user 
group(s) and display only what each group needs. The business and data layers are 
often implemented by composing Web or cloud service components. If the compo-
nents providing business and data services reside entirely on the mobile device, con-
nectivity issues are not a significant concern. Intermittent (or missing) Internet 
connectivity must be considered when designing components that require access to 
current application data that reside on a networked server.

If a desktop application is being ported to a mobile device, the business-layer 
components may need to be reviewed to see if they meet nonfunctional requirements 
(e.g., security, performance, accessibility) required by the new platform. The target 
mobile device may lack the necessary processor speed, memory, or display real estate. 
The design of mobile applications is considered in greater detail in Chapter 13.

An example of a component in a mobile application might be the single-window 
full-screen user interface (UI) typically designed for phones and tablets. With careful 
design it may be possible to allow the mobile app to sense the display characteristics 
of the mobile device and adapt its appearance to ensure that text, graphics, and UI 
controls function correctly on many different screen types. This allows the mobile app 
to function in similar ways on all platforms, without having to be reprogrammed.

11.4.3 Designing Traditional Components
The foundations of component-level design for traditional software components were 
formed in the early 1960s and were solidified with the work of Edsger Dijkstra 
([Dij65], [Dij76b]) and others (e.g., [Boh66]). A traditional software component 
implements an element of processing that addresses a function or subfunction in the 
problem domain or some capability in the infrastructure domain. Often these tradi-
tional components are called functions, modules, procedures, or subroutines. Tradi-
tional components do not encapsulate data in the same way that object-oriented 
components do. Most programmers make frequent use of function libraries and data 
structure templates when developing new software products.

In the late 1960s, Dijkstra and others proposed the use of a set of constrained 
logical constructs from which any program could be formed. The constructs empha-
sized “maintenance of functional domain.” That is, each construct had a predictable 
logical structure and was entered at the top and exited at the bottom, enabling a reader 
to follow procedural flow more easily.

The constructs are sequence, condition, and repetition. Sequence implements pro-
cessing steps that are essential in the specification of any algorithm. Condition pro-
vides the facility for selected processing based on some logical occurrence, and 
repetition allows for looping. These three constructs are fundamental to structured 
programming—an important component-level design technique.

The structured constructs were proposed to limit the procedural design of software 
to a small number of predictable logical structures. Complexity metrics (Chapter 23) 
indicate that the use of the structured constructs reduces program complexity and 
thereby enhances readability, testability, and maintainability. The use of a limited 
number of logical constructs also contributes to a human understanding process that 
psychologists call chunking. To understand this process, consider the way in which 
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you are reading this page. You do not read individual letters but rather recognize pat-
terns or chunks of letters that form words or phrases. The structured constructs are 
logical chunks that allow a reader to recognize procedural elements of a module, rather 
than reading the design or code line by line. Understanding is enhanced when readily 
recognizable logical patterns are encountered.

Any program, regardless of application area or technical complexity, can be 
designed and implemented using only the three structured constructs. It should 
be noted, however, that dogmatic use of only these constructs can sometimes cause 
practical difficulties.

11.4.4 Component-Based Development
In software engineering, reuse is an idea both old and new. Programmers have reused 
ideas, abstractions, and processes since the earliest days of computing, but the early 
approach to reuse was ad hoc. Today, complex, high-quality computer-based systems 
must be built in very short time periods and demand a more organized approach 
to reuse.

Component-based software engineering (CBSE) is a process that emphasizes the 
design and construction of computer-based systems using reusable software compo-
nents (Figure 11.10). Considering this description, many questions arise. Is it possible 
to construct complex systems by assembling them from a catalog of reusable software 
components? Can this be accomplished in a cost- and time-effective manner? Can 
appropriate incentives be established to encourage software engineers to reuse rather 
than reinvent? Is management willing to incur the added expense associated with 
creating reusable software components? Can a library of components necessary to 
accomplish reuse be created in a way that makes it accessible to those who need it? 
Can existing components be found by those who need them? Increasingly, the answer 
to each of these questions is yes.

Figure 11.10 shows the principle steps in CBSE. You start with the system require-
ments and refine them to the point that needed components can be identified. The 
developers would then search the repository to see if any of the components already 
exist. Each component has its own postconditions and preconditions. Components 
whose postconditions match a system requirement are identified, and the preconditions 
of each component are checked. If the preconditions are satisfied, the component is 
selected for inclusion in the current build. When no components can be selected, the 
developers must decide whether to modify the requirements or modify a component 
that most closely matches the original requirements. This is often an iterative process 
that continues until the architecture design can be implemented, using a combination 
of existing or newly created components.

Compose
components

to create
system

Outline
system

requirements

Perform
architectural

design

Modify
requirements
according to
discovered

components

Identify
candidate

components

Identify
candidate

components

Figure 11.10 Component-based software design
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Consider the task of developing autonomous vehicles, either in real life or a video 
game. The software for these complex systems is typically created by combing several 
reusable components, where the components provide distinct modular services. Typically 
they would include many software components: a component that manages obstacle detec-
tion, a planning or navigation component, an artificial intelligence component to manage 
decision making, and a component of some type controlling vehicle movement or braking. 
Because these types of software modules have the potential to be used in many different 
vehicles, it would be desirable to be able to house them in a library of components.

Because CBSE makes use of existing components, it can shorten development time 
and increase quality. Practitioners [Vit03] often attribute the following advantages to 
CBSE:

∙ Reduced lead time. It is faster to build complete applications from a pool of 
existing components.

∙ Greater return on investment (ROI). Sometimes savings can be realized by 
purchasing components rather than redeveloping the same functionality in-house.

∙ Leveraged costs of developing components. Reusing components in multiple 
applications allows the costs to be spread over multiple projects.

∙ Enhanced quality. Components are reused and tested in many different 
applications.

∙ Maintenance of component-based applications. With careful engineering, it 
can be relatively easy to replace obsolete components with new or enhanced 
components.

Use of components in CBSE is not without risks. Several of these include the 
following [Kau11]:

∙ Component selection risks. It is difficult to predict component behavior for 
black-box components, or there may be poor mapping of user requirements to 
the component architectural design.

∙ Component integration risks. There is a lack of interoperability standards 
between components; this often requires the creation of “wrapper code” to 
interface components.

∙ Quality risks. Unknown design assumptions made for the components makes 
testing more difficult, and this can affect system safety, performance, and 
reliability.

∙ Security risks. A system can be used in unintended ways, and system vulner-
abilities can be caused by integrating components in untested combinations.

∙ System evolution risks. Updated components may be incompatible with user 
requirements or contain additional undocumented features.

One of the challenges facing widespread component reuse is architectural mis-
match [Gar09a]—incompatibilities between assumptions made about components and 
their operating environments.7 These assumptions often focus on the component 

7 This can be a result of several forms of coupling that should be avoided whenever possible.
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control model, the nature of the component connections (interfaces), the architectural 
infrastructure itself, and the nature of the construction process.

Early detection of architectural mismatch can occur if stakeholder assumptions are 
explicitly documented. In addition, the use of a risk-driven process model emphasizes 
the definition of early architectural prototypes and points to areas of mismatch. Repair-
ing architectural mismatch is often very difficult without making use of mechanisms 
like wrappers or adapters.8 Sometimes it is necessary to completely redesign a com-
ponent interface or the component itself to remove coupling issues.

 11.5 co m p o n e n t Re fac to R i ng

Design concepts such as abstraction, hiding, functional independence, refinement, and 
structured programming, along with object-oriented methods, testing, and software 
quality assurance (SQA) all contribute to the creation of software components that 
will be easier to refactor. Most developers would agree that refactoring components 
to improve quality is a good practice. It is often hard to convince management that it 
is important to expend resources fixing components that are working correctly instead 
of adding new functionality to them.

In this book, we focus on the incremental design and delivery of system compo-
nents. Although there is no quantifiable relationship describing the effects of code 
changes on architectural quality, most software engineers agree that over time large 
numbers of changes to a system can lead to the creation of problematic structures in 
the code base. Failing to address these problems increases the amount of technical 
debt (Chapter 9) associated with the software system. Reducing this technical debt 
often involves architectural refactoring, which is generally perceived by developers as 
both costly and risky. You cannot simply break up large components into smaller 
components and expect to see an automatic increase in cohesion and a reduction in 
coupling that will reduce technical debt.

Large software systems may have thousands of components. Making use of data-
mining techniques to identify refactoring opportunities can be very beneficial to 
this work. Automated tools can analyze the source code of system components and 
make refactoring recommendations to developers, based on generic design rules 
known to be associated with architectural problems. But it is still up to the devel-
opers and their managers to decide which changes to accept and which to ignore 
[Lin16].

It turns out that many of the error-prone components in a software system are 
architecturally connected to one another. These flawed architectural connections tend 
to propagate defects among themselves and accumulate high maintenance costs. If it 
was possible to automatically identify the technical debt present in the system and 
the associated maintenance costs, it would be easier to convince developers and 
managers to spend time refactoring these components. Accomplishing this type of 

8 An adapter is a software device that allows a client with an incompatible interface to access 
a component by translating a request for service into a form that can access the original 
interface.
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work requires examining the change histories of the system components [Xia16]. For 
example, if two or three components are always checked out of the code repository 
for modifi cation at the same time, it may suggest the components share a common 
design defect.

 11.6 su m m a Ry

The component-level design process encompasses a sequence of activities that 
slowly reduces the level of abstraction with which software is represented. 
Component-level design ultimately depicts the software at a level of abstraction that 
is close to code.

Three different views of component-level design may be taken, depending on the 
nature of the software to be developed. The object-oriented view focuses on the elab-
oration of design classes that come from both the problem and infrastructure domain. 
The traditional view refines three different types of components or modules: control 
modules, problem domain modules, and infrastructure modules. In both cases, basic 
design principles and concepts that lead to high-quality software are applied. When 
considered from a process viewpoint, component-level design draws on reusable soft-
ware components and design patterns that are pivotal elements of component-based 
software engineering.

Several important principles and concepts guide the designer as classes are elabo-
rated. Ideas encompassed in the open-closed principle and the dependency inversion 
principle, along with concepts such as coupling and cohesion, guide the software 
engineer in building testable, implementable, and maintainable software components. 
To conduct component-level design in this context, classes are elaborated by specify-
ing messaging details, identifying appropriate interfaces, elaborating attributes, and 
defining data structures to implement them, describing processing flow within each 
operation, and representing behavior at a class or component level. In every case, 
design iteration (refactoring) is an essential activity.

Traditional component-level design requires the representation of data structures, 
interfaces, and algorithms for a program module in sufficient detail to guide in the 
generation of programming language source code. To accomplish this, the designer 
uses one of several design notations that represent component-level detail in either 
graphical, tabular, or text-based formats.

Component-level design for WebApps considers both content and functionality 
as a Web-based system will deliver it. Content design at the component level 
focuses on content objects and the ways they may be packaged for presentation to 
a WebApp end user. Functional design for WebApps focuses on processing func-
tions that manipulate content, perform computations, process database queries, and 
establish interfaces with other systems. All component-level design principles and 
guidelines apply.

Component-level design for mobile apps makes use of a multilayered architecture 
that includes a user interface layer, a business layer, and a data layer. If the mobile 
app requires the design of components that implement the business and/or data layers 
on the mobile device, the limitations of the physical characteristics of the device 
become important constraints on the design.
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Structured programming is a procedural design philosophy that constrains the num-
ber and type of logical constructs used to represent algorithmic detail. The intent of 
structured programming is to assist the designer in defining algorithms that are less 
complex and therefore easier to read, test, and maintain.

Component-based software engineering identifies, constructs, catalogs, and dis-
seminates a set of software components for an application domain. These components 
are then qualified, adapted, and integrated for use in a new system. Reusable compo-
nents should be designed within an environment that establishes standard data struc-
tures, interface protocols, and program architectures for each application domain.

Pro b l e m s a n d Po i n t s to Po n d e r

11.1. The term component is sometimes a difficult one to define. First provide a generic def-
inition, and then provide more explicit definitions for object-oriented and traditional software. 
Finally, pick three programming languages with which you are familiar and illustrate how each 
defines a component.

11.2. Why are control components necessary in traditional software and generally not required 
in object-oriented software?

11.3. Describe the OCP in your own words. Why is it important to create abstractions that 
serve as an interface between components?

11.4. Describe the DIP in your own words. What might happen if a designer depends too 
heavily on concretions?

11.5. Select three components that you have developed recently, and assess the types of cohe-
sion that each exhibits. If you had to define the primary benefit of high cohesion, what would 
it be?

11.6. Select three components that you have developed recently, and assess the types of 
coupling that each exhibits. If you had to define the primary benefit of low coupling, what 
would it be?

11.7. Develop (1) an elaborated design class, (2) interface descriptions, (3) an activity diagram 
for one of the operations within the class, and (4) a detailed statechart diagram for one of the 
SafeHome classes that we have discussed in earlier chapters.

11.8. What is a WebApp component?

11.9. Select the code from a small software component and represent it using an activity 
diagram.

11.10. Why is “chunking” important during the component-level design review process?

Design element: Quick Look icon magnifying glass: © Roger Pressman
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C H A P T E R

12

What is it? User experience (UX) design is the 
process of enhancing user satisfaction with a 
product by creating a usable, accessible, and 
pleasurable interaction between product and 
its users.

Who does it? A software engineer designs the 
user experience and user interface assisted 
by knowledgeable stakeholders.

Why is it important? If software is difficult to 
use, if it forces you into mistakes, or if it frus-
trates your efforts to accomplish your goals, 
you won’t like it, regardless of the computa-
tional power it exhibits, the content it delivers, 
or the functionality it offers. The user experi-
ence has to be right because it molds a user’s 
perception of the software.

What are the steps? User interface design be-
gins with the identification of user, task, and 
environmental requirements. These form the 
basis for the creation of a screen layout and 
navigation pathways through the information 
architecture. 

What is the work product? User persona and 
scenarios are created based on the desired 
customer journey. Low-fidelity prototypes and 
digital interface prototypes are developed, eval-
uated, and modified in an iterative fashion.

How do I ensure that I’ve done it right? An 
interface prototype is “test driven” by the 
users, and feedback from the test drive is 
used for the next iterative modification of 
the prototype.
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k e y 
c o n c e p t s

We live in a world of high-technology products, and virtually all of them—consumer 
electronics, industrial equipment, automobiles, corporate systems, military systems, 
mobile apps, WebApps, video games, and virtual reality simulations—require human 
interaction. If a product is to be successful, it must provide a positive user experience 
(UX). The product needs to exhibit good usability—a qualitative measure of the ease 
and efficiency with which a human can employ the functions and features offered by 
the high-technology product. A product should incorporate accessibility considerations 
such as assistive technologies when its specified users include people with a range of 
disabilities within a specified context of use.
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For the first three decades of the computing era, usability was not a dominant 
concern among those who built software. In his classic book on design, Donald 
Norman [Nor88] argued that it was time for a change in attitude: “To make 
technology that fits human beings, it is necessary to study human beings. But now 
we tend to study only the technology. As a result, people are required to conform 
to technology. It is time to reverse this trend, time to make technology that conforms 
to people.”

As technologists studied human interaction, two dominant issues arose. First, a 
set of golden rules (discussed in Section 12.2) were identified. These applied to 
all human interaction with technology products. Second, a set of interaction mech-
anisms were defined to enable software designers to build systems that properly 
implemented the golden rules. These interaction mechanisms, collectively called 
the user interface, have eliminated some of the many egregious problems associ-
ated with human interfaces. But even today, we all encounter user interfaces that 
are difficult to learn, difficult to use, confusing, counterintuitive, unforgiving, and 
in many cases, totally frustrating. Yet, someone spent time and energy building 
each of these interfaces, and it is not likely that the builder created these problems 
purposely.

User experience design is a set of incremental process activities that help the 
development team and the project stakeholders focus on providing a positive experi-
ence for users of the software product. UX design is broader than user interface design 
and usability or accessibility engineering. It must begin early in the project life cycle 
if it is to be effective. Developers waiting until the end of a project to add user inter-
face functionality are unlikely to provide a pleasurable experience for users.

In this chapter we will focus on user interface design issues in the context of user 
experience design. Readers wishing a more detailed coverage of UX should examine 
books by Shneiderman [Shn16], Nielsen [Nei93], and Norman [Nor13].

 12.1 us e r ex p e r i e nc e De s i g n eL e m e n t s

User experience design tries to ensure that no aspect of your software appears in the 
final release candidate without the explicit decision of the development team and other 
stakeholders to include it. This means taking into account every reasonable user action 
and expectation during every step of the development process. To make the task of 
crafting a positive user experience more manageable, Garret [Gar10] suggests break-
ing it down into component elements: strategy, scope, structure, skeleton, and surface. 
The relationships among these component elements and subcomponents are show in 
Figure 12.1.

The Garrett’s organization of UX design can be interpreted as follows for software 
product development:

∙ Strategy. Identifies user needs and customer business goals that form the 
basis for all UX design work (Section 12.4)

∙ Scope. Includes both the functional and content (e.g., information, media, 
services) requirements needed to realize a feature set consistent with the 
project strategy
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∙ Structure. Consists of the interaction design [e.g., how the system reacts 
in response to user actions (Section 12.1.2)] and information architecture 
[e.g., the organization of the content elements (Section 12.1.1)]

∙ Skeleton. Comprised of three components: information design (e.g., presenta-
tion of content in a way to make it understandable to the user), interface 
design [e.g., arranging interface screen objects to allow the user to work with 
the system functionality (Section 12.5)], navigation design (e.g., the set of 
screen elements that allow users to traverse the information architecture)

∙ Surface. Presents visual design or the appearance of the finished project to its 
users (Section 12.1.4)

Several cross-cutting aspects of UX design are of particular interest to software 
engineers: information architecture, user interaction design, usability engineering, and 
visual design.

12.1.1 Information Architecture
As an architectural designer, you must identify information (content) architecture and 
software architecture. The term information architecture is used to connote structures 
that lead to better organization, labeling, navigation, and searching of content objects. 
Content architecture focuses on the manner in which content objects (or composite 
objects such as screens or widgets) are structured for presentation and navigation. Soft-
ware architecture addresses the manner in which the application is structured to manage 
user interaction, handle internal processing tasks, effect navigation, and present content.

Architectural design (Chapter 10) is tied to the goals established for a software 
product, the content to be presented, the users who will visit, and the navigation 
philosophy that has been established. In most cases, architecture design is conducted 
in parallel with interface design, aesthetic design, and content design. Because the 
software architecture may have a strong influence on navigation, the decisions made 
during this design action will influence work conducted during navigation design. In 
many cases, a subject matter expert is needed to help project stakeholders organize 
the content items for efficient assimilation and traversal by product users.
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12.1.2 User Interaction Design
Interaction design focuses on the interface between a product and its user. Not too 
many years ago, the only way for a user to interact with a computer system was typ-
ing input on a keyboard and reading output on a display screen of some kind. Today 
the modes of input and output are quite varied and may include voice input, computer 
speech generation, touch input, 3D printed output, immersive augmented reality expe-
riences, and sensor tracking of users within their environment. Devices like this are 
needed to give users ways to control a computer system. Oftentimes these interaction 
devices interfere with the product providing a natural and pleasurable user experience.

User interaction should be defined by the stakeholders in the user stories (Chapter 7) 
created to describe how users can accomplish their goals using the software product. 
This suggests that user interaction design should also include a plan for how informa-
tion should be presented within such a system and how to enable the user to under-
stand that information. It is important to recall that the purpose of the user interface 
is to present just enough information to help the users decide what their next action 
should be to accomplish their goal and how to perform it.

We will describe the user interface design process in more detail in Section 12.5, 
but initially, there are important questions user interaction designers must ask when 
devising user interfaces:1

∙ What can users do with a mouse, finger, or stylus to interact with the inter-
face directly?

∙ What about the appearance (e.g., color, shape, size) gives users clues about 
how the user interaction functions?

∙ What information do you provide to let users know what will happen before 
they perform an action?

∙ Are there any constraints put in place to help prevent errors?
∙ Do error messages provide a way for users to correct a problem or explain 

why an error occurs?
∙ What feedback do users get once an action is performed?
∙ Are the interface elements a reasonable size to facilitate interaction?
∙ What familiar or standard formats should be used to display information and 

accept input?

12.1.3 Usability Engineering
Usability engineering is part of UX design work that defines the specification, design, 
and testing of the human-computer interaction portion of a software product. This 
software engineering action focuses on devising human-computer interfaces that have 
high usability. Usability engineering provides structured methods for achieving effi-
ciency and elegance in interface design. Terms like user friendliness do not provide 
much guidance here since this is often a very subjective judgment. If developers focus 
on making a product easy to learn, easy to use, and easy to remember over time, 
usability can be measured quantitatively and tested for improvements in usability.

1 See https://www.usability.gov/what-and-why/interaction-design.html.
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Accessibility is another aspect of usability engineering that should be considered 
when designing user interactions with the software. Accessibility is the degree to 
which people with special needs (e.g., sight impaired, deaf, elderly, cognitively 
impaired) are provided with a means to perceive, understand, navigate, and interact 
with computer products. The goal of accessibility design is to provide hardware or 
software tools that can remove barriers that may prevent users from successfully 
completing tasks supported by the software. Usability and accessibility are discussed 
in greater detail in Section 12.7.

12.1.4 Visual Design
Visual design, also called aesthetic design or graphic design, is an artistic endeavor 
that complements the technical aspects of the user experience design. Without it, a 
software product may be functional, but unappealing. With it, a product draws its 
users into a world that embraces them on a visceral, as well as an intellectual level.

But what is aesthetic? There is an old saying, “Beauty exists in the eye of the 
beholder.” This is particularly appropriate when aesthetic design for many games or 
mobile apps is considered. To perform effective aesthetic design, you should return 
to the user hierarchy developed as part of the requirements model (Chapter 8) and 
ask, “Who are the product’s users and what ‘look’ do they desire?”

Graphic design considers every aspect of the look and feel of a web or mobile app. 
The graphic design process begins with screen layout and proceeds into a consider-
ation of global color schemes; type fonts, sizes, and styles; the use of supplementary 
media (e.g., audio, video, animation); and all other aesthetic elements of an applica-
tion. Not every software engineer has artistic talent. If you fall into this category, hire 
an experienced graphic designer for aesthetic design work.

Graphic Design

The scene: Doug Miller’s office 
after the first SafeHome room 

layout interface prototype review.

The players: Doug Miller, SafeHome software 
engineering project manager, and Vinod 
 Raman, member of the SafeHome software 
engineering team.

The conversation:
Doug: What’s your impression of the new 
room layout design?
Vinod: I like it, but more importantly, our  
customers like it.
Doug: How much help did you get from the 
graphic designer we borrowed from  
marketing?

Vinod: A great deal actually. Marg has a great  
eye for page layout and suggested an awesome 
graphic theme for the app screens. Much better 
than what we came up with on our own.

Doug: That’s good. Any issues?

Vinod: We still have to create an alternate 
screen to take accessibility issues into  
account for some of our visually impaired  
users. But we would’ve had to do that for any 
app design we had.

Doug: Can we use Marg for that work as well?

Vinod: Yeah, she has a good understanding of 
usability and accessibility.

Doug: OK, I’ll set it up with marketing and bor-
row her a little longer.

safeHome
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 12.2 tH e go L D e n ru L e s

In his book on interface design, Theo Mandel [Man97] coins three golden rules:

 1. Place the user in control.
 2. Reduce the user’s memory load.
 3. Make the interface consistent.

These golden rules actually form the basis for a set of user interface design prin-
ciples that guide this important aspect of software design.

12.2.1 Place the User in Control
During a requirements gathering session for a major new information system, a key 
user was asked about the attributes of the window-oriented graphical interface.

“What I really would like,” said the user solemnly, “is a system that reads my mind. 
It knows what I want to do before I need to do it and makes it very easy for me to 
get it done. That’s all, just that.”

Your first reaction might be to shake your head and smile, but pause for a moment. 
There was absolutely nothing wrong with the user’s request. She wanted a system that 
reacted to her needs and helped her get things done. She wanted to control the com-
puter, not have the computer control her.

Most interface constraints and restrictions that are imposed by a designer are 
intended to simplify the mode of interaction. But for whom?

As a designer, you may be tempted to introduce constraints and limitations to 
simplify the implementation of the interface. The result may be an interface that is 
easy to build, but frustrating to use. Mandel [Man97] defines a number of design 
principles that allow the user to maintain control:

Define interaction modes in a way that does not force a user into unnec-
essary or undesired actions. An interaction mode is the current state of the 
interface. For example, if autocorrect is selected in a text messaging app 
menu, the software performs autocorrect continually. There is no reason to 
force the user to remain in autocorrect mode. The user should be able to enter 
and exit the mode with little or no effort.
Provide for flexible interaction. Because different users have different 
interaction preferences, choices should be provided. For example, software 
might allow a user to interact via keyboard commands, mouse movement, a 
digitizer pen, a multitouch screen, or voice recognition commands. But every 
action is not amenable to every interaction mechanism. Consider, for example, 
the difficulty of using a keyboard command (or voice input) to draw a 
complex shape.
Allow user interaction to be interruptible and undoable. Even when 
involved in a sequence of actions, the user should be able to interrupt the 
sequence to do something else (without losing the work that had been done). 
The user should also be able to “undo” any action or any linear sequence of 
actions.
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Streamline interaction as skill levels advance, and allow the interaction 
to be customized. Users often find that they perform the same sequence 
of interactions repeatedly. It is worthwhile to design a “macro” mechanism 
that enables an advanced user to customize the interface to facilitate 
interaction.
Hide technical internals from the casual user. The user interface should 
move the user into the virtual world of the application. The user should not 
be aware of the operating system, file management functions, or other arcane 
computing technology.
Design for direct interaction with objects that appear on the screen.  
The user feels a sense of control when able to manipulate the objects that are 
necessary to perform a task in a manner similar to what would occur if the 
object were a physical thing. For example, an application interface that allows 
a user to drag a document into the “trash” is an implementation of direct 
manipulation.

12.2.2 Reduce the User’s Memory Load
A well-designed user interface does not tax a user’s memory because the more a user 
has to remember, the more error-prone the interaction will be. Whenever possible, the 
system should “remember” pertinent information and assist the user with an interac-
tion scenario that assists recall. Mandel [Man97] defines design principles that enable 
an interface to reduce the user’s memory load:

Reduce demand on short-term memory. When users are involved in 
complex tasks, the demand on short-term memory can be significant. The 
interface should be designed to reduce the requirement to remember past 
actions, inputs, and results. This can be accomplished by providing visual 
cues that enable a user to recognize past actions, rather than having to  
recall them.
Establish meaningful defaults. The initial set of defaults should make 
sense for the average user, but a user should be able to specify individual 
preferences. However, a “reset” option should be available, enabling the 
redefinition of original default values.
Define shortcuts that are intuitive. When mnemonics are used to 
accomplish a system function (e.g., ctrl-C to invoke the copy function), 
the mnemonic should be tied to the action in a way that is easy to remember 
(e.g., first letter of the task to be invoked).
The visual layout of the interface should be based on a real-world 
metaphor. For example, a bill payment system should use a checkbook and 
check register metaphor to guide the user through the bill paying process. A 
room layout application should allow users to drag furniture from a visual 
catalog and arrange it on the screen using a touch interface. This enables the 
user to rely on well-understood visual cues, rather than memorizing an arcane 
interaction sequence.
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Disclose information in a progressive fashion. The interface should be 
organized hierarchically. That is, information about a task, an object, or some 
behavior should be presented first at a high level of abstraction. More detail 
should be presented after the user indicates interest.

Violating a User Interface Golden Rule

The scene: Vinod’s cubicle, as 
user interface design begins.

The players: Vinod and Jamie, members of 
the SafeHome software engineering team.

The conversation:
Jamie: I’ve been thinking about the surveil-
lance function interface.

Vinod (smiling): Thinking is good.

Jamie: I think maybe we can simplify matters 
some.

Vinod: Meaning?

Jamie: Well, what if we eliminate the floor plan 
entirely? It’s flashy, but it’s going to take seri-
ous development effort. Instead, we just ask 
the user to specify the camera he wants to see 
and then display the video in a video window.

Vinod: How does the homeowner remember 
how many cameras are set up and where they 
are?

Jamie (mildly irritated): He’s the homeowner; 
he should know.

Vinod: But what if he doesn’t?

Jamie: He should.

Vinod: That’s not the point . . . what if he forgets?

Jamie: Uh, we could provide a list of 
operational cameras and their locations.

Vinod: That’s possible, but why should he 
have to ask for a list?

Jamie: Okay, we provide the list whether he 
asks or not.

Vinod: Better. At least he doesn’t have to 
remember stuff that we can give him.

Jamie (thinking for a moment): But you like 
the floor plan, don’t you?

Vinod: Uh-huh. Especially since we are 
creating the room layout application in a 
related product.

Jamie: Which one will marketing like, do you 
think?

Vinod: You’re kidding, right?

Jamie: No.

Vinod: Duh . . . the one with the flash . . . they 
love sexy product features . . . they’re not 
interested in which is easier to build.

Jamie (sighing): Okay, maybe I’ll create paper 
prototypes of both.

Vinod: Good idea . . . then we let the 
customer decide.

safeHome

12.2.3 Make the Interface Consistent
The interface should present and acquire information in a consistent fashion. This 
implies that (1) all visual information is organized according to design rules that are 
maintained throughout all screen displays, (2) input mechanisms are constrained to a 
limited set that is used consistently throughout the application, and (3) mechanisms 
for navigating from task to task are consistently defined and implemented. Mandel 
[Man97] defines a set of design principles that help make the interface consistent:

Allow the user to put the current task into a meaningful context. Many 
interfaces implement complex layers of interactions with dozens of screen 
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images. It is important to provide indicators (e.g., window titles, graphical 
icons, consistent color coding) that enable the user to know the context of the 
work at hand. In addition, the user should be able to determine where he has 
come from and what alternatives exist for a transition to a new task.
Maintain consistency across a complete product line. A family of applica-
tions (i.e., a product line) should implement the same design rules so that 
consistency is maintained for all interaction.
If past interactive models have created user expectations, do not make 
changes unless there is a compelling reason to do so. Once a particular 
interactive sequence has become a de facto standard (e.g., the use of alt-S to 
save a file), the user expects this in every application encountered. A change 
(e.g., using alt-S to invoke scaling) will cause confusion.

The interface design principles discussed in this and the preceding sections provide 
you with basic guidance. In the sections that follow, you’ll learn about the user expe-
rience design process itself.

 12.3 us e r in t e r fac e ana Lys i s  a n D De s i g n

Although UX design work is not only about the user interface, design of the user 
interface is a good place to start understanding the UX process. The overall process 
for analyzing and designing a user interface begins with the creation of different 
models of system function (as perceived from the outside). You begin by delineating 
the human- and computer-oriented tasks that are required to achieve system function 
and then considering the design issues that apply to all interface designs. Tools are 
used to prototype and ultimately implement the design model, and the result is eval-
uated by end users for quality.

12.3.1 Interface Analysis and Design Models
Four different models come into play when a user interface is to be analyzed and 
designed. A human engineer (or the software engineer) establishes a user model, the 
software engineer creates a design model, the end user develops a mental image that 
is often called the user’s mental model or the system perception, and the implement-
ers of the system create an implementation model. Unfortunately, each of these mod-
els may differ significantly. Your role, as an interface designer, is to reconcile these 
differences and derive a consistent representation of the interface.

The user model establishes the profile of end users of the system. To build an 
effective user interface, “all design should begin with an understanding of the intended 
users, including profiles of their age, gender, physical abilities, education, cultural or 
ethnic background, motivation, goals and personality” [Shn16]. In addition, users can 
be categorized as novices; knowledgeable, intermittent users; or knowledgeable 
frequent users. Many UX designers like to build user profiles or personas (Section 12.4.2) 
as way of capturing what is known about each class of users.

The user’s mental model (system perception) is the image of the system that end 
users carry in their heads. For example, if the user of a mobile app that rates restau-
rants were asked to describe its operation, the system perception would guide the 
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response. The accuracy of the description will depend on the user’s profile (e.g., 
novices would provide a sketchy response at best) and overall familiarity with software 
in the application domain. A user who understands restaurant rating apps fully but 
has worked with the specific app only a few times might actually be able to provide 
a more complete description of its function than the novice who has spent days trying 
to apply the app effectively.

The implementation model combines the outward manifestation of the computer-
based system (the look and feel of the interface), coupled with all supporting infor-
mation (books, manuals, videotapes, help files) that describes interface syntax and 
semantics. When the implementation model and the user’s mental model are coinci-
dent, users generally feel comfortable with the software and use it effectively. To 
accomplish this “melding” of the models, the design model must have been devel-
oped to accommodate the information contained in the user model, and the imple-
mentation model must accurately reflect syntactic and semantic information about 
the interface.

12.3.2 The Process
The analysis and design process for user interfaces is iterative and can be represented 
using a process model similar to the one discussed in Chapter 4. Referring to 
Figure 12.2, the user interface analysis and design process begins at the interior of 
the spiral and encompasses four distinct framework activities [Man97]: (1) interface 
analysis and modeling, (2) interface design, (3) interface construction, and (4) inter-
face validation. The spiral shown in Figure 12.2 implies that each of these tasks will 
occur more than once, with each pass around the spiral representing additional elab-
oration of requirements and the resultant design. In most cases, the construction 
activity involves prototyping—the only practical way to validate what has been 
designed.

Figure 12.2
The user 
interface 
design process

Interface Validation

Interface DesignInterface Construction

Interface Analysis and Modeling
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Interface analysis focuses on the profile of the users who will interact with the 
system. Skill level, business understanding, and general receptiveness to the new sys-
tem are recorded; and different user categories are defined. For each user category, 
requirements are elicited. In essence, you work to understand the system perception 
(Section 12.4.2) for each class of users.

Once general requirements have been defined, a more detailed task analysis is 
conducted. Those tasks that the user performs to accomplish the goals of the system 
are identified, described, and elaborated (over a number of iterative passes through 
the spiral). Task analysis is discussed in more detail in Section 12.4.3. Finally, analy-
sis of the user environment focuses on the characteristics of the physical work envi-
ronment (e.g., location, lighting, position constraints).

The information gathered as part of the analysis action is used to create an 
analysis model for the interface. Using this model as a basis, the design activity 
commences.

The goal of interface design is to define a set of interface objects and actions (and 
their screen representations) that enable a user to perform all defined tasks in a man-
ner that meets every usability goal defined for the system. Interface design is discussed 
in more detail in Section 12.5.

Interface construction normally begins with the creation of a prototype that enables 
usage scenarios to be evaluated. As the iterative design process continues, a user 
interface tool kit may be used to complete the construction of the interface.

Interface validation focuses on (1) the ability of the interface to implement every 
user task correctly, to accommodate all task variations, and to achieve all general user 
requirements; (2) the degree to which the interface is easy to use and easy to learn, 
and (3) the user’s acceptance of the interface as a useful tool in her work.

As we have already noted, the activities described in this section occur iteratively. 
Therefore, there is no need to attempt to specify every detail (for the analysis or design 
model) on the first pass. Subsequent passes through the process elaborate task detail, 
design information, and the operational features of the interface.

 12.4 us e r ex p e r i e nc e ana Lys i s 2

A key tenet of all software engineering process models is this: Understand the prob-
lem before you attempt to design a solution. In the case of user experience design, 
understanding the problem means understanding (1) the people (end users) who will 
interact with the system through the interface, (2) the tasks that end users must per-
form to do their work, (3) the content that is presented as part of the interface, and 
(4) the environment in which these tasks will be conducted. In the sections that follow, 
we examine each of these elements of UX analysis with the intent of establishing a 
solid foundation for the interface design tasks that follow.

2 It is reasonable to argue that this section should be placed in Chapter 8, since requirements 
analysis issues are discussed there. It has been positioned here because user experience 
analysis and design are intimately connected to one another, and the boundary between the 
two is often fuzzy.
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12.4.1 User Research
The phrase user interface is probably all the justification needed to spend some time 
understanding the user before worrying about technical matters. Earlier we noted that 
each user has a mental image of the software that may be different from the mental 
image developed by other users. In addition, the user’s mental image may be vastly 
different from the software engineer’s design model. The only way that you can get 
the mental image and the design model to converge is to work to understand the users 
themselves as well as how these people will use the system. Information from a broad 
array of sources (user interviews, sales input, marketing input, support input) can be 
used to accomplish this.

Many UX developers like to create a customer journey map (Figure 12.3) as a 
means of outlining their goals and plans for the software product. The customer jour-
ney map shows how the users will experience the software product as if they were 
traveling on a physical trip with touchpoints (milestones), obstacles, and ways to 
monitor their progress. Christensen [Chr13] suggests the following steps to create a 
customer journey map:

 1. Gather stakeholders. Locate all affected parties needed to ensure diverse 
viewpoints are included in the customer journey map.

 2. Conduct research. Collect all information you can about all the things 
(thoughts, feelings, actions, motivations, expectations, goals, needs, 

yyybyyyOK, let’s start bbyby
orooooplacing the flooooo

and walls of theeeheeehe
room.

Well, I placed my
sensors but can
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part of the room?omom
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door.
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design. I didn't
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out the optimal room layout
for sensor placement.
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for personal design taste and
minimal sensor placement.

Figure 12.3 Customer journey map
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pain points, barriers, questions) users may experience as they use the 
software product and define your customer phases. The customer phases 
will become your touchpoints and are shown as labeled squares in 
Figure 12.3.

 3. Build the model. Create a visualization of the touch points (any interaction 
between the user and product), channels (interaction devices or information 
streams), and actions taken by the customer (user).

 4. Refine the design. Recruit a designer to make the deliverable visually appeal-
ing and ensure that customer phases are identified clearly.

 5. Identify gaps. Note any gaps in the customer experience or points of friction 
or pain (places with information overlap or poor transition between phases).

 6. Implement your findings. Assign responsible parties to bridge the gaps and 
resolve pain points found.

12.4.2 User Modeling
In previous chapters, you learned that the user story describes the manner in which 
an actor (in the context of user interface design, an actor is always a person) inter-
acts with a system. When used as part of task analysis, the user story is refined to 
become a formal use case to show how an end user performs some specific 
work-related task. In most instances, the use case is written in an informal style (a 
simple paragraph) in the first person. For example, assume that a small software 
company wants to build a computer-aided design system explicitly for interior 
designers. To get a better understanding of how they do their work, actual interior 
designers are asked to describe a specific design function. When asked, “How do 
you decide where to put furniture in a room?” an interior designer writes the 
following informal user story:

I begin by sketching the floor plan of the room, the dimensions and the location of 
windows and doors. I’m very concerned about light as it enters the room, about the 
view out of the windows (if it’s beautiful, I want to draw attention to it), about the 
running length of an unobstructed wall, about the flow of movement through the 
room. I then look at the list of furniture my customer and I have chosen.  .  .  . Then, 
I draw a rendering (a 3-D picture) of the room to give my customer a feel for what 
it’ll look like.

This user story provides a basic description of one important work task for the 
computer-aided design system from the perspective of one of its users. From it, you 
can extract tasks, objects, and the overall flow of the interaction. In addition, other 
features of the system that would please the interior designer might also be con-
ceived. For example, a digital photo could be taken looking out each window in a 
room. When the room is rendered, the actual outside view could be represented 
through each window. However, if there is more than one type of user, it may be 
important to define more than one set of user goals for the system described by the 
user stories.

User experience designers often create fictional user personas to summarize the 
assumptions made for the different types of users. A user persona is a representation 
of the goals and behavior of a hypothesized group of users. Personas are often 
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synthesized from data collected during interviews with users. Figure 12.4 shows an 
example of a user persona. Personas are often used to improve product designers’ 
abilities to see through the eyes of target users [Hil17].

Lene Nielsen [Nie13] describes four tasks that occur during the general process of 
creating and using personas to guide the user experience design process:

∙ Data collection and analysis. Stakeholders collect as much information about 
the proposed product users as possible to determine the user groups and begin 
to emphasize what each group needs.

∙ Describe personas. The developers need to decide how many personas it is 
reasonable to create, if they will create more than one, and which persona 
will be their primary focus. The developers create and name each persona 
including details about their education, lifestyle, values, goals, needs, limita-
tions, desires, attitudes, and behavior patterns.

∙ Develop scenarios. Scenarios are user stories about how personas will use the 
product being developed. They may focus on the touchpoints and obstacles 
described in the customer journey. They should show how personas would 
overcome problems using the system resources if they were the actual users 
of the system.

∙ Acceptance by stakeholders. Often this is done by validating the scenarios 
using a review technique or demonstration called cognitive walkthrough.3 
Stakeholders assume the role defined by the persona and work through a 
scenario using a system prototype.

Figure 12.4
Persona 
example

Works as an
elementary teacher in a
small midwestern city.

Is 38 years old and
holds a masters in
elementary education.

Prefers open-design
concepts and shabby
chic interior design.

Elizabeth

Used to working with
computers, but has
little experience with
virtual reality and tends
to get motion sickness.

Wants to renovate her
house with her design
preferences and added
security features, but
needs help visualizing
layouts and lines of
sight.

3 A cognitive walkthrough is a method that evaluates whether the order of cues and prompts 
in a system supports the way people process tasks and anticipates the “next steps” of a 
system by having users verbalize their decision-making process while using a system rep-
resentation to complete a user goal.
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12.4.3 Task Analysis
The user’s goal is to accomplish one or more tasks via the software product. To 
accomplish this, the software user interface must provide mechanisms that allow the 
user to achieve her goal. The goal of task or scenario analysis is to answer the 
following questions:

∙ What work will the user perform in specific circumstances?
∙ What tasks and subtasks will be performed as the user does the work?

Use Cases for User Interface Design

 The scene: Vinod’s cubicle, 
as user interface design 
continues.

The players: Vinod and Jamie, members of 
the SafeHome software engineering team.

The conversation:
Jamie: I pinned down our marketing contact 
and had her write a user story for the surveil-
lance interface.

Vinod: From whose point of view?

Jamie: The homeowner, who else is there?

Vinod: There’s also the system administrator 
role. Even if it’s the homeowner playing the 
role, it’s a different point of view. The 
administrator sets the system up, configures 
stuff, lays out the floor plan, places the 
cameras . . .

Jamie: All I had her do was play the role of 
the homeowner when he wants to see video.

Vinod: That’s okay. It’s one of the major be-
haviors of the surveillance function interface. 
But we’re going to have to examine the system 
administrator’s behavior as well.

Jamie (irritated): You’re right.

 (Jamie leaves to find the marketing person. 
She returns a few hours later.)

Jamie: I was lucky. I found her, and we worked 
through the administrator’s user story together 
using the homeowner persona. Basically, we’re 
going to define “administration” as one 

function that’s applicable to all other Safe-
Home functions. Here’s what we came up with.

 (Jamie shows the user story to Vinod.)

User story: I want to be able to set up or edit 
the system layout at any time. When I set up the 
system, I select an administration function. It 
asks me whether I want to do a new setup or 
whether I want to edit an existing setup. If I se-
lect a new setup, the system displays a drawing 
screen that will enable me to draw the floor plan 
onto a grid. There will be icons for walls, win-
dows, and doors so that drawing is easy. I just 
stretch the icons to their appropriate lengths. 
The system will display the lengths in feet or 
meters (I can select the measurement system). 
I can select from a library of sensors and cam-
eras and place them on the floor plan. I get to 
label each, or the system will do automatic la-
beling. I can establish settings for sensors and 
cameras from appropriate menus. If I select edit, 
I can move sensors or cameras, add new ones 
or delete existing ones, edit the floor plan, and 
edit the setting for cameras and sensors. In ev-
ery case, I expect the system to do consistency 
checking and to help me avoid mistakes.

Vinod (after reading the scenario): Okay, 
there are probably some useful design pat-
terns [Chapter 14] or reusable components  
for GUIs for drawing programs. I’ll betcha 
50 bucks we can implement some or most 
of the administrator interface using them.

Jamie: Agreed. I’ll check it out.

safeHome
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∙ What specific problem domain objects will the user manipulate as work is 
performed?

∙ What is the sequence of work tasks—the workflow?
∙ What is the hierarchy of tasks?

To answer these questions, you must draw upon techniques that we have discussed 
earlier in this book, but in this instance, these techniques are applied to the user 
interface.

In Chapter 8, we discussed stepwise elaboration (also called functional decomposi-
tion or stepwise refinement) as a mechanism for refining the processing tasks that are 
required for software to accomplish some desired function. Task analysis for interface 
design uses an elaborative approach that assists in understanding the human activities 
the user interface must accommodate.

First, you should define and classify the human tasks that are required to accom-
plish the goal of the system or app. For example, let’s reconsider the computer-aided 
design system for interior designers discussed earlier. By observing an interior designer 
at work, you notice that interior design comprises a number of major activities: fur-
niture layout (note the user story discussed earlier), fabric and material selection, wall 
and window coverings selection, presentation (to the customer), costing, and shopping. 
Each of these major tasks can be elaborated into subtasks. For example, using infor-
mation contained in the use case, furniture layout can be refined into the following 
tasks: (1) draw a floor plan based on room dimensions, (2) place windows and doors 
at appropriate locations, (3a) use furniture templates to draw scaled furniture outlines 
on the floor plan, (3b) use accents templates to draw scaled accents on the floor plan, 
(4) move furniture outlines and accent outlines to get the best placement, (5) label all 
furniture and accent outlines, (6) draw dimensions to show location, and (7) draw a 
perspective-rendering view for the customer. A similar approach could be used for 
each of the other major tasks.

Subtasks 1 to 7 can each be refined further. Subtasks 1 to 6 will be performed by 
manipulating information and performing actions within the user interface. On the 
other hand, subtask 7 can be performed automatically in software and will result in 
little direct user interaction.4 The design model of the interface should accommodate 
each of these tasks in a way that is consistent with the user model (the profile of a 
“typical” interior designer) and system perception (what the interior designer expects 
from an automated system).

12.4.4 Work Environment Analysis
Hackos and Redish [Hac98] discuss work environment analysis this way: “People do 
not perform their work in isolation. They are influenced by the activity around them, 
the physical characteristics of the workplace, the type of equipment they are using, 
and the work relationships they have with other people.” In some applications the user 
interface for a computer-based system is placed in a “user-friendly location” 

4 However, this may not be the case. The interior designer might want to specify the perspective 
to be drawn, the scaling, the use of color, and other information. The use case related to 
drawing perspective renderings would provide the information you need to address this task.
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(e.g., proper lighting, good display height, easy keyboard access), but in others (e.g., a 
factory floor or an airplane cockpit), lighting may be suboptimal, noise may be a 
factor, a keyboard or mouse or touch screen may not be an option, or display place-
ment may be less than ideal. The interface designer may be constrained by factors 
that mitigate against ease of use.

In addition to physical environmental factors, the workplace culture also comes 
into play. Will system interaction be measured in some manner (e.g., time per transac-
tion or accuracy of a transaction)? Will two or more people have to share information 
before an input can be provided? How will support be provided to users of the system? 
These and many related questions should be answered before the interface design 
commences.

 12.5 us e r ex p e r i e nc e De s i g n

As with all iterative processes, there is not a clean division between analysis and 
design. Figure 12.5 illustrates the practice of cycling between user research and 
design, as well as cycling between design and construction. The emphasis is on creat-
ing incremental prototypes and by testing it with actual users.

Google has defined a 5-day sprint for doing UX design [Kna16], [Goo18], [DXL18]. 
The steps are outlined below with one day allocated to each:

∙ Understand. Encompasses the user research activities in which the team 
gathers the information on the problem to be solved (user needs and business 
goals) for the software product; one way of doing this is to have a series of 

Figure 12.5
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lightning talks (10- to 15-minute presentations) by domain experts on topics 
such as the business case, competing products, and user profiles. This infor-
mation is captured on whiteboards (e.g., as customer journey maps, personas, 
or user task workflow) and remains posted for easy reference throughout the 
sprint.

∙ Sketch. Individual team members (including all stakeholders) are given the 
time and space needed to brainstorm solutions to the problems discovered in 
the understand phase. It is best to do this on paper as quick visual images. 
Paper drawings and notes are easy to generate, easy to modify, and quite 
inexpensive. This phase generates lots of ideas because participant ideas are 
not restricted when creating their solutions.

∙ Decide. Each stakeholder presents his solution sketch, and the team votes to 
determine the solutions that should be tackled in the prototyping activities 
that will follow. If there is not a clear consensus following the voting, the 
development team may decide to consider assumptions that involve constraints 
posed by the budget, user profiles, available resources (both human and tech-
nological), and product business goals.

∙ Prototype. The prototype created during this phase may be a minimally via-
ble product based on the solution selected from the sketch phase, or it may be 
based on the portions of the customer journey map or storyboard you want to 
evaluate with potential users in the validate phase. Think of your prototype as 
an experiment developed to test a hypothesis. That means the team should be 
developing test cases based on the user stories as the prototype is being built. 
There is no need to create a fully functional backend for this user interface 
prototype. It would be best to build a digital prototype using a simple tool 
(e.g., Keynote5). In some cases it may be desirable to create a paper prototype 
using one of the developers to provide the screen sequences to the users if a 
prototyping tool is not available.

∙ Validate. Watching users try out your prototype is the best way to discover 
major issues with its UX design, which in turn lets you start iterating imme-
diately. In a UX design sprint everyone on the development team observes the 
validation sessions, not just the UX expert or test case designer. This is criti-
cal to capturing potential learning opportunities by exposing product decision 
makers to user feedback in real time. We will talk more about prototype 
reviews and user testing in Section 12.7.

 12.6 us e r in t e r fac e De s i g n

The definition of interface objects and the actions that are applied to them is an 
important step in interface design. To accomplish this, user scenarios are parsed in 
much the same way as described in Chapter 9. That is, a use case is written. Nouns 
(objects) and verbs (actions) are isolated to create a list of screen objects and systems 
actions.

5 See https://keynotopia.com/.
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Once the objects and actions have been defined and elaborated iteratively, they are 
categorized by type. Target, source, and application objects are identified. A source 
object (e.g., a sensor icon) is dragged and dropped onto a target object (e.g., a screen 
location). The implication of this action is to place a sensor on the room floor plan. 
An application object represents application-specific data that are not directly manip-
ulated as part of screen interaction. For example, the code used to simulate the cover-
age of the room sensors allow for testing of the sensor placement. The code would be 
associated with each sensor through some type of logical link when the object is placed 
on the screen, but the code itself is not dragged and dropped via user interaction.

When you are satisfied that all important objects and actions have been defined 
(for one design iteration), screen layout is performed. Like other interface design 
activities, screen layout is an interactive process in which graphical design and place-
ment of icons, definition of descriptive screen text, specification and titling for win-
dows, and definition of major and minor menu items are conducted. If a real-world 
metaphor is appropriate for the application, it is specified at this time, and the layout 
is organized in a manner that complements the metaphor.

12.6.1 Applying Interface Design Steps
To provide a brief illustration of how design might proceed to create a prototype of 
a user interface, let’s consider a user scenario for the SafeHome system (discussed in 
earlier chapters). A preliminary user story (written by the homeowner) for the inter-
face follows:

Preliminary user story: I want to gain access to my SafeHome system from any remote 
location via the Internet. Using browser software operating on my mobile device (while 
I’m at work or traveling), I can determine the status of the alarm system, arm or disarm 
the system, reconfigure security zones, and view different rooms within the house via 
preinstalled video cameras.

To access SafeHome from a remote location, I provide an identifier and a password. 
These define levels of access (e.g., all users may not be able to reconfigure the system) 
and provide security. Once validated, I can check the status of the system and change 
the status by arming or disarming SafeHome. I can reconfigure the system by displaying 
a floor plan of the house, viewing each of the security sensors, displaying each currently 
configured zone, and modifying zones as required. I can view the interior of the house 
via strategically placed video cameras. I can pan and zoom each camera to provide dif-
ferent views of the interior.

Based on this user story, the following homeowner tasks, objects, and data items 
are identified:

∙ Accesses the SafeHome system
∙ Enters an ID and password to allow remote access
∙ Checks system status
∙ Arms or disarms SafeHome system
∙ Displays floor plan and sensor locations
∙ Displays zones on floor plan
∙ Changes zones on floor plan
∙ Displays video camera locations on floor plan



252 PART TWO MODELING

∙ Selects video camera for viewing
∙ Views video images (four frames per second)
∙ Pans or zooms the video camera

Objects (boldface) and actions (italics) are extracted from this list of homeowner 
tasks. The majority of objects noted are application objects. However, video camera 
location (a source object) is dragged and dropped onto video camera (a target object) 
to create a video image (a window with video display).

A preliminary sketch of the screen layout for video monitoring is created 
(Figure 12.6).6 To invoke the video image, a video camera location icon, C, located in 
the floor plan displayed in the monitoring window is selected. In this case a camera 
location in the living room (LR) is then dragged and dropped onto the video camera 
icon in the upper-left-hand portion of the screen. The video image window appears, 
displaying streaming video from the camera located in the LR. The zoom and pan 
control slides are used to control the magnification and direction of the video image. 
To select a view from another camera, the user simply drags and drops a different 
camera location icon into the camera icon in the upper-left-hand corner of the screen.

The layout sketch shown would have to be supplemented with an expansion of each 
menu item within the menu bar, indicating what actions are available for the video 
monitoring mode (state). A complete set of sketches for each homeowner task noted 
in the user scenario would be created during the interface design.

12.6.2 User Interface Design Patterns
Graphical user interfaces have become so common that a wide variety of user interface 
design patterns has emerged. A design pattern is an abstraction that prescribes a 
design solution to a specific, well-bounded design problem.

6 Note that this differs somewhat from the implementation of these features in earlier chapters. 
This might be considered a first-draft design based on the new room layout app.

Figure 12.6
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As an example of a commonly encountered interface design problem, consider a 
situation in which a user must enter one or more calendar dates, sometimes months 
in advance. There are many possible solutions to this simple problem, and a number 
of different patterns that might be proposed. Laakso [Laa00] suggests a pattern called 
CalendarStrip that produces a continuous, scrollable calendar in which the current 
date is highlighted and future dates may be selected by picking them from the calen-
dar. The calendar metaphor is well known to every user and provides an effective 
mechanism for placing a future date in context.

A vast array of interface design patterns has been proposed over the past few 
decades.7 A more detailed discussion of user interface design patterns is presented in 
Chapter 14. In addition, Punchoojit [Pun17] provides a systematic review of many 
mobile device user interface design patterns (e.g., zooming, lateral access, revealing 
information in context, control, and conformation).

 12.7 De s i g n eva Luat i o n

Once you create an operational user interface prototype, it must be evaluated to deter-
mine whether it meets the needs of the user. Evaluation can span a formality spectrum 
that ranges from an informal “test drive,” in which a user provides impromptu feed-
back to a formally designed study that uses statistical methods for the evaluation of 
questionnaires completed by a population of end users.

The user interface evaluation cycle takes the form shown in Figure 12.7. After the 
design model has been completed, a first-level prototype is created. The prototype is 
evaluated by the user,8 who provides you with direct comments about the efficacy of 
the interface. In addition, if formal evaluation techniques are used (e.g., questionnaires, 
rating sheets), you can extract information from these data (e.g., 80 percent of all users 
did not like the mechanism for saving data files). Design modifications are made based 
on user input, and the next level prototype is created. The evaluation cycle continues 
until no further modifications to the interface design are necessary. We discuss special-
ized prototype review and testing techniques for graphical user interfaces in Chapter 21.

12.7.1 Prototype Review
The prototyping approach is effective, but is it possible to evaluate the quality of a 
user interface before a prototype is built?9 If you identify and correct potential prob-
lems early, the number of loops through the evaluation cycle will be reduced and 
development time will shorten. If a design model (user stories, storyboard, personas, 

7 Useful suggestions for sites that address user interface patterns can be found at https://www.
interaction-design.org/literature/article/10-great-sites-for-ui-design-patterns.

8 It is important to note that experts in ergonomics and interface design may also conduct 
reviews of the interface. These reviews are called heuristic evaluations or cognitive 
walk-throughs.

9 Some software engineers prefer to develop a low-fidelity mockup of the user interface (UI) 
called a paper prototype to allow stakeholders to test the UI concept before committing any 
programming resources. The process is described here: http://www.paperprototyping.com/
what_examples.html.
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etc.) of the interface has been created, a number of evaluation criteria [Mor81] can 
be applied during early design reviews:

 1. The length and complexity of the requirements model or written specification 
of the system and its interface provide an indication of the amount of learning 
required by users of the system.

 2. The number of user tasks specified and the average number of actions per task 
provide an indication of interaction time and the overall efficiency of the system.

 3. The number of actions, tasks, and system states indicated by the design model 
imply the memory load on users of the system.

 4. Interface style, help facilities, and error-handling protocol provide a general 
indication of the complexity of the interface and the degree to which it will 
be accepted by the user.

Figure 12.7
The interface 
design 
evaluation 
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The scene: Doug Miller’s office.

The players: Doug Miller, manager of the 
SafeHome software engineering group, and 
Vinod Raman, a member of the SafeHome 
product software engineering team.

The conversation:
Doug: Vinod, have you and the team had a 
chance to review the SafeHomeAssured.com 
e-commerce interface prototype?

safeHome
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Vinod: Yeah . . . we all went through it from a 
technical point of view, and I have a bunch of 
notes. I e-mailed ‘em to Sharon [manager of 
the WebApp team for the outsourcing vendor 
for the SafeHome e-commerce website] 
yesterday.

Doug: You and Sharon can get together and 
discuss the small stuff . . . give me a summary 
of the important issues.

Vinod: Overall, they’ve done a good job. 
Nothing ground breaking, but it’s a typical 
e-commerce interface, decent aesthetics, rea-
sonable layout; they’ve hit all the important 
functions . . .

Doug (smiling ruefully): But?

Vinod: Well, there are a few things. . . .

Doug: Such as?

Vinod (showing Doug a sequence of story-
boards for the interface prototype): Here’s 
the major functions menu that’s displayed on 
the home page:

Learn about SafeHome.
Describe your home.
Get SafeHome component  
recommendations.
Purchase a SafeHome system.
Get technical support.

 The problem isn’t with these functions. 
They’re all okay, but the level of abstraction 
isn’t right.

Doug: They’re all major functions,  
aren’t they?

Vinod: They are, but here’s the thing . . .  
you can purchase a system by inputting a 
list of components . . . no real need to 
describe the house if you don’t want to. 
I’d suggest only four menu options on the  
home page:

Learn about SafeHome.
Specify the SafeHome system  
you need.
Purchase a SafeHome system.
Get technical support.

 When you select Specify the SafeHome sys-
tem you need, you’ll then have the following 
options:

Select SafeHome components.
Get SafeHome component 
recommendations.

 If you’re a knowledgeable user, you’ll select 
components from a set of categorized pull-
down menus for sensors, cameras, control 
panels, and more. If you need help, you’ll ask 
for a recommendation and that will require that 
you describe your house. I think it’s a bit more 
logical.

Doug: I agree. Have you talked with Sharon 
about this?

Vinod: No, I want to discuss this with market-
ing first; then I’ll give her a call.

12.7.2 User Testing
Once the first interactive prototype is built, you can collect a variety of qualitative 
and quantitative data that will assist in evaluating the interface. To collect qualitative 
data, questionnaires that allow users to assess the interface prototype can be distrib-
uted. If quantitative data are desired, a form of time-study analysis can be conducted. 
Users are observed during interaction, and data—such as number of tasks correctly 
completed over a standard time period, frequency of actions, sequence of actions, time 
spent “looking” at the display, number and types of errors, error recovery time, time 
spent using help, and number of help references per standard time period—are col-
lected and used as a guide for interface modification.
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We discuss the task of testing virtual environments in more detail in Chapter 21. 
However, a complete discussion of user interface evaluation methods is beyond the 
scope of this book. For further information, see [Gao14], [Hus15], [Hac98], and [Sto05].

 12.8 usa b i L i t y a n D ac c e s s i b i L i t y

Every user interface—whether it is designed for the Web, a mobile device, a traditional 
software application, a consumer product, or an industrial device—should exhibit the 
usability characteristics that are described in the sidebar on usability. Dix [Dix99] 
argues that mobile interfaces should answer three primary questions: Where am I? 
What can I do now? Where have I been and where can I go? Answers to these ques-
tions allow a user to understand context and navigate more effectively through the app.

Usability
In an insightful paper on usability, Larry 
Constantine [Con95] asks a question 

that has significant bearing on the subject: “What 
do users want, anyway?” He answers this way:

What users really want are good tools. All 
software systems, from operating systems and 
languages to data entry and decision support ap-
plications, are just tools. End users want from the 
tools we engineer for them much the same as we 
expect from the tools we use. They want systems 
that are easy to learn and that help them do their 
work. They want software that doesn’t slow them 
down, that doesn’t trick or confuse them, that 
does make it easier to make mistakes or harder 
to finish the job.

Constantine argues that usability is not derived 
from aesthetics, state-of-the-art interaction mech-
anisms, or built-in interface intelligence. Rather, it 
occurs when the architecture of the interface fits 
the needs of the people who will be using it.

A formal definition of usability is somewhat 
illusive. Donahue and his colleagues [Don99] 
define it in the following manner: “Usability is a 
measure of how well a computer system . . . 
facilitates learning; helps learners remember what 
they’ve learned; reduces the likelihood of errors; 
enables them to be efficient, and makes them 
satisfied with the system.”

The only way to determine whether “usability” 
exists within a system you are building is to con-
duct usability assessment or testing. Watch users 

interact with the system and answer the following 
questions [Con95]:

∙ Is the system usable without continual help or 
instruction?

∙ Do the rules of interaction help a knowledge-
able user to work efficiently?

∙ Do interaction mechanisms become more flex-
ible as users become more knowledgeable?

∙ Has the system been tuned to the physical and 
social environment in which it will be used?

∙ Is the user aware of the state of the system? 
Does the user know where she is at all times?

∙ Is the interface structured in a logical and 
consistent manner?

∙ Are interaction mechanisms, icons, and proce-
dures consistent across the interface?

∙ Does the interaction anticipate errors and help 
the user correct them?

∙ Is the interface tolerant of errors that are 
made?

∙ Is the interaction simple?

If each of these questions is answered yes, it is 
likely that usability has been achieved.

Among the many measurable benefits derived 
from a usable system are [Don99]: increased sales 
and customer satisfaction, competitive advantage, 
better reviews in the media, better word of mouth, 
reduced support costs, improved end-user pro-
ductivity, reduced training costs, reduced docu-
mentation costs, and reduced likelihood of 
litigation from unhappy customers.

info
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12.8.1 Usability Guidelines
The user interface of a software product is its “first impression.” Regardless of the 
value of its content, the sophistication of its processing capabilities and services, and 
the overall benefit of the application itself, a poorly designed interface will disappoint 
the potential user and may, in fact, cause the user to go elsewhere. Because of the 
sheer volume of competing Web and mobile apps in virtually every subject area, the 
interface must “grab” a potential user immediately.

There are, of course, important differences between conventional and mobile apps. By 
virtue of the physical constraints imposed by small mobile devices (e.g., smartphones), 
the mobile interface designer must compress interaction in a focused manner. However, 
the basic principles discussed in this section continue to apply.

Bruce Tognozzi [Tog01] defines a set of fundamental design principles that lead 
to better usability:10

Anticipation. An application should be designed so that it anticipates the user’s 
next move. For example, a user has requested a content object that presents informa-
tion about a printer driver for a new version of an operating system. The designer of 
the WebApp should anticipate that the user might request a download of the driver 
and should provide navigation facilities that allow this to happen directly.

Communication. The interface should communicate the status of any activity initi-
ated by the user. Communication can be obvious (e.g., a text message) or subtle (e.g., 
an image of a sheet of paper moving through a printer to indicate that printing is 
under way).

Consistency. The use of navigation controls, menus, icons, and aesthetics (e.g., 
color, shape, layout) should be consistent throughout. For example, if a mobile app 
uses a set of four icons (to represent major functions) across the bottom of the display, 
these icons should appear on every screen and should not be moved to the top  
of the display. The meaning of the icons should be self-evident within the context of 
the app.

Controlled Autonomy. The interface should facilitate user movement throughout 
the application, but it should do so in a manner that enforces navigation conven-
tions that have been established for the application. For example, navigation to 
content requiring controlled access should be controlled by userID and password, 
and there should be no navigation mechanism that enables a user to circumvent 
these controls.

Efficiency. The design of the application and its interface should optimize the user’s 
work efficiency, not the efficiency of the developer who designs and builds it or the 
client-server environment that executes it. Tognozzi [Tog01] discusses this when 
he writes: “This simple truth is why it is so important for everyone . . . to appreciate 
the importance of making user productivity goal one and to understand the vital dif-
ference between building an efficient [application] and empowering an efficient user.”

10 Tognozzi’s original principles have been adapted and extended for use in this book. See 
[Tog01] for further discussion of these principles.



258 PART TWO MODELING

Flexibility. The interface should be flexible enough to enable some users to accom-
plish tasks directly and others to explore the application in a somewhat random 
fashion. In every case, it should enable the user to understand where he is and provide 
the user with functionality that can undo mistakes and retrace poorly chosen naviga-
tion paths.

Focus. The interface (and the content it presents) should stay focused on the user 
task(s) at hand. This concept is particularly important for mobile apps that can become 
very cluttered in the designer’s attempts to do too much.

Human Interface Objects. A vast library of reusable human interface objects has 
been developed for both Web and mobile apps. Use them. Any interface object that 
can be “seen, heard, touched or otherwise perceived” [Tog01] by an end user can be 
acquired from any one of a number of object libraries.

Latency Reduction. Rather than making the user wait for some internal operation 
to complete (e.g., downloading a complex graphical image), the application should 
use multitasking in a way that lets the user proceed with work as if the operation has 
been completed. In addition to reducing latency, delays must be acknowledged so that 
the user understands what is happening. This includes (1) providing audio feedback 
when a selection does not result in an immediate action by the application, (2) dis-
playing an animated clock or progress bar to indicate that processing is under way, 
and (3) providing some entertainment (e.g., an animation or text presentation) while 
lengthy processing occurs.

Learnability. An application interface should be designed to minimize learning time 
and, once learned, to minimize relearning required when the app is revisited. In 
general, the interface should emphasize a simple, intuitive design that organizes con-
tent and functionality into categories that are obvious to the user.

Metaphors. An interface that uses an interaction metaphor is easier to learn and 
easier to use, as long as the metaphor is appropriate for the application and the user. 
Metaphors are an excellent idea because they mirror real-world experience. Just be 
sure that the metaphor you choose is well known to end users. A metaphor should 
call on images and concepts from the user’s experience, but it does not need to be an 
exact reproduction of a real-world experience.

Readability. All information presented through the interface should be readable by 
young and old. The interface designer should emphasize readable type styles, user-
controllable font sizes, and color background choices that enhance contrast.

Track State. When appropriate, the state of the user interaction should be tracked 
and stored so that a user can log off and return later to pick up where he left off. In 
general, cookies can be designed to store state information. However, cookies are a 
controversial technology, and other design solutions may be more palatable for some 
users.

Visible Navigation. A well-designed interface provides “the illusion that users are 
in the same place, with the work brought to them” [Tog01]. When this approach is 
used, navigation is not a user concern. Rather, the user retrieves the content object 
and selects functions that are displayed and executed through the interface.
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Nielsen and Wagner [Nie96] suggest a few pragmatic “don’ts” for interface design 
(based on their redesign of a major WebApp). These provide a nice complement to 
the principles suggested earlier in this section.

∙ Don’t force the user to read voluminous amounts of text, particularly when 
the text explains the operation of the WebApp or assists in navigation.

∙ Don’t make users scroll unless it is absolutely unavoidable.
∙ Don’t rely on browser functions to assist in navigation.
∙ Don’t allow aesthetics to supersede functionality.
∙ Don’t force the user to search the display to determine how to link to other 

content or services.

A well-designed interface improves the user’s perception of the content or services 
provided by the site. It need not necessarily be flashy, but it should always be well 
structured and ergonomically sound. Additional advice on usability evaluation can be 
found in [Gao14] and [Hus15}.

12.8.2 Accessibility Guidelines
As the design of a user interface evolves, four common design issues almost always 
surface: system response time, user help facilities, error information handling, and 
command labeling. All these can lead to accessibility issues for all users, not just 
those with special needs. Unfortunately, many designers do not address these issues 
until relatively late in the design process (sometimes the first inkling of a problem 
doesn’t occur until an operational prototype is available). Unnecessary iteration, proj-
ect delays, and end-user frustration often result. It is far better to establish each as a 
design issue to be considered at the beginning of software design, when changes are 
easy and costs are low.

Application Accessibility. As computing applications become ubiquitous, software 
engineers must ensure that interface design encompasses mechanisms that enable easy 
access for those with special needs. Accessibility for users (and software engineers) 
that may be physically challenged is an imperative for ethical, legal, and business 
reasons. A variety of accessibility guidelines (e.g., [W3C18])—many designed for 
Web applications but often applicable to all types of software—provide detailed sug-
gestions for designing interfaces that achieve varying levels of accessibility. Others 
(e.g., [App13], [Mic13a], and [Zan18]) provide specific guidelines for “assistive tech-
nology” that addresses the needs of those with visual, hearing, mobility, speech, and 
learning impairments.

Response Time. System response time has two important characteristics: length and 
variability. If system response is too long, user frustration and stress are inevitable. 
Variability refers to the deviation from average response time, and in many ways, it 
is the most important response time characteristic. Low variability enables the user to 
establish an interaction rhythm, even if response time is relatively long. For example, 
a 1-second response to a command will often be preferable to a response that varies 
from 0.1 to 2.5 seconds. When variability is significant, the user is always off balance, 
always wondering whether something “different” has occurred behind the scenes.
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Help Facilities. Almost every user of an interactive, computer-based system 
requires help now and then. Modern software should provide online help facilities 
that enable a user to get a question answered or resolve a problem without leaving 
the interface.

Error Handling. In general, every error message or warning produced by an inter-
active system should have the following characteristics:

 1. Describes the problem in jargon that the user can understand
 2. Provides constructive advice for recovering from the error
 3. Indicates any negative consequences of the error (e.g., potentially corrupted 

data files) so that the user can check to ensure that they have not occurred 
(or correct them if they have)

 4. Be accompanied by an audible or visual cue
 5. Should never place blame for the error on the user

Menu and Command Labeling. The typed command was once the most common 
mode of interaction between user and system software and was commonly used for 
applications of every type. Today, the use of window-oriented, point-and-pick inter-
faces has reduced reliance on typed commands, but some power-users continue to 
prefer a command-oriented mode of interaction. A number of design issues arise when 
typed commands or menu labels are provided as a mode of interaction:

∙ Will every menu option have a corresponding command?
∙ What form will commands take? Options include a control sequence  

(e.g., alt-P), function keys, or a typed word.
∙ How difficult will it be to learn and remember the commands? What can be 

done if a command is forgotten?
∙ Can commands be customized or abbreviated by the user?
∙ Are menu labels self-explanatory within the context of the interface?
∙ Are submenus consistent with the function implied by a master menu item?
∙ Have appropriate conventions for command usage been established across a 

family of applications?

Internationalization. Software engineers and their managers invariably underesti-
mate the effort and skills required to create user interfaces that accommodate the needs 
of different locales and languages. Too often, interfaces are designed for one locale 
and language and then jury-rigged to work in other countries. The challenge for inter-
face designers is to create “globalized” software. That is, user interfaces should be 
designed to accommodate a generic core of functionality that can be delivered to all 
who use the software. Localization features enable the interface to be customized for 
a specific market.

A variety of internationalization guidelines (e.g., [IBM13]) are available to soft-
ware engineers. These guidelines address broad design issues (e.g., screen layouts may 
differ in various markets) and discrete implementation issues (e.g., different alphabets 
may create specialized labeling and spacing requirements). The Unicode standard 
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[Uni03] has been developed to address the daunting challenge of managing dozens of 
natural languages with hundreds of characters and symbols.

 12.9 co n v e n t i o na L so f t wa r e ux a n D mo b i L i t y

Earlier in this chapter, we noted that all user interface design begins with the identi-
fication of user, task, and environmental requirements. Once user tasks have been 
identified, user scenarios (use cases) are created and analyzed to define a set of 
interface objects and actions.

Information contained within the requirements model forms the basis for the cre-
ation of a screen layout that depicts graphical design and placement of icons, defini-
tion of descriptive screen text, specification and titling for windows, and specification 
of major and minor menu items. Tools are then used to prototype and ultimately 
implement the interface design model.

When designing for mobility, developers need to pay more attention to differences 
in screen sizes and user interaction devices. Mobile users of a software product are 
more likely to expect the product to be easily customized to their preferences and to 
take advantage of changes in the user’s location when they are actively using the app. 
We will focus on designing for mobile devices in Chapter 13.

 12.10 su m m a ry

The user interface is arguably the most important element of a computer-based system 
or product. If the interface is poorly designed, the user’s ability to tap the computa-
tional power and informational content of an application may be severely hindered. 
In fact, a weak interface may cause an otherwise well-designed and solidly imple-
mented application to fail.

Three important principles guide the design of effective user interfaces: (1) place 
the user in control, (2) reduce the user’s memory load, and (3) make the interface 
consistent. To achieve an interface that abides by these principles, an organized design 
process must be conducted.

The development of a user interface begins with a series of analysis tasks. User 
analysis defines personas for the profiles of various end users and is gathered from a 
variety of business and technical sources. The user analysis allows the developers to 
create a customer journey map as a visual representation of the goals for the product. 
Task analysis defines user tasks and actions using either an elaborative or object-
oriented approach, applying use cases, task and object elaboration, workflow analysis, 
and hierarchical task representations to fully understand the human-computer interac-
tion. Environmental analysis identifies the physical and social structures in which the 
interface must operate.

After analyzing usage scenarios, interface objects and actions are created and 
provide a basis for the creation of a screen layout that depicts graphical design and 
placement of icons, definition of descriptive screen text, specification and titling for 
windows, and specification of major and minor menu items. A storyboard may be 
created to illustrate the navigation through screens developed for the product to 
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accomplish specific user tasks. Design issues such as response time, command and 
action structure, error handling, and help facilities are considered as the design model 
is refined. A variety of implementation tools are used to build a prototype for evalu-
ation by the user.

Like interface design for conventional software, the design mobile app interface 
describes the structure and organization of the user interface and includes a represen-
tation of screen layout, a definition of the modes of interaction, and a description of 
navigation mechanisms. A set of interface design principles and an interface design 
workflow guide the mobile app designer when layout and interface control mecha-
nisms are designed.

The user interface is the window into the software. In many cases, the interface 
molds a user’s perception of the quality of the system. If the “window” is smudged, 
wavy, or broken, the user may reject an otherwise powerful computer-based system. 
Usability and accessibility issues in the interface may also cause users to find an 
alternative product that better meets their needs and expectations.

pro b L e m s a n D po i n t s to po n D e r

12.1. Describe the worst interface that you have ever worked with and critique it relative to 
the concepts introduced in this chapter. Describe the best interface that you have ever worked 
with and critique it relative to the concepts introduced in this chapter.

12.2. Consider one of the following interactive applications (or an application assigned by 
your instructor):

 a. A desktop publishing system
 b. A computer-aided design system
 c. An interior design system (as described in Section 12.4.2)
 d. An automated course registration system for a university
 e. A library management system
 f. An Internet-based polling booth for public elections
 g. A home banking system
 h. An interactive application assigned by your instructor

 Develop a user model, design model, mental model, and an implementation model, for any one 
of these systems.

12.3. Perform a detailed task analysis for any one of the systems listed in Problem 12.2.

12.4. Create a customer journey map for one of the systems listed in Problem 12.2.

12.5. Continuing Problem 12.2, define interface objects and actions for the application you 
have chosen. Identify each object type.

12.6. Develop a set of screen layouts and organize them into a storyboard for the system you 
chose in Problem 12.2.

12.7. Use a prototyping tool like Keynote to create an interactive prototype for the storyboard 
you created in Problem 12.6.

12.8. Describe your approach to user help facilities for the task analysis design model and task 
analysis you performed as part of Problems 12.3, 12.4, and 12.5.
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12.9. Provide a few examples that illustrate why response time variability can be an issue.

12.10. Develop an approach that would automatically integrate error messages and a user help 
facility. That is, the system would automatically recognize the error type and provide a help 
window with suggestions for correcting it. Perform a reasonably complete software design that 
considers appropriate data structures and algorithms.

12.11. Develop an interface evaluation questionnaire that contains 20 generic questions that 
would apply to most interfaces. Have 10 classmates complete the questionnaire for an interac-
tive system that you all use. Summarize the results, and report them to your class.

Design element: Quick Look icon magnifying glass: © Roger Pressman
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13

What is it? Mobile design encompasses techni
cal and nontechnical activities that include: 
establishing the look and feel of the mobile 
application (including mobile apps, WebApps, 
virtual reality, and games), creating the aes
thetic layout of the user interface, establish
ing the rhythm of user interaction, defining 
the overall architectural structure, develop
ing the content and functionality that re
side  within the architecture, and planning 
the navigation that occurs within the mobile 
product. 

Who does it? Software engineers, graphic de
signers, content developers, security special
ists, and other stakeholders all participate in 
the creation of a mobile design model.

Why is it important? Design allows you to cre
ate a model that can be assessed for quality 
and improved before content and code are 
generated, tests are conducted, and end 

users become involved in large numbers. 
Design is the place where mobile app quality 
is established.

What are the steps? Mobile design encom
passes six major steps that are driven by infor
mation obtained during requirements modeling 
and are described in this chapter.

What is the work product? A design model 
that encompasses content, aesthetics, archi
tecture, interface, navigation, and component
level design issues is the primary work product 
that is produced during mobile design.

How do I ensure that I’ve done it right? Each 
element of the design model is reviewed in an 
effort to uncover errors, inconsistencies, or 
omissions. In addition, alternative solutions 
are considered, and the degree to which the 
current design model will lead to effective 
implementation on a variety of software plat
forms and devices is also assessed.
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Design  
for Mobility

Mobile devices—smartphones, tablets, wearable devices, handheld gaming 
devices, and other specialized products—have become the new face of comput-
ing. According to Pew Research Center [Pew18], in the United States 77 percent 
of people own a smartphone and 50 percent of people own a tablet computer of 
some kind. Mobile computing has become a dominant force.
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In his authoritative book on Web design, Jakob Nielsen [Nie00] states: “There are 
essentially two basic approaches to design: the artistic ideal of expressing yourself 
and the engineering ideal of solving a problem for a customer.” During the first decade 
of mobile development, the artistic idea was the approach that many developers chose. 
Design occurred in an ad hoc manner and was usually conducted as HTML was 
generated. Design evolved out of an artistic vision that evolved as Web page construc-
tion occurred.

Even today, many developers use mobile apps as poster children for “limited 
design.” They argue that immediacy and volatility of the mobile market mitigate 
against formal design; that design evolves as an application is built (coded), and that 
relatively little time should be spent on creating a detailed design model. This argu-
ment has merit, but only for relatively simple apps. When content and function are 
complex; when the size of the mobile app encompasses hundreds or thousands of 
content objects, functions, and analysis classes; and when the success of the app will 
have a direct impact on the success of the business, design cannot and should not be 
taken lightly. This reality leads us to Nielsen’s second approach—“the engineering 
ideal of solving a problem for a customer.”

 13.1 th e ch a L L e ng e s

Although mobile devices have many features in common with each other, their users 
often have very different perceptions of what features they expect to be bundled in 
each. Some users expect the same features that are provided on their personal comput-
ers. Others focus on the freedom that portable devices give them and gladly accept 
the reduced functionality in the mobile version of a familiar software product. Still 
others expect unique experiences not possible on traditional computing or entertain-
ment devices. The user’s perception of “goodness” might be more important than any 
of the technical quality dimensions of the mobile product itself.

13.1.1 Development Considerations
Like all computing devices, mobile platforms are differentiated by the software they 
deliver—a combination of operating system (e.g., Android or iOS) and a small sub-
set of the hundreds of thousands of mobile software products that provide a very 
wide range of functionality. New tools allow individuals with little formal training 
to create and sell apps alongside other apps developed by large teams of software 
developers.

Even though apps can be developed by amateurs, many software engineers think 
that MobileApps are among the most challenging software systems being built today 
[Voa12]. Mobile platforms are very complex. Both the Android and iOS operating 
systems contain over 12 million lines of code. Mobile devices often have mini brows-
ers that will not display the full set of content available on a Web page. Different 
mobile devices use different operating systems and platform-dependent development 
environments. Mobile devices tend to have smaller screen sizes and more varied 
screen sizes than personal computers. This may require greater attention to user inter-
face design issues, including decisions to limit display of some content. MobileApps 
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must be designed to take intermittent connectivity outages into account, limitations 
on battery life, and other device constraints1 [Whi08].

System components in mobile computing environments are likely to change their 
locations while their apps are running. To maintain connectivity in nomadic net-
works,2 coordination mechanisms for discovering devices, exchanging information, 
maintaining security and communication integrity, and synchronizing actions must be 
developed. There is always a trade-off between security and other elements of the 
mobile product design.

In addition, software engineers must identify the proper design trade-offs between 
the expressive power of the MobileApp and stakeholder security concerns. Developers 
must seek to discover algorithms (or adapt existing algorithms) that are energy effi-
cient to conserve battery power when possible. Middleware may have to be created 
to allow different types of mobile devices to communicate with each other in the same 
mobile networks [Gru00].

Software engineers should craft a user experience that takes advantage of device 
characteristics and context-aware applications. The nonfunctional requirements (e.g., 
security, performance, usability) are a bit different from those for either WebApps or 
desktop software applications. There is always a trade-off between security and other 
elements of the mobile design. Testing mobile software products (Chapter 21) pro-
vides additional challenges because users expect that they will work in a large number 
of physically different environments. Portability is another challenge for software engi-
neers as there are several popular device platforms. It is expensive to develop and 
support applications for multiple device platforms [Was10].

13.1.2 Technical Considerations
The low cost of adding Web capabilities to everyday devices such as phones, cameras, 
and TVs is transforming the way people access information and use network services 
[Sch11]. Among the many technical considerations that MobileApps should address 
are the following:

Multiple hardware and software platforms. It is not at all unusual for a 
mobile product to run on many different platforms (both mobile and station-
ary) with a range of differing levels of functionality. The reasons for these 
differences are in part because the hardware and software available are quite 
different from device to device. This increases both development cost and 
time. It also can make configuration management (Chapter 22) more 
difficult.
Many development frameworks and programming languages. Mobile 
products are currently being written in several distinct programming or script-
ing languages (e.g., HTML5, JavaScript, Java, Swift, and C#) for a multitude 
of popular development frameworks (e.g., Android, iOS, Xamarin, Windows, 
AngularJS). Very few mobile devices allow direct development on a device 
itself. Instead, mobile developers typically use emulators running on desktop 

1 Available at http://www.devx.com/SpecialReports/Article/37693.
2 Nomadic networks have changing connections to mobile devices or servers.
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development systems. These emulators may or may not accurately reflect the 
limitations of the device itself. Thin-client applications are often easier to port 
to multiple devices than applications designed to run exclusively on the 
mobile device.
Many app stores with different rules and tools. Each mobile platform has 
its own app store and its own standards for accepting apps (e.g., Apple,3 
Google,4 Microsoft,5 and Amazon6 publish their own standards). Development 
of a mobile product for multiple platforms must proceed separately, and each 
version of the app needs its own standards expert.
Very short development cycles. The marketplace for mobile products is 
very competitive, and software engineers are likely to make use of agile 
development processes when building MobileApps in an effort to reduce 
development time [Was10].
User interface limitations and complexities of interaction with sensors and 
cameras. Mobile devices have smaller screen sizes than personal computers 
and a richer set of interaction possibilities (touch, gesture, camera, etc.) and 
usage scenarios based on context awareness. The style and appearance of the 
user interface is often dictated by the nature of platform-specific development 
tools [Rot02]. Allowing smart devices to interact with smart spaces offers the 
potential to create personalized, networked, high-fidelity application platforms 
such as those seen by merging smartphones and car infotainment systems.7

Effective use of context. Users expect MobileApps to deliver personalized 
user experiences based on the physical location of a device in relation to the 
available network features. User interface design and context-aware applica-
tions are discussed in greater detail in Section 13.4.
Power management. Battery life is often one of the most limiting constraints 
on many mobile devices. Backlighting, reading and writing to memory, using 
wireless connections, making use of specialized hardware, and processor speed all 
impact power usage and need to be considered by software developers [Mei09].
Security and privacy models and policies. Wireless communication is dif-
ficult to protect from eavesdropping. Preventing man-in-the-middle-attacks8 in 
automotive applications can be critical to the safety of the users [Bos11]. 
Data stored on a mobile device are subject to theft if a device is lost or a 
malicious app is downloaded. Software policies that increase the level of con-
fidence in the security and privacy of a MobileApp often reduce the usability 
of the app and the spontaneity of the communication among users [Rot02].

3 https://developer.apple.com/appstore/guidelines.html.
4 http://developer.android.com/distribute/googleplay/publish/preparing.html.
5 http://msdn.microsoft.com/en-us/library/ff941089%28v=vs.92%29.aspx.
6 https://developer.amazon.com/apps-and-games/app-submission/android.
7 When used in an automotive setting, smart devices should be able to restrict access to 

services that may distract the driver and allow hands-free operation when a vehicle is 
moving [Bos11].

8 These attacks involve a third party intercepting communications between two trusted sources 
and impersonating one or both of the parties.
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Computational and storage limitations. There is great interest in using 
mobile devices to control home environmental and security services. When 
MobileApps are allowed to interact with devices and services in their environ-
ment, it is easy to overwhelm the mobile device (storage, processing speed, 
power consumed) with the sheer volume of information [Spa11]. Developers 
may need to look for programming shortcuts and means of reducing the 
demands made on processor and memory resources.
Applications that depend on external services. Building thin mobile 
clients suggests the need to rely on Web service providers and cloud storage 
facilities. This increases concerns for both data or service accessibility 
and security [Rot02].
Testing complexity. Mobile products that run entirely on the device can be 
tested using traditional software testing methods (Chapters 19 and 20) or 
using emulators running on personal computers. Thin-client MobileApps are 
particularly challenging to test. They exhibit many of the same testing chal-
lenges found in WebApps, but they have the additional concerns associated 
with transmission of data through Internet gateways and telephone networks 
[Was10]. Testing of mobile software products will be discussed in 
Chapter 21.

 13.2 Mo b i L e De v e L o p M e n t Li f e cyc L e

Burns [Bur16] and her Microsoft colleagues describe a recommendation for an 
iterative mobile SDLC that contains five major stages:

Inception. Goals, features, and functions of the mobile product are identified to 
determine the scope and the size of the first increment or feasibility prototype. 
Developers and stakeholders must be conscious of human, social, cultural, and 
organizational activities that may reveal hidden aspects of the users’ needs and 
affect the business targets and functionality of the proposed mobile product.

Design. The design includes architectural design, navigation design, interface 
design, content design. Developers define the app user experience using screen 
mockups and paper prototypes to help create a proper user interface design that will 
take different screen sizes and capabilities into account as well as the capabilities of 
each targeted platform.

Development. Mobile software is coded, functional and nonfunctional. Test 
cases are created and executed, and usability and accessibility evaluations are con-
ducted as the product evolves.

Stabilization. Most mobile products go through a series of prototypes: feasibility 
prototype, intended as a proof of concept with perhaps only one complete logic 
path through the application; alpha prototype, which contains the functionality for 
minimum viable product; beta prototype, which is largely complete and contains 
most tested functionality; and lastly the release candidate, which contains all 
required functionality, for which all scheduled tests have been completed, and 
which is ready for review by the product owner.



CHAPTER 13 DESIGN FOR MOBILITY  269

Deployment. Once stabilized, a mobile product is reviewed by a commercial app 
store and made available for sale and download. For apps intended for internal com-
pany use only, a product owner review may be all that is required before deployment.

Mobile development makes use of an agile, spiral engineering process model. The 
stages are not completed in order like they would be if mobile development was done 
using the waterfall model. The stages described above are visited repeatedly as developers 
and stakeholders gain better understanding of the user needs and product business goals.

Formulating Mobile Device Requirements

The scene: A meeting room. 
The first meeting to identify 

requirements for a mobile version of the 
SafeHome WebApp.

The players: Jamie Lazar, software team 
member; Vinod Raman, software team mem
ber; Ed Robbins, software team member; Doug 
Miller, software engineering manager; three 
members of marketing; a product engineering 
representative; and a facilitator.

The conversation:
Facilitator (pointing at whiteboard): So that’s 
the current list of objects and services for the 
home security function present in the WebApp.

Vinod (interrupting): My understanding is 
that people want SafeHome functionality  
to be accessible from mobile devices as 
well . . . including the home security function?

Marketing person: Yes, that’s right . . . we’ll 
have to add that functionality and try to make it 
context aware to help personalize the user 
experience.

Facilitator: Context aware in what sense?

Marketing person: People might want to use 
a smartphone instead of the control panel and 
avoid logging on to a website when they are in 
the driveway at home. Or they might not want 
all family members to have access to the mas
ter control dashboard for the system from 
their phones.

Facilitator: Do you have specific mobile 
devices in mind?

Marketing person: Well, all smartphones 
would be nice. We will have a Web version 
done, so won’t the MobileApp run on all of 
them?

Jamie: Not quite. If we took a mobile phone 
browser approach, we might be able to 
reuse a lot of our WebApp functionality. But 
remember, smartphone screen sizes vary, 
and they may or may not all have the same 
touch capabilities. So, at the very least we 
would have to create a mobile website that 
takes the features of each device into 
account.

Ed: Perhaps we should build the mobile 
version of the website first.

Marketing person: OK, but a mobile website 
solution wasn’t what we had in mind.

Vinod: Each mobile platform seems to  
have its own unique development environ
ment, too.

Production rep: Can we restrict MobileApp 
development to only one or two types of 
smartphones?

Marketing person: I think that might work. 
Unless I’m mistaken, the smartphone market 
is dominated by two smartphone platforms  
right now.

Jamie: There’s also security to worry about. 
We better make sure an outsider can’t hack 
into the system, disarm it, and rob the place or 
worse. Also, a phone could get lost or stolen 
more easily than a laptop.

safehoMe
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13.2.1 User Interface Design
Mobile device users expect that minimal learning time will be required to master a 
MobileApp. To achieve this, MobileApp designers use consistent icon representations 
and placement across multiple platforms. In addition, designers must be sensitive to 
the user’s expectation of privacy with regard to the display of personal information 
on the screen of the mobile device. Touch and gesture interfaces, along with sophis-
ticated voice input and facial recognition, are maturing rapidly [Shu12] and have 
already become part of the user interface designer’s toolbox.

Legal and ethical pressure to provide for access by all persons suggests that mobile 
device interfaces need to account for brand differences, cultural differences, differ-
ences in computing experience, elderly users, and users with disabilities (e.g., visual, 
aural, mobility). The effects of poor usability may mean that users cannot complete 
their tasks or will not be satisfied with the results. This suggests the importance of 
user-centered design activities in each of the usability areas (user interface, external 
accessory interface, and service interface). Accessibility is an important design issue 
and must be considered when user-centered design is applied.

In trying to meet stakeholder usability expectations, MobileApp developers should 
attempt to answer these questions to assess the out-of-the-box readiness of the device:

∙ Is the user interface consistent across applications?
∙ Is the device interoperable with different network services?
∙ Is the device acceptable in terms of stakeholder values9 in the target market area?

Eisenstein [Eis01] claims that the use of abstract, platform-neutral models to describe 
a user interface greatly facilitates the development of consistent, usable multiplatform 
user interfaces for mobile devices. Three models in particular are useful. A platform 
model describes the constraints imposed by each platform to be supported. A presen-
tation model describes the appearance of the user interface. The task model is a structured  
representation of the tasks a user needs to perform to meet her task goals. In the best 
case, model-based design (Chapter 9) involves the creation of databases that contain the 

9 Brand, ethical preferences, moral preferences, cognitive beliefs.

Doug: Very true.

Marketing: But we still need the same level of 
security . . . just also be sure to stop an out
sider from getting in with a stolen phone.

Ed: That’s easier said than done and . . .

Facilitator (interrupting): Let’s not worry 
about those details yet.

 (Doug, serving as the recorder for the meeting, 
makes an appropriate note.)

Facilitator: As a starting point, can we identify 
which elements of WebApp security function 
are needed in the MobileApp and which will 
need to be newly created? Then we can de
cide how many mobile platforms we can sup
port and when we can move forward on this 
project.

 (The group spends the next 20 minutes 
refining and expanding the details of the home 
security function.)
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models and has tool support for generating user interfaces for multiple devices auto-
matically. Utilizing model-based design techniques can also help designers recognize 
and accommodate the unique contexts and context changes that are present in mobile 
computing. Without an abstract description of a user interface, the development of 
mobile user interfaces can be error prone and time consuming.

13.2.2 Lessons Learned
de Sá and Carriço [Des08] contend that there are important differences between develop-
ing conventional software and developing mobile applications. Software engineers cannot 
continue to use the same conventional techniques they have used and expect them to be 
successful. They suggest three approaches for the design of mobile applications:

Usage Scenarios. Described in Chapter 12, usage scenarios must consider context 
variables (location, user, and device) and transitions between contextual scenarios 
(e.g., user moves from bedroom to kitchen or switches from stylus to a finger). de Sá 
and Carriço have identified a set of scenario-variable types that should be considered 
in developing the user scenarios—locations and settings, movement and posture, 
devices and usages, workloads and distractions, user preferences.

Mobile User Interface  
Design Considerations
Design choices affect performance and 

should be examined early in the user interface de
sign process. Ivo Weevers [Wee11] posted several 
mobile user–interface design practices that have 
proven to be helpful when designing mobile 
applications:

∙ Define user interface brand signatures. 
Differentiate the app from its competitors. 
Make the core signature elements of the 
brand the most responsive, because users 
will use them over and over.

∙ Focus the portfolio of products. Target the 
platforms that are most important to the 
success of the app and the company. Not all 
platforms have the same number of users.

∙ Identify the core user stories. Make use 
of techniques that require stakeholders to 
prioritize their needs as a way to reduce a 
lengthy list of requirements and to consider  
the constrained resources available on  
mobile devices.

∙ Optimize user interface flows and elements. 
Users do not like to wait. Identify potential 
bottlenecks in user work flow and make sure 
the user is given an indication of progress 
when delays occur. Make sure that the time to 
display screen elements is justified in terms of 
user benefits.

∙ Define scaling rules. Determine the options 
that will be used when information to be 
displayed is too large to fit on the screen. Man
aging functionality, aesthetics, usability, and 
performance is a continual balancing act.

∙ User performance dashboard. The dashboard 
is used to communicate the product’s current 
state of completion (e.g., number of use stories  
implemented), its performance relative to 
its targets, and perhaps comparisons to its 
competitors.

∙ Champion-dedicated user interface engineer-
ing skills. It is important to understand that the 
implementation of layout, graphics, and anima
tion has performance implications. Techniques 
to interleave rendering of display items and 
program execution can be helpful.

info
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Ethnographic Observation.10 This is a widely used method for gathering informa-
tion about representative users of a software product as it is being designed. It is often 
difficult to observe users as they change contexts, because the observer must follow 
users for long periods of time, something that could raise privacy concerns.11 A com-
plicating factor is that users seem to complete tasks differently in private settings than 
in social settings. The same users may need to be observed performing tasks in mul-
tiple contexts while monitoring transitions, as well as recording user reactions to the 
changes.

Low-Fidelity Paper Prototypes (e.g., cards or Post-it notes). This is a cost-effective 
usability assessment approach in user interface design that can be used before any 
programming takes place. It is important for these prototypes to be similar in size and 
weight and for their use to be allowed in a variety of contexts. It is also important 
that the sketches or text displays be true to size and for the final product to be of high 
quality. Placement and size of user interface widgets (e.g., buttons or scrollbars) must 
be designed so that they will not disappear when users extend their screens by 
zooming. The interaction type (e.g., stylus, joy stick, touch screen) needs to be emu-
lated in the low-fidelity prototype (e.g., colored pen or push pin) to check placement 
and ease of use. Later prototypes may then be created to run on the targeted mobile 
devices once the layout and placement issues have been resolved.

MobileApp Design Mistakes
Joh Koester [Koe12] posts several 
examples of mobile design practices 

that should be avoided:
∙ Kitchen sink. Avoid adding too many features 

to the app and too many widgets on the screen. 
Simple is understandable. Simple is marketable.

∙ Inconsistency. To avoid this, set standards 
for page navigation, menu use, buttons, tabs, 
and other userinterface elements. Stick to a 
uniform look and feel.

∙ Overdesigning. Be ruthless when designing 
apps. Remove unnecessary elements and 
wasteful graphics. Do not be tempted to add 
elements just because you think you should.

∙ Lack of speed. Users do not care about device 
constraints—they want to view things quickly. 
Preload what you can. Eliminate what is not 
needed.

∙ Verbiage. Unnecessarily long, wordy 
menus and screen displays are indications 
of a mobile product that has not been 
tested with users and developers who have 
not spent enough time understanding the 
user’s task.

∙ Nonstandard interaction. One reason for 
targeting a platform is to take advantage of 
the user’s experience with the way things are 
done on that platform. Where standards exist 
use them. This needs to be balanced with the 
need to have an application appear and be
have the same way on multiple devices when 
possible.

∙ Help-and-FAQ-itis. Adding online help is not 
the way to repair a poorly designed user inter
face. Make sure you have tested your app with 
your targeted users and repaired the identified 
defects.

info

10 Ethnographic observation is a means determining the nature of user tasks by watching users 
in their work environment.

11 Asking users to fill out anonymous questionnaires may have to suffice when direct observa-
tion is not possible.
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 13.3 Mo b i L e arc h i t e c t u r e s

Services computing12 and cloud computing13 enable the rapid development of large-
scale distributed applications based on innovative architectural designs [Yau11]. These 
two computing paradigms have made it easier and more economical to create applica-
tions on many different mobile devices (e.g., laptop computers, smartphones, and 
tablets). These two paradigms allow resource outsourcing and transfer of information 
technology management to service providers while at the same time mitigating the 
impact of resource limitations on some mobile devices. A service-oriented architecture 
provides the architectural style (e.g., REST),14 standard protocols (e.g., XML15 and 
SOAP16), and interfaces (e.g., WSDL)17 needed for mobile development. Cloud com-
puting enables convenient, on-demand network access to a shared pool of configurable 
computing resources (servers, storage, applications, and services).

Service computing allows mobile developers to avoid the need to integrate service 
source code into the client running on a mobile device. Instead, the service runs out 
of the provider’s server and is loosely coupled with the applications that make use of 
it through messaging protocols. A service typically provides an application program-
ming interface (API) to allow it to be treated like an abstract black box.

Cloud computing lets the client (either a user or program) request computing capa-
bilities as needed, across network boundaries anywhere or any time. The cloud archi-
tecture has three layers, each of which can be called as a service (Figure 13.1). The 
software as service layer consists of software components and applications hosted by 
third-party service providers. The platform as service layer provides a collaborative 
development platform to assist with design, implementation, and testing by geograph-
ically distributed team members. Infrastructure as a service provides virtual comput-
ing resources (storage, processing power, network connectivity) on the cloud.

Mobile devices can access cloud services from any location at any time. The risks of 
identity theft and service hijacking require providers of mobile services and cloud comput-
ing to employ rigorous security engineering techniques (Chapter 18) to protect their users.

Taivalsaari [Tai12] points out that making use of cloud storage can allow any 
mobile device or software features to be updated easily on millions of devices world-
wide. In fact, it is possible to virtualize the entire mobile user experience so that all 
applications are downloaded from the cloud.

12 Services computing focuses on architectural design and enables application development 
through service discovery and composition.

13 Cloud computing focuses on the effective delivery of services to users through flexible and 
scalable resource virtualization and loading balancing.

14 Representation State Transfer describes a networked Web architectural style where the 
resource representation (e.g., a Web page) places the client in a new state. The client changes 
or transfers state with each resource representation.

15 Extensible Markup Language (XML) is designed to store and transport data, while HTML 
is designed to display data.

16 Simple Object Access Protocol is a specification for exchanging structured information in 
the implementation of Web services in computer networks.

17 Web Services Description Language is an XML-based language for describing Web services 
and how to access them.
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 13.4 co n t e x t-awa r e ap p s

Context allows the creation of new applications based on the location of the mobile 
device and the functionality to be delivered by the device. Context can also help 
tailor personal computer applications for mobile devices (e.g., downloading patient 
information to a device carried by a home health care worker as he arrives at the 
patient’s house).

Using highly adaptive, contextual interfaces is a good way to deal with device 
limitations (e.g., screen size and memory). To facilitate the development of context-
aware user interaction requires the support of corresponding software architectures.

In an early discussion of context-aware applications, Rodden [Rod98] points out 
that mobile computing merges the real and virtual world by providing functionality 
that allows a device to be aware of its location, time, and other objects in its sur-
roundings. The device could be in a fixed location like an alarm sensor, embedded in 
an autonomous device, or be carried around by a human. Because the device can be 
designed to be used by individuals, groups, or the public, it must detect the presence 
and identity of the user, as well as the attributes of the context that are relevant or 
permitted for that user (even if the user is another device).

To achieve context awareness, mobile systems must produce reliable information 
in the presence of uncertain and rapidly changing data from a variety of heterogeneous 
sources. Extracting relevant context information by combing data from several sensors 
proves challenging because of problems with noise, miscalibration, wear and tear, and 
weather. Event-based communication is preferable to the management of continuous 
streams of high-abstraction-level data in context-aware applications [Kor03].

Figure 13.1
Cloud 
computing 
layers

More Control

Less Control

SaaSSoftware as a Service
End Users

PaaSPlatform as a Service
Application Developers

IaaSInfrastructure as a Service
Network Architects
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In ubiquitous computing environments, multiple users work with a wide range of 
different devices. The configuration of the devices should be flexible enough to 
change frequently because of the demands of mobile work practices. It is important 
for the software infrastructure to support different styles of interaction (e.g., gestures, 
voice, and pen) and store them in abstractions that can be shared easily.

There are times when one user may desire to work with more than one device 
simultaneously on the same product (e.g., use a touch-screen device to edit a docu-
ment image and a personal keyboard to edit document text). It is challenging to 
integrate mobile devices that are not always connected to the network and have a 
variety of device constraints [Tan01]. Networked, multiplayer games have had to deal 
with these problems by storing the game state on each device and sharing change 
information among other game players’ devices in real time.

 13.5 we b De s i g n py r a M i D

What is design in the context of Web engineering? This simple question is more dif-
ficult to answer than one might believe. Pressman and Lowe [Pre08] discuss this when 
they write:

The creation of an effective design will typically require a diverse set of skills. Some-
times, for small projects, a single developer may need to be multi-skilled. For larger 
projects, it may be advisable and/or feasible to draw on the expertise of specialists: Web 
engineers, graphic designers, content developers, programmers, database specialists, 
information architects, network engineers, security experts, and testers. Drawing on these 
diverse skills allows the creation of a model that can be assessed for quality and improved 
before content and code are generated, tests are conducted, and end-users become 
involved in large numbers. If analysis is where WebApp quality is established, then design 
is where the quality is truly embedded.

The appropriate mix of design skills will vary depending upon the nature of the 
WebApp. Figure 13.2 depicts a design pyramid for WebApps. Each level of the 
pyramid represents a design action that is described in the sections that follow.

13.5.1 WebApp Interface Design
When a user interacts with a computer-based system, a set of fundamental principles 
and overriding design guidelines apply. These have been discussed in Chapter 12.18 
Although WebApps present a few special user interface design challenges, the basic 
principles and guidelines are applicable.

One of the challenges of interface design for WebApps is the indeterminate nature 
of the user’s entry point. That is, the user may enter the WebApp at a “home” location 
(e.g., the home page) or may be linked into some lower level of the WebApp archi-
tecture. In some cases, the WebApp can be designed in a way that reroutes the user 
to a home location, but if this is undesirable, the WebApp design must provide inter-
face navigation features that accompany all content objects and are available regardless 
of how the user enters the system.

18 Section 12.1 is dedicated to the user interface design portion of user experience design. If 
you have not already done so, read it at this time.
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The objectives of a WebApp interface are to: (1) establish a consistent window 
into the content and functionality provided by the interface, (2) guide the user through 
a series of interactions with the WebApp, and (3) organize the navigation options and 
content available to the user. To achieve a consistent interface, you should first use 
visual design (Section 12.1) to establish a coherent “look.” This encompasses many 
characteristics but must emphasize the layout and form of navigation mechanisms. To 
guide user interaction, you may draw on an appropriate metaphor19 that enables the 
user to gain an intuitive understanding of the interface. To implement navigation 
options, you can select navigation menus positioned consistently on Web pages, 
graphic icons represented in a manner that enable a user to recognize that the icon is 
a navigation element, and/or graphic images that provide a link to a content object or 
WebApp functionality. It is important to note that one or more of these navigation 
mechanisms should be provided at every level of the content hierarchy.

Every Web page has a limited amount of “real estate” that can be used to support 
nonfunctional aesthetics, navigation features, informational content, and user-directed 
functionality. The development of this real estate is planned during aesthetic design.

technology

user
Figure 13.2

A design 
pyramid for 
WebApps

19 In this context, a metaphor is a representation (drawn from the user’s real-world experience) 
that can be modeled within the context of the interface. A simple example might be a slider 
switch that is used to control the auditory volume of an .mp4 file.
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13.5.2 Aesthetic Design
Aesthetic design, also called visual design or graphic design, is an artistic endeavor 
that complements the technical aspects of WebApp design. We discussed visual design 
in Section 12.1.4. Page layout is one aspect of aesthetic design that can affect the 
usefulness (and usability) of a WebApp.

There are no absolute rules when a Web page layout is designed. However, a 
number of general layout guidelines are worth considering:

Don’t be afraid of open space. It is inadvisable to pack every square inch 
of a Web page with information. The resulting clutter makes it difficult for 
the user to identify needed information or features and create visual chaos 
that is not pleasing to the eye.
Emphasize content. After all, that’s the reason the user is there. Nielsen 
[Nie00] suggests that the typical Web page user should be 80 percent content 
with the remaining real estate dedicated to navigation and other features.
Organize layout elements from top left to bottom right. The vast major-
ity of users will scan a Web page in much the same way as they scan the 
page of a book—top left to bottom right.20 If layout elements have specific 
priorities, high-priority elements should be placed in the upper-left portion of 
the page real estate.
Group navigation, content, and function geographically within the page.  
Humans look for patterns in virtually all things. If there are no discernible 
patterns within a Web page, user frustration is likely to increase (owing to 
unnecessary searching for needed information).
Don’t extend your real estate with the scrolling bar. Although scrolling is 
often necessary, most studies indicate that users would prefer not to scroll. It 
is often better to reduce page content or to present necessary content on 
multiple pages.
Consider resolution and browser window size when designing layout.  
Rather than defining fixed sizes within a layout, the design should specify all 
layout items as a percentage of available space [Nie00]. With the growing use 
of mobile devices with different screen sizes, this concept becomes increas-
ingly important.

13.5.3 Content Design
We introduced content design in Section 12.1.1. In WebApp design, a content object 
is more closely aligned with a data object for traditional software. A content object 
has attributes that include content-specific information (normally defined during 
WebApp requirements modeling) and implementation-specific attributes that are spec-
ified as part of design.

As an example, consider an analysis class, ProductComponent, developed for the 
SafeHome e-commerce system. The analysis class attribute, description, is represented 

20 There are exceptions that are cultural and language based, but this rule holds for most users.
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as a design class named CompDescription composed of five content objects: 
MarketingDescription, Photograph, TechDescription, Schematic, and Videos shown 
as the bottom row of shaded objects noted in Figure 13.3. Information contained within 
the content object is noted as attributes. For example, Photograph (a jpg image) has 
the attributes horizontal dimension, vertical dimension, and border style.

UML association and an aggregation21 may be used to represent relationships 
between content objects. For example, the UML association shown in Figure 13.3 
indicates that one CompDescription is used for each instance of the ProductCom-
ponent class. CompDescription is composed on the five content objects shown. How-
ever, the multiplicity notation shown indicates that Schematic and Videos are optional 
(zero occurrences are possible), one MarketingDescription and one TechDescription 
are required, and one or more instances of Photograph are used.

13.5.4 Architecture Design
Architecture design is tied to the goals established for a WebApp, the content to be 
presented, the users who will visit, and the navigation philosophy that has been estab-
lished. As an architectural designer, you must identify content architecture and 
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font size
line spacing
text usage size
background color

MarketingDescription

text color
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font size
line spacing
text usage size
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TechDescription
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1
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Control Panel SoftFeature

Figure 13.3 Design representation of content objects

21 Both of these representations are discussed in Appendix 1.
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WebApp architecture. Content architecture22 focuses on the manner in which content 
objects (or composite objects such as Web pages) are structured for presentation and 
navigation. WebApp architecture addresses the manner in which the application is 
structured to manage user interaction, handle internal processing tasks, effect naviga-
tion, and present content.

In most cases, architecture design is conducted in parallel with interface design, 
aesthetic design, and content design. Because the WebApp architecture may have a 
strong influence on navigation, the decisions made during this design action will 
influence work conducted during navigation design.

WebApp architecture describes an infrastructure that enables a Web-based system 
or application to achieve its business objectives. Jacyntho and his colleagues [Jac02b] 
describe the basic characteristics of this infrastructure in the following manner:

Applications should be built using layers in which different concerns are taken into 
account; in particular, application data should be separated from the page’s contents 
(navigation nodes) and these contents, in turn, should be clearly separated from the 
interface look-and-feel (pages).

The authors suggest a three-layer design architecture that decouples the interface 
from navigation and from application behavior. They argue that keeping the interface, 
application, and navigation separate simplifies implementation and enhances reuse.

The Model-View-Controller (MVC) architecture [Kra88]23 is a popular WebApp 
architectural model that decouples the user interface from the WebApp functionality 
and information content. The model (sometimes referred to as the “model object”) 
contains all application-specific content and processing logic, including all content 
objects, access to external data/information sources, and all processing functionality 
that is application specific. The view contains all interface-specific functions and 
enables the presentation of content and processing logic, including all content objects, 
access to external data and information sources, and all processing functionality 
required by the end user. The controller manages access to the model and the view 
and coordinates the flow of data between them. In a WebApp, “the view is updated 
by the controller with data from the model based on user input” [WMT02]. A sche-
matic representation of the MVC architecture is shown in Figure 13.4.

Referring to the figure, user requests or data are handled by the controller. The 
controller also selects the view object that is applicable based on the user request. 
Once the type of request is determined, a behavior request is transmitted to the model, 
which implements the functionality or retrieves the content required to accommodate 
the request. The model object can access data stored in a corporate database, as part 
of a local data store, or as a collection of independent files. The data developed by 
the model must be formatted and organized by the appropriate view object and then 
transmitted from the application server back to the client-based browser for display 
on the customer’s machine.

22 The term information architecture is also used to connote structures that lead to better 
organization, labeling, navigation, and searching of content objects.

23 It should be noted that MVC is actually an architectural design pattern developed for the 
Smalltalk environment (see www.smalltalk.org) and can be used for any interactive 
application.
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In many cases, WebApp architecture is defined within the context of the develop-
ment environment in which the application is to be implemented. If you have further 
interest, see [Fow03] for a discussion of development environments and their role in 
the design of Web application architectures.

13.5.5 Navigation Design
Once the WebApp architecture has been established and the components (pages, 
scripts, applets, and other processing functions) of the architecture have been iden-
tified, you must define navigation pathways that enable users to access WebApp 
content and functions. To accomplish this, identify the semantics of navigation for 
different users of the site, and define the mechanics (syntax) of achieving the 
navigation.

Like many WebApp design actions, navigation design begins with a consideration 
of the user hierarchy and related use cases (Chapter 8) developed for each category 
of user (actor). Each actor may use the WebApp somewhat differently and therefore 
have different navigation requirements. In addition, the use cases developed for each 
actor will define a set of classes that encompass one or more content objects or 
WebApp functions. As each user interacts with the WebApp, she encounters a series 
of navigation semantic units (NSUs)—“a set of information and related navigation 
structures that collaborate in the fulfillment of a subset of related user requirements” 
[Cac02]. An NSU describes the navigation requirements for each use case. In 
essence, the NSU shows how an actor moves between content objects or WebApp 
functions.

An NSU is composed of a set of navigation elements called ways of navigating 
(WoN) [Gna99]. A WoN represents the best navigation pathway to achieve a naviga-
tional goal for a specific type of user. Each WoN is organized as a set of navigational 
nodes (NN) that are connected by navigational links. In some cases, a navigational 
link may be another NSU. Therefore, the overall navigation structure for a WebApp 
may be organized as a hierarchy of NSUs.

View

Model Controller

NotifiesWrites

Updates

Fills

Figure 13.4
The MVC 
architecture
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To illustrate the development of an NSU, consider the use case Select SafeHome 
Components:

Use Case: Select SafeHome Components

The WebApp will recommend product components (e.g., control panels, sensors, 
cameras) and other features (e.g., PC-based functionality implemented in software) 
for each room and exterior entrance. If I request alternatives, the WebApp will pro-
vide them, if they exist. I will be able to get descriptive and pricing information for 
each product component. The WebApp will create and display a bill-of-materials as 
I select various components. I’ll be able to give the bill-of-materials a name and 
save it for future reference (see use case Save Configuration).

The underlined items in the use case description represent classes and content 
objects that will be incorporated into one or more NSUs that will enable a new 
customer to perform the scenario described in the Select SafeHome Components 
use case.

Figure 13.5 depicts a partial semantic analysis of the navigation implied by the 
Select SafeHome Components use case. Using the terminology introduced earlier, 
the figure also represents a way of navigating (WoN) for the SafeHomeAssured.com 
WebApp. Important problem domain classes are shown, along with selected content 
objects (in this case the package of content objects named CompDescription, an 
attribute of the ProductComponent class). These items are navigation nodes. Each 
of the arrows represents a navigation link24 and is labeled with the user-initiated action 
that causes the link to occur.

24 These are sometimes referred to as navigation semantic links (NSLs) [Cac02].
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Figure 13.5 Creating an NSU
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You can create an NSU for each use case associated with each user role. For 
example, a new customer for SafeHomeAssured.com may have three different use 
cases, all resulting in access to different information and WebApp functions. An NSU 
is created for each goal.

During the initial stages of navigation design, the WebApp content architecture is 
assessed to determine one or more WoN for each use case. As noted earlier, a WoN 
identifies navigation nodes (e.g., content) and then links that enable navigation between 
them. The WoN are then organized into NSUs.

As design proceeds, your next task is to define the mechanics of navigation. Most 
websites make use of one or more of the following navigation options for implement-
ing each NSU: individual navigation links, horizontal or vertical navigation bars 
(lists), tabs, or access to a complete site map. If a site map is defined, it should be 
accessible from every page. The map itself should be organized so that the structure 
of WebApp information is readily apparent.

In addition to choosing the mechanics of navigation, you should also establish 
appropriate navigation conventions and aids. For example, icons and graphical links 
should look “clickable” by beveling the edges to give the image a three-dimensional 
look. Audio or visual feedback should be designed to provide the user with an indica-
tion that a navigation option has been chosen. For text-based navigation, color should 
be used to indicate navigation links and to provide an indication of links already 
traveled. These are but a few of dozens of design conventions that make navigation 
user-friendly.

 13.6 co M p o n e n t-Le v e L De s i g n

Mobile apps deliver increasingly sophisticated processing functions that (1) perform 
localized processing to generate content and navigation capability in a dynamic fash-
ion, (2) provide computation or data processing capability that are appropriate for the 
app’s business domain, (3) provide sophisticated database query and access, and 
(4) establish data interfaces with external corporate systems. To achieve these (and 
many other) capabilities, you must design and construct program components that are 
identical in form to software components for traditional software.

The design methods discussed in Chapters 11 and 12 apply to mobile components 
with little, if any, modification. The implementation environment, programming lan-
guages, and design patterns, frameworks, and software may vary somewhat, but the 
overall design approach remains the same. To be cost conscious, you can design 
mobile components in such a way that they can be used without modification on 
several different mobile platforms.

 13.7 Mo b i L i t y a n D De s i g n Qua L i t y

Every person has an opinion about what makes a “good” mobile app. Individual 
viewpoints vary widely. Some users enjoy flashy graphics; others want simple text. 
Some demand copious information; others desire an abbreviated presentation. Some 
like sophisticated analytical tools or database access; others like to keep it simple. 



CHAPTER 13 DESIGN FOR MOBILITY  283

In fact, the user’s perception of “goodness” (and the resultant acceptance or rejection 
of a mobile app as a consequence) might be more important than any technical dis-
cussion of mobile app quality. Mobile design quality attributes are virtually the same 
as WebApp quality characteristics.

But how is mobile quality perceived? What attributes must be exhibited to achieve 
goodness in the eyes of end users and at the same time exhibit the technical charac-
teristics of quality that will enable you to correct, adapt, enhance, and support the 
mobile product over the long term?

In reality, all the technical characteristics of design quality discussed in Chapter 12 
and the generic quality attributes presented in Chapter 19 apply to mobile apps. How-
ever, the most relevant of these generic attributes—usability, functionality, reliability, 
efficiency, and maintainability—provide a useful basis for assessing the quality of 
mobile systems as well. Andreou [And05] suggests that end-user satisfaction with a 
mobile app is dictated by the same important quality factors—functionality, reliability, 
usability, efficiency, and maintainability—but adds portability to the list.

Olsina and his colleagues [Ols99] have prepared a “quality requirement tree” that 
identifies a set of technical attributes—usability, functionality, reliability, efficiency, 
and maintainability—that lead to high-quality mobile products.25 Figure 13.6 sum-
marizes their work. The criteria noted in the figure are of particular interest if you 
design, build, and maintain mobile products over the long term.

Web
application

quality

Usability

Functionality

Reliability

Maintainability

Efficiency

Online feedback and help features
Interface and aesthetic features

Global site understandability

Special features

Searching and retrieving capability
Navigation and browsing features
Application domain-related features

Correct link processing
Error recovery
User input validation and recovery

Response time performance
Page generation speed
Graphics generation speed

Response time performance
Page generation speed
Graphics generation speed

Figure 13.6
Quality 
requirements 
tree
Source: Olsina, 
Luis, Lafuente, 
Guillermo and 
Rossi, Gustavo, 
“Specifying Qual-
ity Characteristics 
and Attributes  
for Web Sites,” 
Proceedings of 
the 1st Interna-
tional Conference 
on Software Engi-
neering Workshop 
on Web Engineer-
ing, ACM, 
Los Angeles, 
May 1999.

25 These quality attributes are quite similar to those presented in Chapters 9 and 15. The 
implication is that quality characteristics are universal for all software.
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Offutt [Off02] extends the five major quality attributes noted in Figure 13.6 by 
adding the following attributes:

Security. Mobile products have become heavily integrated with critical cor-
porate and government databases. E-commerce applications extract and then 
store sensitive customer information. For these and many other reasons, 
mobile security is paramount in many situations. The key measure of security 
is the ability of the mobile app and its server environment to rebuff unauthor-
ized access and/or thwart an outright malevolent attack. Security engineering 
is discussed in Chapter 18. For additional information on WebApp and mobile 
app security, see [Web13], [Pri10], [Vac06], and [Kiz05].
Availability. Even the best mobile product will not meet users’ needs if it 
is unavailable. In a technical sense, availability is the measure of the per-
centage of time that a Web-based mobile resource is available for use. But 
Offutt [Off02] suggests that “using features available on only one browser 
or one platform” makes the mobile product unavailable to those with a 
different browser or platform configuration. The user will invariably go 
elsewhere.
Scalability. Can the mobile product and its server environment be scaled to 
handle 100, 1,000, 10,000, or 100,000 users? Will the app and the systems 
with which it is interfaced handle significant variation in volume, or will 
responsiveness drop dramatically (or cease altogether)? It is important to 
design a mobile environment that can accommodate the burden of success 
(i.e., significantly more end users) and become even more successful.
Time to Market. Although time to market is not a true quality attribute in 
the technical sense, it is a measure of quality from a business point of view. 
The first mobile product to address a specific market segment often captures 
a disproportionate number of end users.
Content Quality. Billions of Web pages are available for those in search of 
information. Even well-targeted Web searches result in an avalanche of con-
tent. With so many sources of information to choose from, how does the user 
assess the quality (e.g., veracity, accuracy, completeness, timeliness) of the 
content that is presented within a mobile product? This is part of what data 
science tries to address. The basics of data science are introduced in 
Appendix 2 of this book.

Tillman [Til00] suggests a useful set of criteria for assessing the quality of content: 
Can the scope and depth of content be easily determined to ensure that it meets the 
user’s needs? Can the background and authority of the content’s authors be easily 
identified? Is it possible to determine the currency of the content, the last update, and 
what was updated? Are the content and its location stable (i.e., will they remain at 
the referenced URL)? Is content credible? Is content unique? That is, does the mobile 
product provide some unique benefit to those who use it? Is content valuable to the 
targeted user community? Is content well organized? Indexed? Easily accessible? 
These questions represent only a small sampling of the issues that should be addressed 
as the design of a mobile product evolves.
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 13.8 Mo b i L i t y De s i g n be st pr ac t i c e s

There are several guidelines for developing mobile products26 and for developing apps 
for specific platforms like Apple’s iOS27 or Google’s Android.28 Schumacher [Sch09] 
has collected many best practice ideas and has posted several specially adapted to the 
design of mobile applications and Web pages. Some important considerations when 
designing mobile touch-screen applications listed by Schumacher include:

∙ Identify your audience. The application must be written with the expecta-
tions and backgrounds of its users in mind. Experienced users want to do 
things quickly. Less experienced users will appreciate a handholding approach 
when they are first using the app.

∙ Design for context of use. It is important to consider how the user will inter-
act with the real world while using the mobile product. Watching a movie on 
an airplane calls for a different user interface than checking the weather 
before you leave the office.

∙ There is a fine line between simplicity and laziness. Creating an intuitive 
user interface on a mobile device is much harder than simply removing 
features found in the user interface for the application running on a larger 
device. The user interface should provide all the information that enables  
a user to make her next decision.

Mobile Product—Quality 
Checklist
The following checklist provides a set of 

questions that will help both software engineers and 
end users assess overall mobile product quality:

∙ Can content, function, and/or navigation op
tions be tailored to the user’s preferences?

∙ Can content and/or functionality be customized 
to the bandwidth at which the user communi
cates? Does the app account for weak or lost 
signals in an acceptable manner?

∙ Can content, function, and/or navigation 
options be made context aware according to 
the user’s preferences?

∙ Has adequate consideration been given to the 
power availability on the target device(s)?

∙ Have graphics, media (audio, video), and 
other Web or cloud services been used 
appropriately?

∙ Is the overall page design easy to read and 
navigate? Does the app take screensize 
differences into account?

∙ Does the user interface conform to the display 
and interaction standards adopted for the 
targeted mobile device(s)?

∙ Does the app conform to the reliability, 
security, and privacy expectations of its  
users?

∙ What provisions have been made to ensure an 
app remains current?

∙ Has the mobile product been tested in all 
targeted user environments and for all targeted 
devices?

info

26 See http://www.w3.org/TR/mwabp/.
27 See https://developer.apple.com/design/human-interface-guidelines/.
28 See http://developer.android.com/guide/components/index.html.
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∙ Use the platform as an advantage. Touch-screen navigation is not intuitive 
and must be learned by all new users. This learning task will be easier if  
the user interface designers adhere to standards that have been set for the 
platform.

∙ Make scrollbars and selection highlighting more salient. Scrollbars are 
often hard to locate on touch devices because they are too small. Make sure 
that menu or icon borders are wide enough for color changes to catch the 
users’ attention. When color coding is used, make sure there is sufficient 
contrast between foreground and background colors to allow them to be 
distinguishable by any color-blind users.

∙ Increase discoverability of advanced functionality. Hot keys and other 
shortcuts are sometimes included in mobile products to allow experienced 
users to complete their tasks more quickly. You can increase the discoverabil-
ity of features like these by including visual design clues in the user interface.

∙ Use clear and consistent labels. Widget labels should be recognized by all 
app users, regardless of standards used by specific platforms. Use abbrevia-
tions cautiously and avoid them if possible.

∙ Clever icons should never be developed at the expense of user under-
standing. Icons often only make sense to their designers. Users must be able 
to learn their meaning quickly. It is hard to guarantee that icons are meaning-
ful across all languages and user groups. A good strategy to enhance recogni-
tion is to add a text label beneath a novel icon.

∙ Support user expectations for personalization. Mobile device users expect to 
be able to personalize everything. At the very least, developers should try to 
allow users to set their location (or detect it automatically) and select content 
options that may be available at that location. It is important to indicate to 
users what features can be personalized and how users can personalize them.

∙ Long scrolling forms trump multiple screens on mobile devices. Experi-
enced mobile device users want all information on a single input screen even 
if this requires scrolling. Novice users often become experienced quickly and 
will grow tired of multiple input screens.

Developing native applications for multiple device platforms can be costly and time 
consuming. Development costs can be reduced by using technologies familiar to Web 
developers (e.g., JavaScript, CSS, and HTML) to create mobile products that will be 
accessed using a Web browser on a mobile device.

There are no guarantees that a desktop program or a WebApp can be easily adapted 
for implementation as a mobile product. However, many of the agile software engineer-
ing practices (Chapter 3) used to create desktop computer applications can be used to 
create stand-alone apps or mobile client software, and many of the practices used to 
create quality WebApps apply to the creation of Web services used by mobile products.

The most important architectural design decision is often whether to build a thin 
or fat client. The model-view-controller (MVC) architecture (Section 13.3) is com-
monly used in mobile products. Because the mobile architecture has a strong influence 
on navigation, the decisions made during this design action will influence work con-
ducted during navigation design. The architectural design must take device resources 
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into account (storage, processor speed, and network connectivity). The design should 
include provisions for discoverable services and movable devices.

Usability testing and deployment testing take place during each prototype develop-
ment cycle. Code reviews that focus on security issues should be included as part of 
the implementation activities. These code reviews should be based on the appropriate 
security objectives and threats identified in the system design activities. Security test-
ing is a routine part of system testing (Chapter 21).

 13.9 su M M a ry

The quality of a mobile product—defined in terms of functionality, reliability, usabil-
ity, efficiency, security, maintainability, scalability, and portability—is introduced dur-
ing design. A good mobile product should be based on the following design goals: 
simplicity, ubiquity, personalization, flexibility, and localization.

Interface design describes the structure and organization of the user interface and 
includes a representation of screen layout, a definition of the modes of interaction, 
and a description of navigation mechanisms. In addition, the interface for a good 
mobile product will promote the brand signature and focus on its targeted device 
platform(s). A set of core user stories is used to trim unnecessary features from the 
app to manage its resource requirements. Context-aware devices make use of discov-
erable services to help personalize the user experience.

Content design is critically important and takes the screen and other limitations of 
mobile devices into account. Aesthetic design, also called graphic design, describes 
the “look and feel” of the mobile product and includes color schemes, graphic layout, 
the use of graphics, and related aesthetic decisions. Aesthetic design must also take 
device limitations into account.

Architecture design identifies the overall hypermedia structure for the mobile prod-
uct and encompasses both content architecture and mobile architecture. It is critical 
to determine how much of the mobile functionality will reside on the mobile device 
and how much will be provided by Web or cloud services.

Navigation design represents the navigational flow between content objects and for 
all mobile functions. Navigation syntax is defined by the widgets available on the 
targeted mobile device(s), and the semantics are often determined by the mobile plat-
form. Content chunking must take intermittent service interruptions and user demands 
for fast performance into account.

Component design develops the detailed processing logic required to implement the 
components that are used to build a complete MobileApp function. The design techniques 
described in Chapter 12 may be applicable for the engineering of mobile components.

pro b L e M s a n D po i n t s to po n D e r

13.1. Explain why deciding to develop a MobileApp for several devices can be a costly design 
decision. Is there a way to mitigate the risks of supporting the wrong platform?

13.2. In this chapter we listed many quality attributes for mobile products. Select the three that 
you believe are most important, and make an argument that explains why each should be 
emphasized in mobile design work.
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13.3. You are a MobileApp designer for Project Planning Corporation, a company that builds 
productivity software. You want to implement the equivalent of a digital three-ring binder that 
allows tablet users to organize and categorize electronic documents of several types under user-
defined tabs. For example, a kitchen remodeling project might require a pdf catalog, a jpg or 
layout drawing, an MS Word proposal, and an Excel spreadsheet stored under a Cabinetry tab. 
Once defined, the binder and its tab content can be stored either on the tablet or on some cloud 
storage. The application needs to provide five key functions: binder and tab definition, digital 
document acquisition from a Web location or the device, binder management functions, page 
display functions, and a notes function to allow a Post-it note to be added to any page. Develop 
an interface design for the three-ring application, and implement it as a paper prototype.

13.4. What is the most aesthetically pleasing MobileApp you have ever used and why?

13.5. Create user stories for the three-ring application described in Problem 13.3.

13.6. What might be considered to make the three-ring application a context-aware MobileApp?

13.7. Reconsidering the ProjectPlanning three-ring application described in Problem 13.3, 
select a development platform for the first working prototype. Discuss why you made the choice.

13.8. Do a bit of additional research on the MVC architecture and decide whether it would be 
an appropriate MobileApp architecture for the three-ring discussed in Problem 13.3.

13.9. Describe three context-aware features that would be desirable to add to a SafeHome 
MobileApp.

13.10. You are a WebApp designer for FutureLearning Corporation, a distance learning com-
pany. You intend to implement an Internet-based “learning engine” that will enable you to 
deliver course content to a student. The learning engine provides the basic infrastructure for 
delivering learning content on any subject (content designers will prepare appropriate content). 
Develop a prototype interface design for the learning engine.

Design element: Quick Look icon magnifying glass: © Roger Pressman
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14Pattern-Based  
Design

What is it? Pattern-based design creates a new 
application by finding a set of proven solutions 
to a clearly delineated set of problems. Each 
problem and its solution are described by a 
design pattern that has been cataloged and 
vetted by other software engineers who have 
encountered the problem and implemented 
the solution while designing other applications. 

Who does it? A software engineer examines 
each problem encountered for a new appli-
cation and then attempts to find a relevant 
solution by searching one or more pattern 
repositories.

Why is it important? Have you ever heard 
the phrase “reinventing the wheel”? It hap-
pens all the time in software development, 
and it’s a waste of time and energy. By using 
existing design patterns, you can acquire a 
proven solution for a specific problem. As 
each pattern is applied, solutions are inte-
grated and the application to be built moves 
closer to a complete design.

What are the steps? The requirements model 
is examined to isolate the hierarchical set of 
problems to be solved. The problem space is 
partitioned so that subsets of problems asso-
ciated with specific software functions and 
features can be identified. Problems can also 
be organized by type: architectural, compo-
nent-level, algorithmic, user interface, and so 
forth. Once a subset of problems is defined, 
one or more pattern repositories are searched 
to determine if a design pattern, represented 
at an appropriate level of abstraction, exists. 

What is the work product? A design model that 
depicts the architectural structure, user inter-
face, and component-level detail is developed.

How do I ensure that I’ve done it right? As 
each design pattern is translated into some 
element of the design model, work products 
are reviewed for clarity, correctness, com-
pleteness, and consistency with requirements 
and with one another.

Q u i c k  L o o k

anti-patterns  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .302
architectural patterns  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .299
behavioral patterns .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .292
component-level design patterns  .  .  .  .  .  .  .  . 300
creational patterns  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .292
design mistakes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .298
design patterns  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 290
frameworks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .293

kinds of patterns  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 291
machine learning .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .294
pattern languages .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .297
pattern-organizing table  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .298
structural patterns .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .292
system of forces  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 290
user interface design patterns  .  .  .  .  .  .  .  .  .  .  .  .304

k e y 
c o n c e p t s

Each of us has encountered a design problem and silently thought: I wonder if 
anyone has developed a solution for this? The answer is almost always yes! The 
problem is finding the solution; ensuring that it does, in fact, fit the problem 
you’ve encountered; understanding the constraints that may restrict the ways in 
which the solution is applied; and finally, translating the proposed solution into 
your design environment.
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But what if the solution were codified in some manner? What if there was a 
standard way of describing a problem (so you could look it up), and an organized 
method for representing the solution to the problem? It turns out that software 
problems have been codified and described using a standardized template, and 
solutions to them (along with constraints) have been proposed. Called design 
patterns, this codified method for describing problems and their solution allows 
the software engineering community to capture design knowledge in a way that 
enables it to be reused.

The early history of software patterns begins not with a computer scientist but a 
building architect, Christopher Alexander, who recognized that a recurring set of 
problems was encountered whenever a building was designed. He characterized 
these recurring problems and their solutions as patterns, describing them in the 
following manner [Ale77]: “Each pattern describes a problem that occurs repeatedly 
in our environment and then describes the core of the solution to that problem in 
such a way that you can use the solution a million times over without ever doing it 
the same way twice.” Alexander’s ideas were first translated into the software world 
in books by Gamma [Gam95], Buschmann [Bus07], and their many colleagues.1 
Today, dozens of pattern repositories exist, and pattern-based design can be applied 
in many different application domains.

 14.1 De s i g n pat t e r n s

A design pattern can be characterized as “a three-part rule which expresses a relation 
between a certain context, a problem, and a solution” [Ale79]. For software design, 
context allows the reader to understand the environment in which the problem resides 
and what solution might be appropriate within that environment. A set of require-
ments, including limitations and constraints, acts as a system of forces that influences 
how the problem can be interpreted within its context and how the solution can be 
effectively applied.

It is reasonable to argue that most problems have multiple solutions, but that a 
solution is effective only if it is appropriate within the context of the existing problem. 
It is the system of forces that causes a designer to choose a specific solution. The 
intent is to provide a solution that best satisfies the system of forces, even when these 
forces are contradictory. Finally, every solution has consequences that may have an 
impact on other aspects of the software and may themselves become part of the system 
of forces for other problems to be solved within the larger system.

An effective design pattern: (1) captures a specific solution to a bounded problem, 
(2) provides a solution that has been proven in practice, (3) identifies an approach to 
a problem that is not obvious, (4) identifies the relationship(s) between the design and 
other architectural elements, and (5) is elegant in its approach and its utility.

1 Earlier discussions of software patterns do exist, but these two classic books were the first 
cohesive treatments of the subject.
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A design pattern saves you from “reinventing the wheel,” or worse, inventing a 
“new wheel” that is slightly out of round, too small for its intended use, and too nar-
row for the ground it will roll over. Design patterns, if used effectively, will invariably 
make you a better software designer.

14.1.1 Kinds of Patterns
One of the reasons that software engineers are interested in (and intrigued by) 
design patterns is that human beings are inherently good at pattern recognition. If 
we weren’t, we’d be frozen in space and time—unable to learn from experience, 
unwilling to venture forward because of our inability to recognize situations that 
might lead to high risk, unhinged by a world that seems to have no regularity or 
logical consistency. Luckily, none of this occurs because we do recognize patterns 
in virtually every aspect of our lives.

In the real world, the patterns we recognize are learned over a lifetime of 
experience. We recognize them instantly and inherently understand what they 
mean and how they might be used. Some of these patterns provide us with insight 
into recurring phenomenon. For example, you’re on your way home from work on 
the interstate when your navigation system (or car radio) informs you that a seri-
ous accident has occurred on the interstate in the opposing direction. You’re 
4 miles from the accident, but already you begin to see traffic slowing, recogniz-
ing a pattern that we’ll call RubberNecking. People in the travel lanes moving 
in your direction are slowing at the sight of the accident to get a better view of 
what happened on the opposite side of the highway. The RubberNecking pattern 
yields remarkably predictable results (a traffic jam), but it does nothing more than 
describe a phenomenon. In patterns jargon, it might be called a nongenerative 
pattern because it describes a context and a problem, but it does not provide any 
clear-cut solution.

When software design patterns are considered, we strive to identify and document 
generative patterns. That is, we identify a pattern that describes an important and 
repeatable aspect of a system and that provides us with a way to build that aspect 
within a system of forces that are unique to a given context. In an ideal setting, a 
collection of generative design patterns could be used to “generate” an application or 
computer-based system whose architecture enables it to adapt to change. Sometimes 
called generativity, “the successive application of several patterns, each encapsulating 
its own problem and forces, unfolds a larger solution which emerges indirectly as a 
result of the smaller solutions” [App00].

Design patterns span a broad spectrum of abstraction and application. Architectural 
patterns describe broad-based design problems that are solved using a structural 
approach. Data patterns describe recurring data-oriented problems and the data mod-
eling solutions that can be used to solve them. Component patterns (also referred to 
as design patterns) address problems associated with the development of subsystems 
and components, the way they communicate with one another, and their placement 
within a larger architecture. Interface design patterns describe common user interface 
problems and their solutions with a system of forces that includes the specific char-
acteristics of end users. WebApp patterns address a problem set that is encountered 
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when building WebApps and often incorporates many of the other pattern categories 
just mentioned. Mobile patterns describe commonly encountered problems when 
developing solutions for mobile platforms. At a lower level of abstraction, idioms 
describe how to implement all or part of a specific algorithm or data structure for a 
software component within the context of a specific programming language. Don’t 
force a pattern, even if it addresses the problem at hand. If the context and forces are 
wrong, look for another pattern.

In their seminal book on design patterns, Gamma and his colleagues2 [Gam95] 
focus on three types of patterns that are particularly relevant to object-oriented design: 
creational patterns, structural patterns, and behavioral patterns.

2 Gamma and his colleagues [Gam95] are often referred to as the “Gang of Four” (GoF) in 
patterns literature.

Creational, Structural,  
and Behavioral Patterns
A wide variety of design patterns that 

fit into creational, structural, and behavioral cat-
egories have been proposed and can be found 
on the Web. Here is a sampling of patterns for 
each type. Comprehensive descriptions of each 
of these patterns can be obtained via links at 
www.wikipedia.org.

Creational Patterns
∙ Abstract factory pattern. Centralize decision 

of what factory to instantiate.
∙ Factory method pattern. Centralize creation 

of an object of a specific type, choosing one of 
several implementations.

∙ Builder pattern. Separate the construction of 
a complex object from its representation so 
that the same construction process can create 
different representations.

Structural Patterns
∙ Adapter pattern. “Adapts” one interface for a 

class into one that a client expects.
∙ Aggregate pattern. A version of the compos-

ite pattern with methods for aggregation of 
children.

∙ Composite pattern. A tree structure of objects 
where every object has the same interface.

∙ Container pattern. Create objects for the sole 
purpose of holding other objects and manag-
ing them.

∙ Proxy pattern. A class functioning as an 
interface to another thing.

∙ Pipes and filters. A chain of processes where the 
output of each process is the input of the next.

Behavioral Patterns
∙ Chain of responsibility pattern. Command ob-

jects are handled or passed on to other objects 
by logic-containing processing objects.

∙ Command pattern. Command objects encap-
sulate an action and its parameters.

∙ Iterator pattern. Iterators are used to access the 
elements of an aggregate object sequentially 
without exposing its underlying representation.

∙ Mediator pattern. Provides a unified interface 
to a set of interfaces in a subsystem.

∙ Visitor pattern. A way to separate an algorithm 
from an object.

∙ Hierarchical visitor pattern. Provides a way to 
visit every node in a hierarchical data structure 
such as a tree.

info
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Creational patterns focus on the “creation, composition, and representation” of 
objects and provide mechanisms that make the instantiation of objects easier within 
a system and enforce “constraints on the type and number of objects that can be 
created within a system” [Maa07]. Structural patterns focus on problems and solu-
tions associated with how classes and objects are organized and integrated to build 
a larger structure. Behavioral patterns address problems associated with the assign-
ment of responsibility between objects and the way communication is affected 
between objects.

14.1.2 Frameworks
Patterns themselves may not be sufficient to develop a complete design. In some 
cases, it may be necessary to provide an implementation-specific skeletal infra-
structure, called a framework, for design work. A framework is a reusable “mini-
architecture” that serves as a foundation from which other design patterns can be 
applied. That is, you can select a “reusable mini-architecture that provides the 
generic structure and behavior for a family of software abstractions, along with a 
context  .  .  . which specifies their collaboration and use within a given domain” 
[Amb98].

A framework is not an architectural pattern, but rather a skeleton with a collection 
of “plug points” (also called hooks and slots) that enable it to be adapted to a specific 
problem domain. The plug points enable you to integrate problem-specific classes or 
functionality within the skeleton. In an object-oriented context, a framework is a col-
lection of cooperating classes.

Gamma and his colleagues [Gam95] note that patterns are more abstract than 
frameworks. A framework can be “embodied in code,” while a pattern is generally 
code independent. A framework often encompasses more than a single pattern and is 
therefore a larger architectural element than a pattern. Finally, a framework resides 
within a specific application domain, but patterns can be applied in any domain in 
which the problem to be addressed is encountered.

The designer of a framework will argue that one, reusable, mini-architecture is 
applicable to all software to be developed within a limited domain of application. To 
be most effective, frameworks are applied with no changes. Additional design ele-
ments may be added, but only via the plug points that allow the designer to flesh out 
the framework skeleton.

14.1.3 Describing a Pattern
Pattern-based design begins with the recognition of patterns within the application 
you intend to build, continues with a search to determine whether others have addressed 
the pattern, and concludes with the application of an appropriate pattern to the prob-
lem at hand. The second of these three tasks is often the most difficult. How do you 
find patterns that fit your needs?

An answer to this question must rely on effective communication of the problem the 
pattern addresses, the context in which the pattern resides, the system of forces that 
mold the context, and the solution that is proposed. To communicate this information 
unambiguously, a standard form or template for pattern descriptions is required. Although 
several different pattern templates have been proposed, almost all contain a major 
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The names of design patterns should be chosen with care. One of the key techni-
cal problems in pattern-based design is the inability to find existing patterns when 
hundreds or thousands of candidate patterns exist. The search for the “right” pattern 
is aided immeasurably by a meaningful pattern name.

A pattern template provides a standardized means for describing a design pattern. 
Each of the template entries represents characteristics of the design pattern that can 
be searched (e.g., via a database) so that the appropriate pattern can be found.

14.1.4 Machine Learning and Pattern Discovery
Software patterns can be described as best practice solutions to known problems. 
Information about where design patterns have been implemented in a software design 
is useful information for developers to have when creating or maintaining a software 
system. Sadly, this information is lost due to poor documentation practices of the 
original developers. In recent years, there has been significant interest in making use 
of automatic techniques to identify new patterns present, but not documented, in exist-
ing software products [Alh12].

One way to do this is to create an artificial intelligence (AI) system capable of 
recognizing design patterns after examining many similar software systems. The same 
software pattern may be implemented in many ways. Machine learning3 techniques 

3 Machine learning is an AI technique that uses statistical techniques to allow a system to 
learn from examples and improve its performance without being explicitly programmed. For 
those readers interested in pursuing this subject in greater detail, see [Kub17].

Design Pattern Template
 Pattern name. Describes the essence 
of the pattern in a short but expres-
sive name.

Problem. Describes the problem that the pattern 
addresses.

Motivation. Provides an example of the problem.

Context. Describes the environment in which the 
problem resides, including the application domain.

Forces. Lists the system of forces that affect the way 
the problem must be solved; includes a discussion 
of limitation and constraints that must be considered.

Solution. Provides a detailed description of the 
solution proposed for the problem.

Intent. Describes the pattern and what it does.

Collaborations. Describes how other patterns 
contribute to the solution.

Consequences. Describes the potential trade-offs 
that must be considered when the pattern is 
implemented and the consequences of using  
the pattern.

Implementation. Identifies special issues that 
should be considered when implementing the 
pattern.

Known uses. Provides examples of actual uses of 
the design pattern in real applications.

Related patterns. Cross-references related 
design patterns.

info

subset of the content suggested by Gamma and his colleagues [Gam95]. A simplified 
pattern template is shown in the sidebar.
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can provide a means of teaching a system to recognize the presence of a pattern in 
the software source code. The machine learning system repeatedly examines a training 
set containing both good and bad examples of software patterns using specific quan-
titative criteria of “good” and “bad” examples. This process continues until the system 
has learned to recognize most of the good patterns in the training set. Often these 
training sets are derived from large open-source software systems available on the 
Internet [Zan15].

Once trained, the tool can be used to locate software patterns in new systems 
outside the training set. To be useful, the software patterns are collected in a reposi-
tory. Ideally, this repository can be searched for software patterns applicable to the 
problems developers need to solve [Amp13].

 14.2 pat t e r n-Ba s e D so f t wa r e De s i g n

The best designers in any field have an uncanny ability to see patterns that character-
ize a problem and the corresponding patterns that can be combined to create a solu-
tion. Throughout the design process, you should look for every opportunity to apply 
existing design patterns (when they meet the needs of the design) rather than creating 
new ones.

14.2.1 Pattern-Based Design in Context
Pattern-based design is not used in a vacuum. The concepts and techniques discussed 
for architectural, component-level, and user interface design (Chapter 10 through 12) 
are all used in conjunction with a pattern-based approach.

In Chapter 9, we noted that a set of quality guidelines and attributes serve as the 
basis for all software design decisions. The decisions themselves are influenced by 
a set of fundamental design concepts (e.g., separation of concerns, stepwise refine-
ment, functional independence) that are achieved using heuristics that have evolved 
over many decades, and best practices (e.g., techniques, modeling notation) that have 
been proposed to make design easier to perform and more effective as a basis for 
construction.

The role of pattern-based design in all of this is illustrated in Figure 14.1. A soft-
ware designer begins with a requirements model (either explicit or implied) that pres-
ents an abstract representation of the system. The requirements model describes the 
problem set, establishes the context, and identifies the system of forces that hold sway. 
It may imply the design in an abstract manner, but the requirements model does little 
to represent the design explicitly.

As you begin your work as a designer, it’s always important to keep quality attri-
butes (Chapter 9) in mind. These attributes establish a way to assess software quality 
but do little to help you achieve it. Therefore, you should apply proven techniques for 
translating the abstractions contained in the requirements model into a more concrete 
form that is the software design. To accomplish this, you’ll use the methods and 
modeling tools available for architectural, component-level, and interface design. But, 
only when you’re faced with a problem, context, and system of forces that have not 
been solved before. If a solution already exists, use it! And that means applying a 
pattern-based design approach.
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14.2.2 Thinking in Patterns
Pattern-based design implies a “new way of thinking” [Sha05] that begins by consid-
ering context—the big picture. As context is evaluated, you extract a hierarchy of 
problems that must be solved. Some of these problems will be global in nature, while 
others will address specific features and functions of the software. All will be affected 
by a system of forces that will influence the nature of the solution that is proposed.

Shalloway and Trott [Sha05] suggest the following approach4 that enables a designer 
to think in patterns:

 1. Be sure you understand the big picture—the context in which the software to 
be built resides. The requirements model should communicate this to you.

 2. Examining the big picture, extract the patterns that are present at that level of 
abstraction.

 3. Begin your design with “big picture” patterns that establish a context or 
skeleton for further design work.

 4. “Work inward from the context” [Sha05], looking for patterns at lower levels 
of abstraction that contribute to the design solution.

 5. Repeat steps 1 to 4 until the complete design is fleshed out.
 6. Refine the design by adapting each pattern to the specifics of the software 

you’re trying to build.

It’s important to note that patterns are not independent entities. Design patterns 
that are present at a high level of abstraction will invariably influence the ways other 
patterns are applied at lower levels of abstraction. In addition, patterns often collaborate 

4 Based on the work of Christopher Alexander [Ale79].

Exact problem,
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Consider design quality
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Requirements
Model

Exact problem,
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Apply other design
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Begin pattern-based
design tasks

Consider design
concepts

Figure 14.1
Pattern-based 
design in 
context
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with one another. The implication is that when you select an architectural pattern, it 
may very well influence the component-level design patterns you choose. Likewise, 
when you select a specific interface design pattern, you are sometimes forced to use 
other patterns that collaborate with it.

To illustrate, consider the SafeHomeAssured.com WebApp. If you consider the 
big picture, the WebApp must address how to provide information about SafeHome 
products and services, how to sell SafeHome products and services to customers, and 
how to establish Internet-based monitoring and control of an installed security system. 
Each of these fundamental problems can be further refined into a set of subproblems.

For example, How to sell via the Internet implies an e-commerce pattern that 
itself implies many patterns at lower levels of abstraction. The e-commerce pattern 
(likely, an architectural pattern) implies mechanisms for setting up a customer account, 
displaying the products to be sold, selecting products for purchase, and so forth. 
Hence, if you think in patterns, it is important to determine whether a pattern for 
setting up an account exists. If SetUpAccount is available as a viable pattern for the 
problem context, it may collaborate with other patterns such as BuildInputForm,  
ManageFormsInput, and ValidateFormsEntry. Each of these patterns delineates 
problems to be solved and solutions that may be applied.

14.2.3 Design Tasks
The following design tasks are applied when a pattern-based design philosophy is used:

 1. Examine the requirements model and develop a problem hierarchy. 
Describe each problem and subproblem by isolating the problem, the context, 
and the system of forces that apply. Work from broad problems (high level of 
abstraction) to smaller subproblems (at lower levels of abstraction).

 2. Determine if a reliable pattern language has been developed for the prob-
lem domain. A pattern language encompasses a collection of patterns, each 
described using a standardized template (Section 14.1.3) and interrelated to 
show how these patterns collaborate to solve problems across an application 
domain. The SafeHome software team would look for a pattern language 
developed specifically for home security products. If that level of pattern lan-
guage specificity could not be found, the team would partition the SafeHome 
software problem into a series of generic problem domains (e.g., digital 
device monitoring problems, user interface problems, digital video manage-
ment problems) and search for appropriate pattern languages.

 3. Beginning with a broad problem, determine whether one or more architec-
tural patterns are available for it. If an architectural pattern is available, be 
certain to examine all collaborating patterns. If the pattern is appropriate, adapt 
the design solution proposed and build a design model element that adequately 
represents it. For example, a broad problem for the SafeHomeAssured.com 
WebApp is addressed with an e-commerce pattern (Section 14.2.2). This pattern 
will suggest a specific architecture for addressing e-commerce requirements.

 4. Using the collaborations provided for the architectural pattern, examine sub-
system or component-level problems and search for appropriate patterns to 
address them. It may be necessary to search through other pattern repositories as 
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well as the list of patterns that corresponds to the architectural solution. If an 
appropriate pattern is found, adapt the design solution proposed and build a 
design model element that adequately represents it. Be certain to apply step 7.

 5. Repeat steps 2 to 4 until all broad problems have been addressed. The 
implication is to begin with the big picture and elaborate to solve problems at 
increasingly more detailed levels.

 6. If user interface design problems have been isolated (this is almost always 
the case), search the many user interface design pattern repositories for 
appropriate patterns. Proceed in a manner similar to steps 3 to 5.

 7. Regardless of its level of abstraction, if a pattern language and/or patterns 
repository or individual pattern shows promise, compare the problem to 
be solved against the existing pattern(s) presented. Be certain to examine 
context and forces to ensure that the pattern does, in fact, provide a solution 
that is amenable to the problem.

 8. Be certain to refine the design as it is derived from patterns using design 
quality criteria as a guide.

Although this design approach is fundamentally top-down, Gillis [Gil06] suggests 
that “it’s more organic than that, more inductive than deductive, more bottom-up than 
top-down.” In addition, the pattern-based approach must be used in conjunction with 
other software design concepts and techniques.

14.2.4 Building a Pattern-Organizing Table
As pattern-based design proceeds, you may encounter trouble organizing and catego-
rizing candidate patterns from multiple pattern languages and repositories. To help 
organize your evaluation of candidate patterns, Microsoft [Mic13b] suggests the cre-
ation of a pattern-organizing table that takes the general form shown in Figure 14.2.

A pattern-organizing table can be implemented as a spreadsheet model using the 
form shown in the figure. An abbreviated list of problem statements, organized by 
data and content, architecture, component level, and user interface issues, is presented 
in the left-hand (shaded) column. Four pattern types—database, application, imple-
mentation, and infrastructure—are listed across the top row. The names of candidate 
patterns are noted in the cells of the table.

To provide entries for the organizing table, you’ll search through pattern languages 
and repositories for patterns that address an individual problem statement. When one 
or more candidate patterns is found, it is entered in the row corresponding to the 
problem statement and the column that corresponds to the pattern type. The name of 
the pattern is entered as a hyperlink to the URL of the Web address that contains a 
complete description of the pattern.

14.2.5 Common Design Mistakes
Several common mistakes may occur when pattern-based design is used. In some 
cases, not enough time has been spent to understand the underlying problem and its 
context and forces, and you may select a pattern that looks right but is inappropriate 
for the solution required. Once the wrong pattern is selected, you refuse to see your 
error and force-fit the pattern. In other cases, the problem has forces that are not 
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considered by the pattern you’ve chosen, resulting in a poor or erroneous fit. Some-
times a pattern is applied too literally and the required adaptations for your problem 
space are not implemented.

Can these mistakes be avoided? In most cases, the answer is yes. Every good designer 
looks for a second opinion and welcomes review of her work. The review techniques 
discussed in Chapter 16 can help to ensure that the pattern-based design you’ve devel-
oped will result in a high-quality solution for the software problem to be solved.

 14.3 arc h i t e c t u r a L pat t e r n s

If a house builder decides to construct a center-hall colonial, there is a single archi-
tectural style that can be applied. The details of the style (e.g., number of fireplaces, 
façade of the house, placement of doors and windows) can vary considerably, but once 
the decision on the overall architecture of the house is made, the style is imposed on 
the design.5

Architectural patterns are a bit different. For example, every house (and every 
architectural style for houses) employs a Kitchen pattern. The Kitchen pattern and 

5 This implies that there will be a central foyer and hallway, that rooms will be placed to the 
left and right of the foyer, that the house will have two (or more) stories, that the bedrooms 
of the house will be upstairs, and so on. These “rules” are imposed once the decision is 
made to use the center-hall colonial style.
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patterns it collaborates with address problems associated with the storage and prepa-
ration of food, the tools required to accomplish these tasks, and rules for placement 
of these tools relative to workflow in the room. In addition, the pattern might address 
problems associated with countertops, lighting, wall switches, a central island, floor-
ing, and so on. Obviously, there is more than a single design for a kitchen, often 
dictated by the context and system of forces. But every design can be conceived within 
the context of the “solution” suggested by the Kitchen pattern.

A software architecture may have several architectural patterns that address issues 
such as concurrency, persistence, and distribution. Before a representative architectural 
pattern can be chosen in a specific domain, it must be assessed for its appropriateness 
for the application and the overall architectural style, as well as the context and system 
of forces that it specifies.

 14.4 co m p o n e n t-Le v e L De s i g n pat t e r n s

Component-level design patterns provide you with proven solutions that address one 
or more subproblems extracted from the requirements model. In many cases, design 
patterns of this type focus on some functional element of a system. For example, 
the SafeHomeAssured.com application must address the following design subprob-
lem: How do I get product specifications and related information for any SafeHome 
device?

Having stated the subproblem that must be solved, you should now consider con-
text and the system of forces that affect the solution. Examining the appropriate 
requirements model use case, you learn that the consumer uses the specification for 
a SafeHome device (e.g., a security sensor or camera) for informational purposes. 
However, other information that is related to the specification (e.g., pricing) may be 
used when e-commerce functionality is selected.

The solution to the subproblem involves a search. Because searching is a very 
common problem, it should come as no surprise that there are many search-related 
patterns. Looking through several patterns repositories, you find the following pat-
terns, along with the problem that each solves:

AdvancedSearch. Users must find a specific item in a large collection 
of items.
HelpWizard. Users need help on a certain topic related to the website 
or when they need to find a specific page within the site.
SearchArea. Users must find a page.
SearchTips. Users need to know how to control the search engine.
SearchResults. Users must process a list of search results.
SearchBox. Users must find an item or specific information.

For SafeHomeAssured.com, the number of products is not particularly large, and 
each has a relatively simple categorization, so AdvancedSearch and HelpWizard 
are probably not necessary. Similarly, the search is simple enough not to require 
SearchTips. The description of SearchBox, however, is given (in part) as:
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Search Box
(Adapted from www.welie.com/patterns/showPattern.php?patternID=search)
Problem: The users need to find an item or specific information.
Motivation: Any situation in which a keyword search is applied across a 

collection of content objects organized as Web pages.
Context: Rather than using navigation to acquire information or con-

tent, the user wants to do a direct search through content 
contained on multiple Web pages. Any website that already 
has primary navigation. User may want to search for an item 
in a category. User might want to further specify a query.

Forces: The website already has primary navigation. Users may want 
to search for an item in a category. Users might want to 
further specify a query using simple Boolean operators.

Solution: Offer search functionality consisting of a search label, a key-
word field, a filter if applicable, and a “go” button. Pressing 
the return key has the same function as selecting the go 
button. Also provide Search Tips and examples in a separate 
page. A link to that page is placed next to the search func-
tionality. The edit box for the search term is large enough  
to accommodate three typical user queries (typically around 
20 characters). If the number of filters is more than 2, use a 
combo box for filters selection, otherwise a radio button.

 The search results are presented on a new page with a clear 
label containing at least “Search results” or similar. The 
search function is repeated in the top part of the page with 
the entered keywords, so that the users know what the 
keywords were.

The pattern description continues with other entries, as described in Section 14.1.3.

The pattern goes on to describe how the search results are accessed, presented, matched, 
and so on. Based on this, the SafeHomeAssured.com team can design the components 
required to implement the search or (more likely) acquire existing reusable components.

Applying Patterns

The scene: Informal discussion 
during the design of a software 

increment that implements sensor control via 
the Internet for SafeHomeAssured.com.
The players: Jamie, responsible for design, 
and Vinod, SafeHomeAssured.com chief 
system architect.

The conversation:
Vinod: So how is the design of the camera 
control interface coming along?

Jamie: Not too bad. I’ve designed most of the 
capability to connect to the actual sensors with-
out too many problems. I’ve also started think-
ing about the interface for the users to move, 

safehome
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 14.5 an t i-pat t e r n s

Design patterns provide you with proven solutions that address one or more problems 
extracted from the requirements model. Anti-patterns describe commonly used solu-
tions to design problems that usually have negative effects on software quality. In 
other words, they describe bad solutions to the design problems or at the very least 
describe the consequence of applying a design pattern in the wrong context. Anti-
patterns can provide tools to help developers recognize when these problems exist and 
may provide detailed plans for reversing the underlying problem causes and imple-
menting better solutions to these problems [Bro98]. Anti-patterns can provide valuable 
guidance to developers when they are looking for ways to refactor software products 
to improve their quality. In addition, they can be used by technical reviewers (Chap-
ter 16) to uncover area of concern.

Brown and his colleagues [Bro98] make the following comparisons between 
pattern and anti-pattern descriptions. Design patterns are usually written from the 
bottom up. A design pattern description starts with a recurring solution to a prob-
lem and then adds forces, symptoms, and context elements of the situation in 
which the solution is to be applied. Anti-patterns are written from the top down. 

pan, and zoom the cameras from a remote 
device, but I’m not sure I’ve got it right yet.

Vinod: What have you come up with?

Jamie: Well, the requirements are that the cam-
era control needs to be highly interactive—as 
the user moves the control, the camera should 
move as soon as possible. So, I was thinking of 
having a set of buttons laid out like a normal 
camera, but when the user clicks them, it con-
trols the camera.

Vinod: Hmmm. Yeah, that would work, but I’m 
not sure it’s right—for each click of a control 
you need to wait for the whole client-server 
communication to occur, and so you won’t get 
a good sense of quick feedback.

Jamie: That’s what I thought—and why I 
wasn’t very happy with the approach, but I’m 
not sure how else I might do it.

Vinod: Well, why not just use the Interactive-
DeviceControl pattern?

Jamie: Uhmmm—what’s that? I haven’t heard 
of it.

Vinod: It’s basically a pattern for exactly the 
problem you are describing. The solution it 

proposes is basically to create a control con-
nection to the server with the device, through 
which control commands can be sent. That 
way you don’t need to send normal HTTP re-
quests. And the pattern even shows how you 
can implement this using some simple AJAX 
techniques. You have some simple client-side 
JavaScript that communicates directly with the 
server and sends the commands as soon as 
the user does anything.

Jamie: Cool! That’s just what I needed to 
solve this thing. Where do I find it?

Vinod: It’s available in an online repository. 
Here’s the URL.

Jamie: I’ll go check it out.

Vinod: Yep—but remember to check the 
consequences field for the pattern. I seem to 
remember that there was something in there 
about needing to be careful about issues of 
security. I think it might be because you are 
creating a separate control channel and so by-
passing the normal Web security mechanisms.

Jamie: Good point. I probably wouldn’t have 
thought of that! Thanks.
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An anti-pattern description takes a recurring design problem, or a bad develop-
ment practice, and then lists its symptoms and negative consequences. It is then 
possible to include a recommended procedure for reducing the consequences doc-
umented in the anti-pattern. The Blob anti-pattern is presented in the following 
example.

The Blob
(Adapted from http://antipatterns.com/briefing/sld024.htm)

Problem:
Single class with large number of attributes, operations, or both.

Symptoms and Consequences:
∙ A disparate collection of unrelated attributes and operations encapsulated in a 

single class.
∙ An overall lack of cohesiveness of the attributes and operations is typical of 

The Blob.
∙ A single controller class with associated simple, data-object classes.
∙ A single controller class encapsulates the entire functionality like a procedural 

main program.
∙ The Blob limits the ability to modify the system without affecting the functionality 

of other objects.
∙ Modifications to other objects in the system are also likely to impact The Blob’s 

class.
∙ The Blob class is typically too complex for reuse and testing.
∙ The Blob class may be expensive to load into memory and uses excessive 

resources.

Typical Causes:
∙ Lack of an object-oriented architecture.
∙ The team may be lacking appropriate abstraction skills.
∙ Lack of defined software architecture.
∙ Lack of programming language support for architectural design.
∙ In iterative projects, developers tend to add little pieces of functionality to 

existing classes.
∙ Defining system architecture during requirements analysis often leads to The Blob.

Solution:
∙ The solution involves a form of re-factoring.
∙ The key is to move behavior away from The Blob.
∙ Reallocate behavior to other data objects in ways that make The Blob less complex.

A complete discussion of anti-patterns is beyond the scope of this book. Several 
anti-patterns with colorful and descriptive names appear in the sidebar that follows. 
We suspect you will recognize many of the anti-pattern names as development 
practices you were told to avoid when you learned to program.



304 PART TWO MODELING

 14.6 us e r in t e r fac e De s i g n pat t e r n s

Hundreds of user interface (UI) patterns have been proposed in recent years. Most fall 
within one of 10 categories of patterns as described by Tidwell [Tid11] and vanWelie 
[Wel01]. A few representative categories (discussed with a simple example6) follow:

Whole UI. Provide design guidance for top-level structure and navigation 
throughout the entire interface.

Pattern: Top-level navigation
Brief description: Used when a site or application implements several major 

functions. Provides a top-level menu, often coupled with a 
logo or identifying graphic, that enables direct navigation to 
any of the system’s major functions.

Details: Major functions (generally limited to between four and 
seven function names) are listed across the top of the display 
(vertical column formats are also possible) in a horizontal line 
of text. Each name provides a link to the appropriate function 
or information source. Often used with the BreadCrumbs 
pattern discussed later.

Navigation elements: Each function/content name represents a link to the appropriate 
function or content.

Page layout. Address the general organization of pages (for websites) or 
distinct screen displays (for interactive applications).

6 An abbreviated pattern template is used here. Full pattern descriptions (along with dozens 
of other patterns) can be found at [Tid11] and [Wel01].

Selected Anti-Patterns
A wide variety of anti-design patterns 
have been identified to assist develop-

ers in making refactoring decisions. Comprehen-
sive descriptions of each of these patterns can be 
obtained via links at https://en.wikipedia.org/
wiki/Anti-pattern.

∙ Big ball of mud. A system with no recogniz-
able structure

∙ Stovepipe system. A barely maintainable 
assemblage of ill-related components

∙ Boat anchor. Retaining a part of a system that 
no longer has any use

∙ Lava flow. Retaining undesirable (redundant 
or low-quality) code because removing it is  

too expensive or has unpredictable 
consequences

∙ Spaghetti code. Program whose structure is 
barely comprehensible, especially because of 
misuse of code structures

∙ Copy and paste programming. Copying exist-
ing code several times rather than creating 
generic solutions

∙ Silver bullet. Assume that a favorite technical 
solution will always solve a larger process or 
problem

∙ Programming by permutation. Trying to ap-
proach a solution by successively modifying 
the code to see if it works

info
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Pattern: Card stack
Brief description: Used when several specific subfunctions or content categories 

related to a feature or function must be selected in random 
order. Provides the appearance of a stack of tabbed cards, 
each selectable with a mouse click and each representing 
specific subfunctions or content categories.

Details: Tabbed cards are a well-understood metaphor and are easy for 
the user to manipulate. Each tabbed card (divider) may have a 
slightly different format. Some may require input and have 
buttons or other navigation mechanisms; others may be 
informational. May be combined with other patterns such as 
drop-down list, fill-in-the-blanks, and others.

Navigation elements: A mouse click on a tab causes the appropriate card to  
appear. Navigation features within the card may also be 
present, but in general, these should initiate a function that 
is related to card data, not cause an actual link to some 
other display.

E-commerce. Specific to websites, these patterns implement recurring 
elements of e-commerce applications.

Pattern: Shopping cart
Brief description: Provides a list of items selected for purchase.
Details: Lists item, quantity, product code, availability (in stock, out of 

stock), price, delivery information, shipping costs, and other 
relevant purchase information. Also provides ability to edit 
(e.g., remove, change quantity).

Navigation elements: Contains ability to proceed with shopping or go to checkout.

Each of the preceding example patterns (and all patterns within each category) 
would also have a complete component-level design, including design classes, 
attributes, operations, and interfaces. If you have further interest, see [Cho16], 
[Gas17], [Kei18], [Tid11], [Hoo12], and [Wel01] for further information. The role 
of anti-patterns and their effects on UX design can be found in [Sch15] and 
[Gra18].

 14.7 mo B i L i t y De s i g n pat t e r n s

Throughout this chapter you’ve learned that there are different types of patterns and 
how they can be categorized. By their nature, mobile applications are all about the 
interface. In many cases, mobile UI patterns [Mob12] are represented as a collection 
of “best of breed” screen images for apps in a variety of different categories. Typical 
examples might include:

Check-in screens. How do I check in from a specific location, make a 
comment, and share comments with friends and followers on a social 
network?
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Maps. How do I display a map within the context of an app that addresses 
some other subject? For example, review a restaurant and represent its 
location within a city.
Popovers. How do I represent a message or information (from the app or 
another user) that arises in real time or as the consequence of a user action?
Sign-up flows. How do I provide a simple way to sign in or register for 
information or functionality?
Custom tab navigation. How do I represent a variety of different content 
objects in a manner that enables the user to select the one she wants?
Invitations. How do I inform the user that he must participate in some 
action or dialog? Typical examples might include making use of a dialog box, 
a tool tip, or a self-playing video demo.

Additional information about mobile UI patterns can be found in [Nei14], [Hoo12], 
[McT16], [Abr17], and [Pun17]. In addition to UI patterns, Meier and his colleagues 
[Mei12] propose a variety of more general pattern descriptions for mobile apps.

 14.8 su m m a ry

Design patterns provide a codified mechanism for describing problems and their solu-
tion in a way that allows the software engineering community to capture design knowl-
edge for reuse. A pattern describes a problem, indicates the context enabling the user 
to understand the environment in which the problem resides, and lists a system of 
forces that indicate how the problem can be interpreted within its context and how 
the solution can be applied. In software engineering work, we identify and document 
generative patterns. These patterns describe an important and repeatable aspect of a 
system and then provide us with a way to build that aspect within a system of forces 
that is unique to a given context.

Architectural patterns describe broad-based design problems that are solved using 
a structural approach. Data patterns describe recurring data-oriented problems and the 
data modeling solutions that can be used to solve them. Component patterns (also 
referred to as design patterns) address problems associated with the development of 
subsystems and components, the ways in which they communicate with one another, 
and their placement within a larger architecture. Software anti-patterns describe com-
monly occurring solutions to a problem that lead to the creation of software products 
with poor quality. Interface design patterns describe common user interface problems 
and their solution with a system of forces that includes the specific characteristics of 
end users. Mobile patterns address the unique nature of the mobile interface and 
functionality and control elements that are specific to mobile platforms.

A framework provides an infrastructure in which patterns may reside and idioms 
describe programming language–specific implementation detail for all or part of a 
specific algorithm or data structure. A standard form or template is used for pattern 
descriptions. A pattern language encompasses a collection of patterns, each described 
using a standardized template and interrelated to show how these patterns collaborate 
to solve problems across an application domain.
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Pattern-based design is used in conjunction with architectural, component-level, 
and user interface design methods. The design approach begins with an examination 
of the requirements model to isolate problems, define context, and describe the system 
of forces. Next, pattern languages for the problem domain are searched to determine 
if patterns exist for the problems that have been isolated. Once appropriate patterns 
have been found, they are used as a design guide.

Pro b l e m s a n d Po i n t s to Po n d e r

14.1. Discuss the three “parts” of a design pattern, and provide a concrete example of each 
from some field other than software.

14.2. What is the difference between a pattern and an anti-pattern?

14.3. How do architectural patterns differ from component patterns?

14.4. What is a framework, and how does it differ from a pattern? What is an idiom, and how 
does it differ from a pattern?

14.5. Using the design pattern template presented in Section 14.1.3, develop a complete pattern 
description for a pattern suggested by your instructor.

14.6. Develop a skeletal pattern language for a sport with which you are familiar. You can 
begin by addressing the context, the system of forces, and the broad problems that a coach and 
team must solve. You need only specify pattern names and provide a one-sentence description 
for each pattern.

14.7. When Christopher Alexander says, “good design cannot be achieved simply by adding 
together performing parts,” what do you think he means?

14.8. Using the pattern-based design tasks noted in Section 14.2.3, develop a skeletal design 
for the “interior design system” described in Section 12.3.2.

14.9. Build a pattern-organizing table for the patterns you used in Problem 14.8.

14.10. Using the design pattern template presented in Section 14.1.3, develop a complete 
pattern description for the Kitchen pattern mentioned in Section 14.3.

Design element: Quick Look icon magnifying glass: © Roger Pressman
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P A R T

Three
Quality and Security

In this part of Software Engineering: A Practitioner’s Approach, you’ll 
learn about the principles, concepts, and techniques that are applied to 
manage and control software quality. These questions are addressed in the 
chapters that follow:

∙ What are the generic characteristics of high-quality software?
∙ How do we review quality, and how are effective reviews conducted?
∙ What is software quality assurance?
∙ What strategies are applicable for software testing?
∙ What methods are used to design effective test cases?
∙ Are there realistic methods that will ensure that software is correct?
∙ How can we manage and control changes that always occur as soft-

ware is built?
∙ What measures and metrics can be used to assess the quality of 

requirements and design models, source code, and test cases?
∙ How do we ensure the security concerns for a product are being 

addressed during the software life cycle?

Once these questions are answered, you’ll be better prepared to ensure that 
high-quality software has been produced.
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C H A P T E R

What is it? The answer isn’t as easy as you 
might think. You know quality when you see it, 
and yet, it can be an elusive thing to define. 
But for computer software, quality is some-
thing that we must define, and that’s what we’ll 
do in this chapter.

Who does it? Everyone—software engineers, 
managers, all stakeholders—involved in the 
software process is responsible for quality.

Why is it important? You can do it right, or you 
can do it over again. If a software team 
stresses quality in all software engineering ac-
tivities, it reduces the amount of rework that it 
must do. That results in lower costs, and more 
importantly, improved time to market.

What are the steps? To achieve high-quality 
software, four activities must occur: proven 
software engineering process and practice, 
solid project management, comprehensive 
quality control, and the presence of a quality 
assurance infrastructure.

What is the work product? Software that 
meets its customer’s needs, performs accu-
rately and reliably, and provides value to all 
who use it.

How do I ensure that I’ve done it right? Track 
quality by examining the results of all quality 
control activities, and measure quality by 
examining errors before delivery and defects 
released to the field.

Q u i c k  L o o k
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15 Quality  
Concepts

The drumbeat for improved software quality began in earnest as software became 
increasingly integrated in every facet of our lives. By the 1990s, major corpora-
tions recognized that billions of dollars each year were being wasted on software 
that didn’t deliver the features and functionality that were promised. Worse, both 
government and industry became increasingly concerned that a major software 
fault might cripple important infrastructure, costing tens of billions more. By the 
turn of the century, CIO Magazine trumpeted the headline, “Let’s Stop Wasting 
$78 Billion a Year,” lamenting the fact that “American businesses spend billions 
for software that doesn’t do what it’s supposed to do” [Lev01]. Sadly, at least 
one survey of the state of software quality practices done in 2014 suggests that 
maintenance and software evolution activities make up as much as 90 percent of 
the total software development costs [Nan14]. Poor software quality caused by 
a rush to release products without adequate testing continues to plague the soft-
ware industry.
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Today, software quality remains an issue, but who is to blame? Customers blame 
developers, arguing that sloppy practices lead to low-quality software. Developers 
blame customers (and other stakeholders), arguing that irrational delivery dates and a 
continuing stream of changes force them to deliver software before it has been fully 
validated. Who’s right? Both—and that’s the problem. In this chapter, we consider 
software quality as a concept and examine why it’s worthy of serious consideration 
whenever software engineering practices are applied.

 15.1 Wh at is  Qua L i t y?
In his mystical book Zen and the Art of Motorcycle Maintenance, Robert Persig 
[Per74] commented on the thing we call quality:

Quality . . . you know what it is, yet you don’t know what it is. But that’s self-contradictory. 
But some things are better than others; that is, they have more quality. But when you try 
to say what the quality is, apart from the things that have it, it all goes poof! There’s 
nothing to talk about  .  .  . Obviously some things are better than others  .  .  . but what’s 
the betterness?  .  .  . So round and round you go, spinning mental wheels and nowhere 
finding anyplace to get traction. What the hell is Quality? What is it?

Indeed—what is it?
At a somewhat more pragmatic level, David Garvin [Gar84] of the Harvard Busi-

ness School suggests that “quality is a complex and multifaceted concept” that can 
be described from five different points of view. The transcendental view argues (like 
Persig) that quality is something you immediately recognize but cannot explicitly 
define. The user view sees quality in terms of an end user’s specific goals. If a prod-
uct meets those goals, it exhibits quality. The manufacturer’s view defines quality in 
terms of the original specification of the product. If the product conforms to the spec, 
it exhibits quality. The product view suggests that quality can be tied to inherent 
characteristics (e.g., functions and features) of a product. Finally, the value-based view 
measures quality based on how much a customer is willing to pay for a product. In 
reality, quality encompasses all these views and more.

Quality of design refers to the characteristics that designers specify for a product. 
The grade of materials, tolerances, and performance specifications all contribute to 
the quality of design. As higher-grade materials are used, tighter tolerances and greater 
levels of performance are specified, and the design quality of a product increases if 
the product is manufactured according to specifications.

In software development, quality of design encompasses the degree to which the 
design meets the functions and features specified in the requirements model. Quality 
of conformance focuses on the degree to which the implementation follows the design 
and the resulting system meets its requirements and performance goals.

But are quality of design and quality of conformance the only issues that software 
engineers must consider? Robert Glass [Gla98] argues that a more “intuitive” relation-
ship is in order:

user satisfaction =  compliant product + good quality  
+ delivery within budget and schedule
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At the bottom line, Glass contends that quality is important, but if the user isn’t 
satisfied, nothing else really matters. DeMarco [DeM98] reinforces this view when 
he states: “A product’s quality is a function of how much it changes the world for the 
better.” This view of quality contends that if a software product provides substantial 
benefit to its end users, they may be willing to tolerate occasional reliability or per-
formance problems. A modern view of software quality requires attention to customer 
satisfaction as well as conformance to the product requirements [Max16].

 15.2 so f t Wa r e Qua L i t y

Even the most jaded software developers will agree that high-quality software is an 
important goal. But how do we define software quality? In the most general sense, 
software quality can be defined as: An effective software process applied in a manner 
that creates a useful product that provides measurable value for those who produce 
it and those who use it.

There is little question that the preceding definition could be modified or extended 
and debated endlessly. For the purposes of this book, the definition serves to empha-
size three important points:

 1. An effective software process establishes the infrastructure that supports any 
effort at building a high-quality software product. The management aspects of 
process create the checks and balances that help avoid project chaos—a key 
contributor to poor quality. Software engineering practices allow the developer 
to analyze the problem and design a solid solution—both critical to building 
high-quality software. Finally, umbrella activities such as change management 
and technical reviews have as much to do with quality as any other part of 
software engineering practice.

 2. A useful product delivers the content, functions, and features that the end user 
desires, but as important, it delivers these assets in a reliable, error-free way. 
A useful product always satisfies those requirements that have been explicitly 
stated by stakeholders. In addition, it satisfies a set of implicit requirements 
(e.g., ease of use) that are expected of all high-quality software.

 3. By adding value for both the producer and user of a software product, high-
quality software provides benefits for the software organization and the end-
user community. The software organization gains added value because 
high-quality software requires less maintenance effort, fewer bug fixes, and 
reduced customer support. This enables software engineers to spend more time 
creating new applications and less on rework. The user community gains added 
value because the application provides a useful capability in a way that expe-
dites some business process. The end result is (1) greater software product rev-
enue, (2) better profitability when an application supports a business process, 
and/or (3) improved availability of information that is crucial for the business.

15.2.1 Quality Factors
Several software quality models and standards have been proposed in the software 
engineering literature. David Garvin [Gar84] writes that quality is a multifaceted 
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phenomena and requires the use of multiple perspectives to assess it. McCall and 
Walters [McC77] proposed a useful way to think about and organize factors affecting 
software quality. Their software quality factors (shown in Figure 15.1) focus on three 
software product aspects: its operation characteristics, its ability to undergo change, 
and its adaptability to new environments. McCall’s quality factors provide a basis for 
engineering software that provides high levels of user satisfaction by focusing on the 
overall user experience delivered by the software product. This cannot be done unless 
developers ensure that the requirements specification is correct and that defects are 
removed early in the software development process [Max16].

The ISO 25010 quality model is the newest standard (created in 2011 and revised 
in 2017).1 This standard defines two quality models. The quality in use model describes 
five characteristics that are appropriate when considering using the product in a 
particular context (e.g., using the product on a specific platform by a human). The 
product quality model describes eight characteristics that focus on both the static and 
dynamic nature of computer systems.

∙ Quality in Use Model
∙ Effectiveness. Accuracy and completeness with which users achieve goals
∙ Efficiency. Resources expended to achieve user goals completely with 

desired accuracy
∙ Satisfaction. Usefulness, trust, pleasure, comfort
∙ Freedom from risk. Mitigation of economic, health, safety, and environ-

mental risks
∙ Context coverage. Completeness, flexibility

∙ Product Quality
∙ Functional suitability. Complete, correct, appropriate
∙ Performance efficiency. Timing, resource utilization, capacity
∙ Compatibility. Coexistence, interoperability

Figure 15.1
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1 The ISO 25010 can be found at https://www.iso.org/standard/35733.html.
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∙ Usability. Appropriateness, learnability, operability, error protection, 
aesthetics, accessibility

∙ Reliability. Maturity, availability, fault tolerance, recoverability
∙ Security. Confidentiality, integrity, accountability, authenticity
∙ Maintainability. Modularity, reusability, modifiability, testability
∙ Portability. Adaptability, installability, replaceability

The addition of the quality in use model helps to emphasize the importance of 
customer satisfaction in the assessment of software quality. The product quality model 
points out the importance of assessing both the functional and nonfunctional require-
ments for the software product [Max16].

15.2.2 Qualitative Quality Assessment
The quality dimensions and factors presented in Section 15.2.1 focus on the complete 
software product and can be used as a generic indication of the quality of an applica-
tion. Your software team can develop a set of quality characteristics and associated 
questions that would probe the degree to which each factor has been satisfied.2 For 
example, ISO 25010 identifies usability as an important quality factor. If you were 
asked to evaluate a user interface and assess its usability, how would you proceed?

Although it’s tempting to develop quantitative measures for the quality factors noted 
in Section 15.2.1, you can also create a simple checklist of attributes that provide a 
solid indication that the factor is present. You might start with the sub-characteristics 
suggested for usability in ISO 25010: appropriateness, learnability, operability, error 
protection, aesthetics, and accessibility. You and your team might decide to create a 
user questionnaire and a set of structured tasks for users to perform. You might 
observe the users while they perform these tasks and have them complete the question-
naire when they finish. We will discuss usability testing in more detail in Chapter 21.

To conduct your assessment, you and your team will need to address specific, 
measurable (or at least, recognizable) attributes of the interface. Your tasks might be 
focused on answering the following questions:

∙ How quickly can users determine whether the software product can be used to 
help them complete their task or not? (appropriateness)

∙ How long does it take users to learn how to use the system functions needed 
to complete their task? (learnability)

∙ Is the user able to recall how to use system functions in subsequent testing 
sessions without having to relearn them? (learnability)

∙ How long does it take users to complete tasks using the system? (operability)
∙ Does the system try to prevent users from making errors? (error protection)
∙ Does the system allow users to undo operations that may have resulted in 

errors? (error protection)
∙ Do answers give favorable responses to questions about the appearance of the 

user interface? (aesthetics)

2 These characteristics and questions would be addressed as part of a software review 
(Chapter 16).
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∙ Does the interface conform to the expectations set forth by the golden rules 
from Chapter 12? (accessibility)

∙ Does the user interface conform to the accessibility checklist items required 
for the intended users? (accessibility)

As the interface design is developed, the software team would review the design 
prototype and ask the questions noted. If the answer to most of these questions is yes, 
it is likely that the user interface exhibits high quality. A collection of questions 
similar to these would be developed for each quality factor to be assessed. In the case 
of usability, it is always important to observe representative users interact with the 
system. For some other quality factors it may be important to test the software in 
the wild (or at least in the production environment).

15.2.3 Quantitative Quality Assessment
In the preceding subsections, we have presented a set of qualitative factors for the 
“measurement” of software quality. The software engineering community strives to 
develop precise measures for software quality and is sometimes frustrated by the 
subjective nature of the activity. Cavano and McCall [Cav78] discuss this situation:

Subjectivity and specialization .  .  . apply to determining software quality. To help solve 
this problem, a more precise definition of software quality is needed as well as some 
way to derive quantitative measurements of software quality for objective analysis  .  .  . 
Since there is no such thing as absolute knowledge, one should not expect to measure 
software quality exactly, for every measurement is partially imperfect.

Several software design defects can be detected using software metrics. The process 
consists of finding code fragments that suggest the presence of things like high cou-
pling or unnecessary levels of complexity. Internal code attributes can be described 
quantitatively using software metrics. Any time software metric values computed for 
a code fragment fall outside the range of acceptable values, it signals the existence 
of a quality problem that should be investigated [Max16].

In Chapter 23, we’ll present a set of software metrics that can be applied to the 
quantitative assessment of software quality. In all cases, the metrics represent indirect 
measures; that is, we never really measure quality but rather some manifestation of 
quality. The complicating factor is the precise relationship between the variable that 
is measured and the quality of software.

 15.3 th e so f t Wa r e Qua L i t y Di L e m m a

In an interview [Ven03] published on the Web, Bertrand Meyer discusses what we 
call the quality dilemma:

If you produce a software system that has terrible quality, you lose because no one will 
want to buy it. If on the other hand you spend infinite time, extremely large effort, and huge 
sums of money to build the absolutely perfect piece of software, then it’s going to take so 
long to complete and it will be so expensive to produce that you’ll be out of business any-
way. Either you missed the market window, or you simply exhausted all your resources. So 
people in industry try to get to that magical middle ground where the product is good enough 
not to be rejected right away, such as during evaluation, but also not the object of so much 
perfectionism and so much work that it would take too long or cost too much to complete.
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It’s fine to state that software engineers should strive to produce high-quality sys-
tems. It’s even better to apply good practices in your attempt to do so. But the situ-
ation discussed by Meyer is real life and represents a dilemma for even the best 
software engineering organizations. When you’re faced with the quality dilemma (and 
everyone is faced with it at one time or another), try to achieve balance—enough 
effort to produce acceptable quality without burying the project.

15.3.1 “Good Enough” Software
Stated bluntly, if we are to accept the argument made by Meyer, is it acceptable to 
produce “good enough” software? The answer to this question must be yes, because 
software companies do it every day [Rod17]. They create software with known bugs 
and deliver it to a broad population of end users. They recognize that some of the 
functions and features delivered in version 1.0 may not be of the highest quality and 
plan for improvements in version 2.0. They do this knowing that some customers will 
complain, but they recognize that time to market may trump better quality as long as 
the delivered product is “good enough.”

Exactly what is “good enough”? Good enough software delivers high-quality func-
tions and features that end users desire, but at the same time it delivers other more 
obscure or specialized functions and features that contain known bugs. The software 
vendor hopes that the vast majority of end users will overlook the bugs because they 
are so happy with other application functionality.

This idea may resonate with many readers. If you’re one of them, we can only ask 
you to consider some of the arguments against “good enough.” It is true that “good 
enough” may work in some application domains and for a few major software com-
panies. After all, if a company has a large marketing budget and can convince enough 
people to buy version 1.0, it has succeeded in locking them in. As we noted earlier, 
it can argue that it will improve quality in subsequent versions. By delivering a good 
enough version 1.0, it has cornered the market.

If you work for a small company, be wary of this philosophy. When you deliver a 
good enough (buggy) product, you risk permanent damage to your company’s reputa-
tion. You may never get a chance to deliver version 2.0 because bad buzz may cause 
your sales to plummet and your company to fold.

If you work in certain application domains (e.g., real-time embedded software) 
or build application software that is integrated with hardware (e.g., automotive 
software, telecommunications software), delivering software with known bugs can 
be negligent and open your company to expensive litigation. In some cases, it can 
even be criminal. No one wants good enough aircraft avionics software! Ebert 
writes that the software process model should provide clear criteria to guide devel-
opers to determine what is really “good enough” for the intended application 
domain [Ebe14].

So, proceed with caution if you believe that “good enough” is a shortcut that can 
solve your software quality problems. It can work, but only for a few and only in a 
limited set of application domains.3

3 A worthwhile discussion of the pros and cons of “good enough” software can be found in 
[Bre02].
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15.3.2 The Cost of Quality
The argument goes something like this: We know that quality is important, but it costs 
us time and money—too much time and money to get the level of software quality we 
really want. On its face, this argument seems reasonable (see Meyer’s comments 
earlier in this section). There is no question that quality has a cost, but lack of qual-
ity also has a cost—not only to end users who must live with buggy software, but 
also to the software organization that has built and must maintain it. The real question 
is this: Which cost should we be worried about? To answer this question, you must 
understand both the cost of achieving quality and the cost of low-quality software.

The cost of quality includes all costs incurred in the pursuit of quality or in per-
forming quality-related activities and the downstream costs of lack of quality. To 
understand these costs, an organization should collect metrics to provide a baseline 
for the current cost of quality, identify opportunities for reducing these costs, and 
provide a normalized basis of comparison. The cost of quality can be divided into 
costs associated with prevention, appraisal, and failure.

Prevention costs include (1) the cost of management activities required to plan and 
coordinate all quality control and quality assurance activities, (2) the cost of added 
technical activities to develop complete requirements and design models, (3) test plan-
ning costs, and (4) the cost of all training associated with these activities. Don’t be 
afraid to incur significant prevention costs. Rest assured that your investment will 
provide an excellent return.

Appraisal costs include activities to gain insight into product condition the “first 
time through” each process. Examples of appraisal costs include: (1) the cost of 
conducting technical reviews (Chapter 16) for software engineering work products, 
(2) the cost of data collection and metrics evaluation (Chapter 23), and (3) the cost 
of testing and debugging (Chapters 19 through 21).

Failure costs are those that would disappear if no errors appeared before shipping 
a product to customers. Failure costs may be subdivided into internal failure costs and 
external failure costs. Internal failure costs are incurred when you detect an error in 
a product prior to shipment. Internal failure costs include: (1) the cost required to 
perform rework (repair) to correct an error, (2) the cost that occurs when rework 
inadvertently generates side effects that must be mitigated, and (3) the costs associated 
with the collection of quality metrics that allow an organization to assess the modes 
of failure. External failure costs are associated with defects found after the product 
has been shipped to the customer. Examples of external failure costs are complaint 
resolution, product return and replacement, help line support, and labor costs associ-
ated with warranty work. A poor reputation and the resulting loss of business is 
another external failure cost that is difficult to quantify but nonetheless very real. Bad 
things happen when low-quality software is produced.

In an indictment of software developers who refuse to consider external failure 
costs, Cem Kaner [Kan95] states:

Many of the external failure costs, such as goodwill, are difficult to quantify, and many 
companies therefore ignore them when calculating their cost-benefit tradeoffs. Other 
external failure costs can be reduced (e.g. by providing cheaper, lower-quality, post-sale 
support, or by charging customers for support) without increasing customer satisfaction. 
By ignoring the costs to our customers of bad products, quality engineers encourage 
quality-related decision-making that victimizes our customers, rather than delighting them.
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As expected, the relative costs to find and repair an error or defect increase dra-
matically as we go from prevention to detection to internal failure to external failure 
costs. Figure 15.2, based on data collected by Boehm and Basili [Boe01b] and illus-
trated by Cigital Inc. [Cig07], illustrates this phenomenon.

The industry average cost to correct a defect during code generation is approxi-
mately $977 per error. The industry average cost to correct the same error if it is 
discovered during system testing is $7,136 per error. Cigital Inc. [Cig07] considers a 
large application that has 200 errors introduced during coding.

According to industry average data, the cost of finding and correcting defects during the 
coding phase is $977 per defect. Thus, the total cost for correcting the 200 “critical” 
defects during this phase (200 × $977) is approximately $195,400.

Industry average data shows that the cost of finding and correcting defects during the 
system testing phase is $7,136 per defect. In this case, assuming that the system testing 
phase revealed approximately 50 critical defects (or only 25% of those found by Cigital 
in the coding phase), the cost of finding and fixing those defects (50 × $7,136) would 
have been approximately $356,800. This would also have resulted in 150 critical errors 
going undetected and uncorrected. The cost of finding and fixing these remaining 150 
defects in the maintenance phase (150 × $14,102) would have been $2,115,300. Thus, 
the total cost of finding and fixing the 200 defects after the coding phase would have 
been $2,472,100 ($2,115,300 + $356,800).

Even if your software organization has costs that are half of the industry average 
(most have no idea what their costs are!), the cost savings associated with early qual-
ity control and assurance activities (conducted during requirements analysis and 
design) are compelling.

Figure 15.2
Relative cost 
of correcting 
errors and 
defects
Source: Boehm, 
Barry and Basili, 
Victor R., “Soft-
ware Defect 
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List,” IEEE 
Computer, 
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January 2001.
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15.3.3 Risks
In Chapter 1 of this book, we wrote, “people bet their jobs, their comforts, their safety, 
their entertainment, their decisions, and their very lives on computer software. It bet-
ter be right.” The implication is that low-quality software increases risks for both the 
developer and the end user.4 In the preceding subsection, we discussed one of these 
risks (cost). But the downside of poorly designed and implemented applications does 
not always stop with dollars and time. An extreme example [Gag04] might serve to 
illustrate.

Throughout the month of November 2000 at a hospital in Panama, 28 patients 
received massive overdoses of gamma rays during treatment for a variety of cancers. 
In the months that followed, 5 of these patients died from radiation poisoning and 15 
others developed serious complications. What caused this tragedy? A software pack-
age, developed by a U.S. company, was modified by hospital technicians to compute 
modified doses of radiation for each patient.

Quality Issues

 The scene: Doug Miller’s office 
as the SafeHome software 
project begins.

The players: Doug Miller, manager of the 
SafeHome software engineering team, and 
other members of the product software engi-
neering team.

The conversation:
Doug: I was looking at an industry report on 
the costs of repairing software defects. It’s 
pretty sobering.

Jamie: We’re already working on developing 
test cases for each functional requirement.

Doug: That’s good, but I was noticing that it 
costs eight times as much to repair a defect 
that is discovered in testing than it does if the 
defect is caught and repaired during coding.

Vinod: We’re using pair programming, so we 
should be able to catch most of the defects 
during coding.

Doug: I think you’re missing the point. Quality 
is more than simply removing coding errors. 
We need to look at the project quality goals 
and ensure that the evolving software prod-
ucts are meeting them.

Jamie: Do you mean things like usability, 
security, and reliability?

Doug: Yes, I do. We need to build checks into 
the software process to monitor our progress 
toward meeting our quality goals.

Vinod: Can’t we finish the first prototype and 
then check it for quality?

Doug: I’m afraid not. We must establish a 
culture of quality early in the project.

Vinod: What do you want us to do, Doug?

Doug: I think we will need to find a technique 
that will allow us to monitor the quality of the 
SafeHome products. Let’s think about this and 
revisit this again tomorrow.

safehome

4 In an article titled “And the ‘Most Shocking Software Failure’ Award Goes To . . .” Chelsea 
Frischnecht provides a few brief examples of what can go wrong. The article can be found 
at https://www.tricentis.com/blog/2017/03/01/software-fail-awards/.
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The three Panamanian medical physicists, who tweaked the software to provide 
additional capability, were charged with second-degree murder. The U.S. company 
was faced with serious litigation in two countries. Gage and McCormick comment:

This is not a cautionary tale for medical technicians, even though they can find them-
selves fighting to stay out of jail if they misunderstand or misuse technology. This also 
is not a tale of how human beings can be injured or worse by poorly designed or poorly 
explained software, although there are plenty of examples to make the point. This is a 
warning for any creator of computer programs: that software quality matters, that appli-
cations must be foolproof, and that—whether embedded in the engine of a car, a robotic 
arm in a factory or a healing device in a hospital—poorly deployed code can kill.

Poor quality leads to risks, some of them very serious.5

15.3.4 Negligence and Liability
The story is all too common. A governmental or corporate entity hires a major soft-
ware developer or consulting company to analyze requirements and then design and 
construct a software-based “system” to support some major activity. The system might 
support a major corporate function (e.g., pension management) or some governmental 
function (e.g., health care administration or homeland security).

Work begins with the best of intentions on both sides, but by the time the system is 
delivered, things have gone bad. The system is late, fails to deliver desired features and 
functions, is error-prone, and does not meet with customer approval. Litigation ensues.

In most cases, the customer claims that the developer has been negligent (in the 
manner in which it has applied software practices) and is therefore not entitled to 
payment. The developer often claims that the customer has repeatedly changed its 
requirements and has subverted the development partnership in other ways. In every 
case, the quality of the delivered system comes into question.

15.3.5 Quality and Security
As the criticality of Web-based and mobile systems grows, application security has 
become increasingly important. Stated simply, software that does not exhibit high 
quality is easier to hack, and as a consequence, low-quality software can indirectly 
increase the security risk with all its attendant costs and problems.

In an interview in ComputerWorld, author and security expert Gary McGraw 
comments [Wil05]:

Software security relates entirely and completely to quality. You must think about secu-
rity, reliability, availability, dependability—at the beginning, in the design, architecture, 
test, and coding phases, all through the software life cycle [process]. Even people aware 
of the software security problem have focused on late life-cycle stuff. The earlier you 
find the software problem, the better. And there are two kinds of software problems. One 
is bugs, which are implementation problems. The other is software flaws—architectural 
problems in the design. People pay too much attention to bugs and not enough on flaws.

To build a secure system, you must focus on quality, and that focus must begin 
during design. The concepts and methods discussed in Part Two of this book lead to 

5 In early 2019, an error in the flight control software produced by a major aircraft manufac-
turer was directly linked to two crashes and the deaths of 346 people.
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a software architecture that reduces “flaws.” A more detailed discussion of security 
engineering is presented in Chapter 18.

15.3.6 The Impact of Management Actions
Software quality is often influenced as much by management decisions as it is by 
technology decisions. Even the best software engineering practices can be subverted 
by poor business decisions and questionable project management actions.

In Part Four of this book we discuss project management within the context of the 
software process. As each project task is initiated, a project leader will make decisions 
that can have a significant impact on product quality.

Estimation Decisions. A software team is rarely given the luxury of providing an 
estimate for a project before delivery dates are established and an overall budget is 
specified. Instead, the team conducts a “sanity check” to ensure that delivery dates 
and milestones are rational. In many cases there is enormous time-to-market pressure 
that forces a team to accept unrealistic delivery dates. As a consequence, shortcuts 
are taken, activities that lead to higher-quality software may be skipped, and product 
quality suffers. If a delivery date is irrational, it is important to hold your ground. 
Explain why you need more time, or alternatively, suggest a subset of functionality 
that can be delivered (with high quality) in the time allotted.

Scheduling Decisions. When a software project schedule is established (Chapter 25), 
tasks are sequenced based on dependencies. For example, because component A depends 
on processing that occurs within components B, C, and D, component A cannot be 
scheduled for testing until components B, C, and D are fully tested. A project schedule 
would reflect this. But if time is very short, and A must be available for further critical 
testing, you might decide to test A without its subordinate components (which are run-
ning slightly behind schedule), so that you can make it available for other testing that 
must be done before delivery. After all, the deadline looms. As a consequence, A may 
have defects that are hidden, only to be discovered much later. Quality suffers.

Risk-Oriented Decisions. Risk management (Chapter 26) is one of the key attributes 
of a successful software project. You really do need to know what might go wrong 
and establish a contingency plan if it does. Too many software teams prefer blind 
optimism, establishing a development schedule under the assumption that nothing will 
go wrong. Worse, they don’t have a way of handling things that do go wrong. As a 
consequence, when a risk becomes a reality, chaos reigns, and as the degree of crazi-
ness rises, the level of quality invariably falls.

The software quality dilemma can best be summarized by stating Meskimen’s law: 
There’s never time to do it right, but always time to do it over again. Our advice: 
Taking the time to do it right is almost never the wrong decision.

 15.4 ac h i e v i ng so f t Wa r e Qua L i t y

Software quality doesn’t just appear. It is the result of good project management and 
solid software engineering practice. Management and practice are applied within the 
context of four broad activities that help a software team achieve high software quality: 
software engineering methods, project management techniques, quality control actions, 
and software quality assurance.
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15.4.1 Software Engineering Methods
If you expect to build high-quality software, you must understand the problem to be 
solved. You must also be capable of creating a design that conforms to the problem 
while at the same time exhibiting characteristics that lead to software that exhibits the 
quality dimensions and factors discussed in Section 15.2.

In Part Two of this book, we presented a wide array of concepts and methods that 
can lead to a reasonably complete understanding of the problem and a comprehensive 
design that establishes a solid foundation for the construction activity. If you apply 
those concepts and adopt appropriate analysis and design methods, the likelihood of 
creating high-quality software will increase substantially.

15.4.2 Project Management Techniques
The impact of poor management decisions on software quality has been discussed in 
Section 15.3.6. The implications are clear: If (1) a project manager uses estimation to 
verify that delivery dates are achievable, (2) schedule dependencies are understood 
and the team resists the temptation to use shortcuts, (3) risk planning is conducted so 
problems do not breed chaos, software quality will be affected in a positive way.

In addition, the project plan should include explicit techniques for quality and 
change management. Techniques that lead to good project management practices are 
discussed in Part Four of this book.

15.4.3 Machine Learning and Defect Prediction
Defect prediction [Mun17] is an important part of identifying software components 
that may have quality concerns. Defect prediction models use statistical techniques to 
examine the relationships among combinations of software metrics and software com-
ponents containing known software defects. They can be an efficient and effective 
way for software developers to quickly identify defect-prone classes. This can reduce 
costs and development times [Mal16].

Machine learning is an application of artificial intelligence (AI) techniques that 
provide systems with the ability to learn and improve from experience without being 
explicitly programmed. Stated another way, machine learning focuses on the develop-
ment of computer programs that can access data and use the data to learn for them-
selves. Machine learning techniques can be used to automate the process of 
discovering predictive relationships between software metrics and defective compo-
nents [Ort17], [Li16], [Mal16].

Machine learning systems process large data sets containing representative combi-
nations of metrics for defective and nondefective software components. These data 
are used to tune classification algorithms. Once the system has built a prediction 
model though this type of training, it can be used for quality assessment and defect 
prediction on data associated with future software products. Building these types of 
classifiers is a big part of what modern data scientists do. More discussion on the use 
of data science and software engineering appears in Appendix 2 of this book.

15.4.4 Quality Control
Quality control encompasses a set of software engineering actions that help to ensure 
that each work product meets its quality goals. Models are reviewed to ensure that 
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they are complete and consistent. Code may be inspected to uncover and correct errors 
before testing commences. A series of testing steps is applied to uncover errors in 
processing logic, data manipulation, and interface communication. A combination of 
measurement and feedback allows a software team to tune the process when any of 
these work products fails to meet quality goals. Quality control activities are discussed 
in detail throughout the remainder of Part Three of this book.

15.4.5 Quality Assurance
Quality assurance establishes the infrastructure that supports solid software engineering 
methods, rational project management, and quality control actions—all pivotal if you 
intend to build high-quality software. In addition, quality assurance consists of a set of 
auditing and reporting functions that assess the effectiveness and completeness of qual-
ity control actions. The goal of quality assurance is to provide management and tech-
nical staff with the data necessary to be informed about product quality, thereby 
gaining insight and confidence that actions to achieve product quality are working. Of 
course, if the data provided through quality assurance identifies problems, it is manage-
ment’s responsibility to address the problems and apply the necessary resources to 
resolve quality issues. Software quality assurance is discussed in detail in Chapter 17.

 15.5 su m m a ry

Concern for the quality of the software-based systems has grown as software becomes 
integrated into every aspect of our daily lives. But it is difficult to develop a compre-
hensive description of software quality. In this chapter, quality has been defined as an 
effective software process applied in a manner that creates a useful product that pro-
vides measurable value for those who produce it and those who use it.

A wide variety of software quality dimensions and factors has been proposed over 
the years. All try to define a set of characteristics that, if achieved, will lead to high 
software quality. McCall’s and the ISO 25010 quality factors establish characteristics 
such as reliability, usability, maintainability, functionality, and portability as indicators 
that quality exists.

Every software organization is faced with the software quality dilemma. In essence, 
everyone wants to build high-quality systems, but the time and effort required to 
produce “perfect” software are simply unavailable in a market-driven world. The ques-
tion becomes, Should we build software that is “good enough”? Although many com-
panies do just that, there is a significant downside that must be considered.

Regardless of the approach that is chosen, quality does have a cost that can be 
discussed in terms of prevention, appraisal, and failure. Prevention costs include all 
software engineering actions that are designed to prevent defects in the first place. 
Appraisal costs are associated with those actions that assess software work products 
to determine their quality. Failure costs encompass the internal price of failure and 
the external effects that poor quality precipitates.

Software quality is achieved through the application of software engineering meth-
ods, solid management practices, and comprehensive quality control—all supported 
by a software quality assurance infrastructure. In the chapters that follow, quality 
control and assurance are discussed in some detail.
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Pro b l e m s a n d Po i n t s to Po n d e r

15.1. Describe how you would assess the quality of a university before applying to it. What 
factors would be important? Which would be critical?

15.2. Using the definition of software quality proposed in Section 15.2, do you think it’s pos-
sible to create a useful product that provides measurable value without using an effective 
process? Explain your answer.

15.3. Using the subattributes noted for the ISO 25010 quality factor “maintainability” in Sec-
tion 15.2.1, develop a set of questions that explore whether or not these attributes are present. 
Follow the example shown in Section 15.2.2.

15.4. Describe the software quality dilemma in your own words.

15.5. What is “good enough” software? Name a specific company and specific products that 
you believe were developed using the good enough philosophy.

15.6. Considering each of the four aspects of the cost of quality, which do you think is the 
most expensive and why?

15.7. Do a Web search and find three other examples of “risks” to the public that can be 
directly traced to poor software quality. Consider beginning your search at http://catless.ncl 
.ac.uk/risks.

15.8. Are quality and security the same thing? Explain.

15.9. Explain why it is that many of us continue to live by Meskimen’s law. What is it about 
the software business that causes this?

Design element: Quick Look icon magnifying glass: © Roger Pressman
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C H A P T E R

16

What is it? You’ll make mistakes as you de-
velop software engineering work products. 
There’s no shame in that—as long as you try 
hard, very hard, to find and correct the mis-
takes before they are delivered to end users. 
Technical reviews are the most effective 
mechanism for finding mistakes early in the 
software process.

Who does it? Software engineers perform 
technical reviews, also called peer reviews, 
with their colleagues. As we discussed in 
Chapters 3 and 4, sometimes it is wise to 
include other stakeholders in these reviews.

Why is it important? If you find an error early 
in the process, it is less expensive to correct. 
In addition, errors have a way of amplifying as 
the process proceeds. So a relatively minor 
error left untreated early in the process can be 
amplified into a major set of errors later in the 
project. Finally, reviews save time by reducing 

the amount of rework that will be required late 
in the project.

What are the steps? Your approach to reviews 
will vary depending on the type of review you 
select. In general, six steps are employed, 
although not all are used for every type of 
review: planning, preparation, structuring the 
meeting, noting errors, making corrections 
(done outside the review), and verifying that 
corrections have been performed properly.

What is the work product? The output of a 
review is a list of issues and/or errors that 
have been uncovered. In addition, the techni-
cal status of the work product is also indicated.

How do I ensure that I’ve done it right? First, 
select the type of review that is appropriate for 
your development culture. Follow the guide-
lines that lead to successful reviews. If the re-
views that you conduct lead to higher-quality 
software, you’ve done it right.

Q u i c k  L o o k

Reviews—A Recommended 
Approach
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k e y 
c o n c e p t s

Software reviews are a “filter” for the software process work flow. Too few, and 
the flow is “dirty.” Too many, and the flow slows to a trickle. Reviews are 
applied at various points during software engineering and serve to uncover errors 
and defects. Software reviews “purify” software engineering work products, 
including requirements and design models, code, and testing data. Using metrics, 
you can determine which reviews work and emphasize them and at the same 
time remove ineffective reviews from the flow to accelerate the process.
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Many different types of reviews can be conducted as part of software engineering. 
Each has its place. An informal meeting around the coffee machine is a form of 
review, if technical problems are discussed. A formal presentation of software archi-
tecture to an audience of customers, management, and technical staff is also a form 
of review. In this book, however, we focus on technical or peer reviews, exemplified 
by casual reviews, walkthroughs, and inspections. A technical review (TR) is the most 
effective filter from a quality control standpoint. Conducted by software engineers and 
other stakeholders for all project team members, the TR is an effective means for 
uncovering errors and improving software quality.

 16.1 co st im pac t o f so f t wa r e De f e c t s

Within the context of the software process, the terms defect and fault are synonymous. 
Both imply a quality problem that is discovered after the software has been released 
to end users (or to another framework activity in the software process). In earlier 
chapters, we used the term error to depict a quality problem that is discovered by 
software engineers (or others) before the software is released to the end user (or to 
another framework activity in the software process).

Bugs, Errors, and Defects
The goal of software quality control, and 
in a broader sense, quality management 

in general, is to remove quality problems in the 
software. These problems are referred to by vari-
ous names—bugs, faults, errors, or defects, to 
name a few. Are these terms synonymous, or are 
there subtle differences between them?

In this book we make a clear distinction be-
tween an error (a quality problem found before 
the software is released to other stakeholders 
or end users) and a defect (a quality problem 
found only after the software has been re-
leased to end users or other stakeholders).1 
 We make this distinction because errors and 
defects have very different economic, business, 
psychological, and human impacts. As software 
engineers, we want to find and correct as many 
errors as possible before the customer and/or 
end user  encounter them. We want to avoid 

 defects—because defects ( justifiably) make 
software people look bad.

It is important to note, however, that the tempo-
ral distinction made between errors and defects in 
this book is not mainstream thinking. The general 
consensus within the software engineering com-
munity is that defects and errors, faults, and bugs 
are synonymous. That is, the point in time that the 
problem was encountered has no bearing on the 
term used to describe the problem. Part of the ar-
gument in favor of this view is that it is sometimes 
difficult to make a clear distinction between pre- 
and postrelease (e.g., consider an incremental 
process used in agile development).

Regardless of how you choose to interpret 
these terms, recognize that the point in time at 
which a problem is discovered does matter and 
that software engineers should try hard—very 
hard—to find problems before their customers 
and end users encounter them.

info

1 If software process improvement is considered, a quality problem that is propagated from 
one process framework activity (e.g., modeling) to another (e.g., construction) can also 
be called a “defect” because the problem should have been found before a work product 
(e.g., a design model) was “released” to the next activity.
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The primary objective of a formal technical review (FTR) is to find errors before 
they are passed on to another software engineering activity or released to the end user. 
The obvious benefit of technical reviews is the early discovery of errors so that they 
do not propagate to the next step in the software process.

A number of industry studies indicate that design activities introduce between 50 
and 65 percent of all errors (and ultimately, all defects) during the software process. 
However, review techniques have been shown to be up to 75 percent effective [Jon86] 
in uncovering design flaws. By detecting and removing a large percentage of these 
errors, the review process substantially reduces the cost of subsequent activities in the 
software process. We have known this for decades, and yet there are still many devel-
opers who do not believe the time spent on reviews is almost always less than the 
time required to rewrite bad code [Yad17].

 16.2 De f e c t am p L i f i cat i o n a n D re m ova L

Defect amplification is a concept originally proposed almost four decades ago [IBM81]. 
It helps to justify the effort expended on software reviews. In essence, defect ampli-
fication makes the following argument—an error introduced early in the software 
engineering work flow (e.g., during requirement modeling) and undetected, can and 
often will be amplified into multiple errors during design. If those errors are not 
uncovered (using effective reviews), they themselves may be further amplified into 
still more errors during coding. A single error introduced early and not uncovered and 
corrected can amplify into multiple errors later in the process. Defect propagation is 
a term used to describe the impact an undiscovered error has on future development 
activities or product behavior [Vit17].

As a development team moves deeper into the software process, the cost of find-
ing and fixing an error grows. This simple reality is exacerbated by defect amplifi-
cation and propagation because a single error may become multiple errors 
downstream. The cost of finding and fixing a single error can be signficant, but the 
cost to find and fix multiple errors propagated by a single earlier error is substan-
tially more significant.

To conduct reviews, you must expend time and effort, and your development orga-
nization must spend money. However, the reality of defect amplification and propaga-
tion leaves little doubt that you can pay now or pay much more later. This is what 
technical debt (Chapter 11) is all about [Xia16] [Vit17].

 16.3 re v i e w me t r i c s a n D th e i r us e

Technical reviews are one of many actions that are required as part of good software 
engineering practice. Each action requires dedicated human effort. Because available 
project effort is finite, it is important for a software engineering organization to under-
stand the effectiveness of each action by defining a set of metrics (Chapter 23) that 
can be used to assess their efficacy.
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Although many metrics can be defined for technical reviews, a relatively small 
subset can provide useful insight. The following review metrics can be collected for 
each review that is conducted:

∙ Preparation effort, Ep. The effort (in person-hours) required to review a 
work product prior to the actual review meeting

∙ Assessment effort, Ea. The effort (in person-hours) that is expended during 
the actual review

∙ Rework effort, Er. The effort (in person-hours) that is dedicated to the 
correction of those errors uncovered during the review

∙ Review effort, Ereview. Represents the sum of effort measures for reviews:

Ereview = Ep + Ea + Er

∙ Work product size (WPS). A measure of the size of the work product that 
has been reviewed (e.g., the number of UML models, the number of docu-
ment pages, or the number of lines of code)

∙ Minor errors found, Errminor. The number of errors found that can be catego-
rized as minor (requiring less than some prespecified effort to correct)

∙ Major errors found, Errmajor. The number of errors found that can be catego-
rized as major (requiring more than some prespecified effort to correct)

∙ Total errors found, Errtot. Represents the sum of the errors found:

Errtot = Errminor + Errmajor

∙ Error density. Represents the errors found per unit of work product 
reviewed:

Error density =
Errtot

WPS

How might these metrics be used? As an example, consider a requirements model 
that is reviewed to uncover errors, inconsistencies, and omissions. It would be pos-
sible to compute the error density in several different ways. Assume the requirements 
model contains 18 UML diagrams as part of 32 overall pages of descriptive materials. 
The review uncovers 18 minor errors and 4 major errors. Therefore, Errtot = 22. Error 
density is 1.2 errors per UML diagram, or 0.68 errors per requirements model page.

If reviews are conducted for a number of different types of work products (e.g., 
requirements model, design model, code, test cases), the percentage of errors uncov-
ered for each review can be computed against the total number of errors found for all 
reviews. In addition, the error density for each work product can be computed.

Once data are collected for many reviews conducted across many projects, average 
values for error density enable you to estimate the number of errors to be found in a 
new document before it is reviewed. For example, if the average error density for a 
requirements model is 0.68 errors per page, and a new requirements model is 40 pages 
long, a rough estimate suggests that your software team will find around 27 errors 
during the review of the document. If you find only 9 errors, you’ve either done an 
extremely good job in developing the requirements model or your review approach 
was not thorough enough.
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It is difficult to measure the cost effectiveness of any technical review in real time. 
A software engineering organization can assess the effectiveness of reviews and their 
cost benefit only after reviews have been completed, review metrics have been col-
lected, average data have been computed, and then the downstream quality of the 
software is measured (via testing).

Returning to the previous example, the average error density for requirements mod-
els was determined to be 0.68 per page. The effort required to correct a minor model 
error (immediately after the review) has been found to require 4 person-hours. The 
effort required for a major requirement error has been found to be 18 person-hours. 
Examining the review data collected, you find that minor errors occur about six times 
more frequently than major errors. Therefore, you can estimate that the average effort 
to find and correct a requirements error during review is about 6 person-hours.

Requirements-related errors uncovered during testing require an average of 
45   person-hours to find and correct (no data are available on the relative severity of 
the error). Using the averages noted, we get:

Effort saved per error = Etesting − Ereviews

= 45 − 6 = 39 person-hours/error

Because 22 errors were found during the review of the requirements model, a savings 
of about 858 person-hours of testing effort would be achieved. And that’s just for 
requirements-related errors. Errors associated with design and code would add to the 
overall benefit.

The bottom line—effort saved leads to shorter delivery cycles and improved time 
to market. The example presented in this section suggests this may be true. More 
importantly, industry data for software reviews has been collected for more than three 
decades and is summarized qualitatively using the graphs shown in Figure 16.1.

Referring to the figure, the effort expended when reviews are used does increase 
early in the development of a software increment, but this early investment for reviews 
pays dividends because testing and corrective effort is reduced. It is important to note 

Planning Requirements Design Code Test Deployment

Time

E�
or

t

Without inspection

With inspection

Figure 16.1
Effort 
expended with 
and without 
reviews
Source: Fagan, 
Michael E., 
“Advances in Soft-
ware Inspections,” 
IEEE Transactions 
on Software 
Engineering, 
vol. SE-12, no. 7,  
July 1986,  
744–751. 
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that the deployment date for development with reviews is sooner than the deployment 
date without reviews. Reviews don’t take time; they save it!

 16.4 Cr i t e r i a f o r ty p e s o f re v i e ws

Technical reviews can be classified as either formal or informal or somewhere in 
between these two extremes. The level of formality is chosen to match the type of 
product to be built, the project time line, and the people who are doing the work. 
Figure 16.2 depicts a reference model for technical reviews [Lai02] that identifies four 
characteristics that contribute to the formality with which a review is conducted.

Each of the reference model characteristics helps to define the level of review 
formality. The formality of a review increases when (1) distinct roles are explicitly 
defined for the reviewers, (2) there is a sufficient amount of planning and preparation 
for the review, (3) a distinct structure for the review (including tasks and internal work 
products) is defined, and (4) follow-up by the reviewers occurs for any corrections 
that are made.

An element that is not presented in this model is the frequency of the reviews them-
selves. If you are using an agile prototyping model (Chapter 4) that contains relatively 
short sprints, your team may opt for less formal reviews because the reviews are hap-
pening fairly often. This usually means that defects are caught sooner and more often.

To understand the reference model, let’s assume that you’ve decided to review the 
interface design for SafeHomeAssured.com. You can do this in a variety of different 
ways that range from relatively casual to extremely rigorous. If you decide that the casual 
approach is most appropriate, you ask a few colleagues (peers) to examine the interface 
prototype in an effort to uncover potential problems. All of you decide that there will 
be no advance preparation, but that you will evaluate the prototype in a reasonably 
structured way—looking at layout first, aesthetics next, navigation options after that, and 
so on. As the designer, you decide to take a few notes, but nothing formal.

Review

Planning &
Preparation

Correction &
Verification

Meeting
Structure

Roles
Individuals

Play

Figure 16.2
Reference 
model for 
technical 
reviews
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But what if the interface is pivotal to the success of the entire project? What if 
human lives depended on an interface that was ergonomically sound? You might 
decide that a more rigorous approach was necessary. A review team would be formed. 
Each person on the team would have a specific role to play—leading the team, record-
ing findings, presenting the material, and so on. Each reviewer would be given access 
to the work product (in this case, the interface prototype) before the review and would 
spend time looking for errors, inconsistencies, and omissions. A set of specific tasks 
would be conducted based on an agenda that was developed before the review occurred. 
The results of the review would be formally recorded, and the team would decide on 
the status of the work product based on the outcome of the review. Members of the 
review team might also verify that the corrections made were done properly.

In this book we consider two broad categories of technical reviews: informal 
reviews and more formal technical reviews. Within each category, a number of dif-
ferent approaches can be chosen. These are presented in the sections that follow.

 16.5 in f o r m a L re v i e ws

Informal reviews include a simple desk check of a software engineering work product 
with a colleague, a casual meeting (involving more than two people) for the purpose 
of reviewing a work product, or the review-oriented aspects of pair programming 
(Chapter 3).

A simple desk check or a casual meeting conducted with a colleague is a review. 
However, because there is no advance planning or preparation, no agenda or meeting 
structure, and no follow-up on the errors that are uncovered, the effectiveness of 
such reviews is considerably lower than more formal approaches. But a simple desk 
check can and does uncover errors that might otherwise propagate further into the 
software process.

One way to improve the efficacy of a desk check review is to develop a set of 
simple review checklists2 for each major work product produced by the software team. 
The questions posed within the checklist are generic, but they will serve to guide the 
reviewers as they check the work product. For example, let’s reexamine a desk check 
of the interface prototype for SafeHomeAssured.com. Rather than simply playing 
with the prototype at the designer’s workstation, the designer and a colleague examine 
the prototype using a checklist for interfaces:

∙ Is the layout designed using standard conventions? Left to right? Top to bottom?
∙ Does the presentation need to be scrolled?
∙ Are color and placement, typeface, and size used effectively?
∙ Are all navigation options or functions represented at the same level of 

abstraction?
∙ Are all navigation choices clearly labeled?

2 Literally hundreds of technical review checklists can be found via a web search. For exam-
ple, a useful code review checklist can be downloaded from https://courses.cs.washington.
edu/courses/cse403/12wi/sections/12wi_code_review_checklist.pdf.
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and so on. Any errors or issues noted by the reviewers are recorded by the designer 
for resolution at a later time. Desk checks may be scheduled in an ad hoc manner, or 
they may be mandated as part of good software engineering practice. In general, the 
amount of material to be reviewed is relatively small and the overall time spent on a 
desk check spans little more than 1 or 2 hours.

In Chapter 3, we described pair programming in the following manner: XP recom-
mends that two people work together at one computer workstation to create code for 
a story. This provides a mechanism for real-time problem solving (two heads are often 
better than one) and real-time quality assurance.

Pair programming (Section 3.5.1) can be characterized as a continuous desk check. 
Rather than scheduling a review at some point in time, pair programming encourages 
continuous review as a work product (design or code) is created. The benefit is imme-
diate discovery of errors and better work product quality.

Some software engineers argue that the inherent redundancy built into pair pro-
gramming is wasteful of resources. After all, why assign two people to a job that one 
person can accomplish? The answer to this question can be found in Section 16.3. If 
the quality of the work product produced as a consequence of pair programming is 
significantly better than the work of an individual, the quality-related savings can more 
than justify the “redundancy” implied by pair programming.

 16.6 fo r m a L te c h n i ca L re v i e ws

A formal technical review (FTR) is a software quality control activity performed by 
software engineers (and others). The objectives of an FTR are: (1) to uncover errors 
in function, logic, or implementation for any representation of the software; (2) to 
verify that the software under review meets its requirements; (3) to ensure that the 
software has been represented according to predefined standards; (4) to achieve soft-
ware that is developed in a uniform manner; and (5) to make projects more manage-
able. In addition, the FTR serves as a training ground, enabling junior engineers to 
observe different approaches to software analysis, design, and implementation. The 
FTR also serves to promote backup and continuity because a number of people 
become familiar with parts of the software that they may not have otherwise seen.

The FTR is actually a class of reviews that includes walkthroughs and inspections. 
Each FTR is conducted as a meeting and will be successful only if it is properly 
planned, controlled, and attended. In the sections that follow, guidelines similar to 
those for a walkthrough are presented as a representative formal technical review. If 
you have interest in software inspections, as well as additional information on walk-
throughs, see [Rad02], [Wie02], or [Fre90].

16.6.1 The Review Meeting
Regardless of the FTR format that is chosen, every review meeting should abide by 
the following constraints:

∙ Between three and five people (typically) should be involved in the review.
∙ Advance preparation should occur but should require no more than 2 hours of 

work for each person.
∙ The duration of the review meeting should be less than 2 hours.



CHAPTER 16 REVIEWS—A RECOMMENDED APPROACH  333

Given these constraints, it should be obvious that an FTR focuses on a specific 
(and small) part of the overall software. For example, rather than attempting to review 
an entire design, walkthroughs are conducted for each component or small group of 
components. By narrowing the focus, the FTR has a higher likelihood of uncovering 
errors.

The focus of the FTR is on a work product (e.g., a self-contained portion of a 
requirements model, a detailed component design, or source code for a component). 
The individual who has developed the work product—the producer—informs the proj-
ect leader that the work product is complete and that a review is required. The project 
leader contacts a review leader, who evaluates the product for readiness, generates 
copies of product materials, and distributes them to two or three reviewers for advance 
preparation. Each reviewer is expected to spend between 1 and 2 hours reviewing the 
product, making notes, and otherwise becoming familiar with the work. Concurrently, 
the review leader also reviews the product and establishes an agenda for the review 
meeting, which is typically scheduled for the next day.

The review meeting is attended by the review leader, all reviewers, and the pro-
ducer. One of the reviewers takes on the role of a recorder, that is, the individual 
who records (in writing) all important issues raised during the review. The FTR 
begins with an introduction of the agenda and a brief introduction by the producer. 
The producer then proceeds to “walk through” the work product, explaining the 
material, while reviewers raise issues based on their advance preparation. When valid 
problems or errors are discovered, the recorder notes each. Don’t point out errors 
too harshly. One way to be gentle is to ask a question that enables the producer to 
discover the error.

At the end of the review, all attendees of the FTR must decide whether to:  
(1) accept the product without further modification, (2) reject the product due to 
severe errors (once corrected, another review must be performed), or (3) accept the 
product provisionally (minor errors have been encountered and must be corrected, but 
no additional review will be required). After the decision is made, all FTR attendees 
complete a sign-off, indicating their participation in the review and their concurrence 
with the review team’s findings.

16.6.2 Review Reporting and Record Keeping
During the FTR, a reviewer (the recorder) actively records all issues that have been 
raised. These are summarized at the end of the review meeting, and a review issues 
list is produced. In addition, a formal technical review summary report is completed. 
A review summary report answers three questions:

 1. What was reviewed?
 2. Who reviewed it?
 3. What were the findings and conclusions?

The review summary report is a single-page form (with possible attachments). It 
becomes part of the project historical record and may be distributed to the project 
leader and other interested parties.

The review issues list serves two purposes: (1) to identify problem areas within 
the product and (2) to serve as an action item checklist that guides the producer as 
corrections are made. An issues list is normally attached to the summary report.
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You should establish a follow-up procedure to ensure that items on the issues list 
have been properly corrected. Unless this is done, it is possible that issues raised can 
“fall between the cracks.” One approach is to assign the responsibility for follow-up 
to the review leader.

16.6.3 Review Guidelines
Guidelines for conducting formal technical reviews must be established in advance, 
distributed to all reviewers, agreed upon, and then followed. A review that is uncon-
trolled can often be worse than no review at all. The following represents a minimum 
set of guidelines for formal technical reviews:

 1. Review the product, not the producer. An FTR involves people and egos. 
Conducted properly, the FTR should leave all participants with a warm feel-
ing of accomplishment. Conducted improperly, the FTR can take on the aura 
of an inquisition. Errors should be pointed out gently; the tone of the meeting 
should be loose and constructive; the intent should not be to embarrass or 
belittle. The review leader should conduct the review meeting to ensure that 
the proper tone and attitude are maintained and should immediately halt a 
review that has gotten out of control.

 2. Set an agenda and maintain it. One of the key maladies of meetings of all 
types is drift. An FTR must be kept on track and on schedule. The review 
leader is chartered with the responsibility for maintaining the meeting sched-
ule and should not be afraid to nudge people when drift sets in.

 3. Limit debate and rebuttal. When an issue is raised by a reviewer, there may 
not be universal agreement on its impact. Rather than spending time debating 
the question, the issue should be recorded for further discussion off-line.

 4. Enunciate problem areas, but don’t attempt to solve every problem noted. 
A review is not a problem-solving session. The solution of a problem can often 
be accomplished by the producer alone or with the help of only one other indi-
vidual. Problem solving should be postponed until after the review meeting.

 5. Take written notes. It is sometimes a good idea for the recorder to make 
notes on a wall board, so that wording and priorities can be assessed by other 
reviewers as information is recorded.

 6. Limit the number of participants and insist upon advance preparation. 
Two heads are better than one, but 14 are not necessarily better than 4. Keep 
the number of people involved to the necessary minimum. However, all 
review team members must prepare in advance.

 7. Develop a checklist for each product that is likely to be reviewed. A 
checklist helps the review leader to structure the FTR meeting and helps each 
reviewer to focus on important issues. Checklists should be developed for 
analysis, design, code, and even testing work products.

 8. Allocate resources and schedule time for FTRs. For reviews to be effective, 
they should be scheduled as a task during the software process. In addition, 
time should be scheduled for the inevitable modifications that will occur as 
the result of an FTR.
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 9. Conduct meaningful training for all reviewers. The training should stress 
both process-related issues and the human psychological side of reviews.

 10. Review your early reviews. Debriefing can be beneficial in uncovering prob-
lems with the review process itself. The very first product to be reviewed 
should be the review guidelines themselves.

Because many variables (e.g., number of participants, type of work products, 
timing and length, specific review approach) have an impact on a successful review, 
a software organization should experiment to determine what approach works best in 
a local context.

In an ideal setting, every software-engineering work product would undergo a for-
mal technical review. In the real world of software projects, resources are limited and 
time is short. As a consequence, reviews are often skipped, even though their value 
as a quality control mechanism is recognized. However, full FTR resources should be 
used on those work products that are likely to be error prone.

Quality Issues

 The scene: Doug Miller’s office 
as the SafeHome software 
project begins.

The players: Doug Miller, manager of the 
SafeHome software engineering team, and 
other members of the product software 
engineering team.

The conversation:
Doug: I know we didn’t spend time develop-
ing a quality plan for this project, but we’re 
already into it and we have to consider 
quality . . . right?

Jamie: Sure. We’ve already decided that as 
we develop the requirements model 
[Chapter 8], Ed has committed to develop a 
testing procedure for each requirement.

Doug: That’s really good, but we’re not going 
to wait until testing to evaluate quality, are we?

Vinod: No! Of course not. We’ve got reviews 
scheduled into the project plan for this soft-
ware increment. We’ll begin quality control 
with the reviews.

Jamie: I’m a bit concerned that we won’t have 
enough time to conduct all the reviews. In fact, 
I know we won’t.

Doug: Hmmm. So what do you propose?

Jamie: I say we select those elements  
of the requirements and design model that  
are most critical to SafeHome and review 
them.

Vinod: But what if we miss something in a part 
of the model we don’t review?

Jamie: Maybe . . . but I’m not sure we even 
have time to review every element of the 
models.

Vinod: What do you want us to do, Doug?

Doug: Let’s steal something from Extreme 
Programming [Chapter 3]. We’ll develop the 
elements of each model in pairs—two 
people—and conduct an informal review of 
each as we go. We’ll then target “critical” 
elements for a more formal team review, but 
keep those reviews to a minimum. That way, 
everything gets looked at by more than one 
set of eyes, but we still maintain our delivery 
dates.

Jamie: That means we’re going to have to 
revise the schedule.

Doug: So be it. Quality trumps schedule on 
this project.

safehome
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 16.7 po st m o rt e m eva Luat i o n s

Many lessons can be learned if a software team takes the time to evaluate the results 
of a software project after the software has been delivered to end users. Baaz and his 
colleagues [Baa10] suggest the use of a postmortem evaluation (PME) as a mechanism 
to determine what went right and what went wrong when software engineering process 
and practice is applied in a specific project.

Unlike an FTR that focuses on a specific work product, it is more like a Scrum 
retrospective (Section 3.4.5). A PME examines the entire software project, focusing 
on both “excellences (that is, achievements and positive experiences) and challenges 
(problems and negative experiences)” [Baa10]. Often conducted in a workshop format, 
a PME is attended by members of the software team and stakeholders. The intent is 
to identify excellences and challenges and to extract lessons learned from both. The 
objective is to suggest improvements to both process and practice going forward. 
Many software engineers regard PME documents as some of the most valuable docu-
ments to save in the project archive.

 16.8 ag i L e re v i e ws

It’s not surprising that some software engineers balk at the thought of including 
reviews of any kind in agile development processes. Yet failing to catch defects early 
can be costly in terms of time and resources. Ignoring technical debt does not make 
it go away. Agile developers have the same need to find defects early (and often) 
that all software developers have. Admittedly, it may be somewhat more difficult to 
get agile developers to make use of metrics, but many of them can be collected 
unobtrusively.

If we take a closer look at the Scrum framework (Section 3.4), there are several 
places where informal and formal reviews take place. During the sprint planning 
meeting, user stories are reviewed and ordered according to priority, before selecting 
the user stories to include in the next sprint. The daily Scrum meeting is an informal 
way to ensure that the team members are all working on the same priorities and to 
catch any defects that may prevent completing the sprint on time. Agile developers 
often use pair programming, another informal review technique. The sprint review 
meeting is often conducted using guidelines similar to those discussed for a formal 
technical review. The code producers walk through the user stories selected for the 
sprint and demonstrate to the product owner that all functionality is present. Unlike 
the FTR, the product owner has the final word on whether to accept the sprint proto-
type or not.

If we look at the evaluate prototype portion of our recommended process model 
(Section 4.5), this task is also likely to be conducted as a formal technical review with 
development risk assessment added to it. We mentioned previously (Section 16.7) that 
the sprint retrospective meeting is really similar to the project postmortem meeting in 
that the development team is trying to capture its lessons learned. A major aspect of 
software quality assurance is being able to repeat your successes and avoid repeating 
your mistakes.
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 16.9 su m m a ry

The intent of every technical review is to find errors and uncover issues that would 
have a negative impact on the software to be deployed. The sooner an error is uncovered 
and corrected, the less likely that error will propagate to other software engineering 
work products and amplify itself, resulting in significantly more effort to correct it.

To determine whether quality control activities are working, a set of metrics should 
be collected. Review metrics focus on the effort required to conduct the review and 
the types and severity of errors uncovered during the review. Once metrics data are 
collected, they can be used to assess the efficacy of the reviews you do conduct. 
Industry data indicate that reviews provide a significant return on investment.

A reference model for review formality identifies the roles people play, planning 
and preparation, meeting structure, correction approach, and verification as the char-
acteristics that indicate the degree of formality with which a review is conducted. 
Informal reviews are casual in nature but can still be used effectively to uncover errors. 
Formal reviews are more structured and have the highest probability of leading to 
high-quality software.

Informal reviews are characterized by minimal planning and preparation and little 
record keeping. Desk checks and pair programming fall into the informal review 
category.

A formal technical review is a stylized meeting that has been shown to be extremely 
effective in uncovering errors. Formal technical reviews establish defined roles for 
each reviewer, encourage planning and advance preparation, require the application 
of defined review guidelines, and mandate record keeping and status reporting.

pro b L e m s a n D po i n t s to po n D e r

16.1. Explain the difference between an error and a defect.

16.2. Why can’t we just wait until testing to find and correct all software errors?

16.3. Assume that 10 errors have been introduced in the requirements model and that each 
error will be amplified by a factor of 2:1 into design and an additional 20 design errors are 
introduced and then amplified 1.5:1 into code where an additional 30 errors are introduced. 
Assume further that all unit testing will find 30 percent of all errors, integration will find 
30 percent of the remaining errors, and validation tests will find 50 percent of the remaining 
errors. No reviews are conducted. How many errors will be released to the end users?

16.4. Reconsider the situation described in Problem 16.3, but now assume that requirements, 
design, and code reviews are conducted and are 60 percent effective in uncovering all errors at 
that step. How many errors will be released to the field?

16.5. Reconsider the situation described in Problems 16.3 and 16.4. If each of the errors 
released to the field costs $4800 to find and correct and each error found in review costs $240 
to find and correct, how much money is saved by conducting reviews?

16.6. Describe the meaning of Figure 16.1 in your own words.

16.7. Can you think of a few instances in which a desk check might create problems rather 
than provide benefits?
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16.8. A formal technical review is effective only if everyone has prepared in advance. How do 
you recognize a review participant who has not prepared? What do you do if you’re the review 
leader?

16.9. How is technical debt addressed in agile process models?

16.10. Consider the review guidelines presented in Section 16.6.3. Which do you think is most 
important and why?

Design element: Quick Look icon magnifying glass: © Roger Pressman
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C H A P T E R

17

What is it? It’s not enough to talk the talk by 
saying that software quality is important. You 
have to (1) explicitly define what is meant when 
you say “software quality,” (2) create a set of 
activities that will help ensure that every soft-
ware engineering work product exhibits high 
quality, (3) perform quality control and assur-
ance activities on every software project, 
(4)  use metrics to develop strategies for 
improving your software process and, as a 
consequence, the quality of the end product.

Who does it? Everyone involved in the software 
engineering process is responsible for quality.

Why is it important? You can do it right, or you 
can do it over again. If a software team 
stresses quality in all software engineering ac-
tivities, it reduces the amount of rework that it 
must do. That results in lower costs, and more 
importantly, improved time to market.

What are the steps? Before software quality 
assurance (SQA) activities can be initiated, it is 

important to define software quality at several 
different levels of abstraction. Once you un-
derstand what quality is, a software team must 
identify a set of SQA activities that will filter 
errors out of work products before they are 
passed on.

What is the work product? A Software Qual-
ity Assurance Plan is created to define a soft-
ware team’s SQA strategy. During modeling 
and coding, the primary SQA work product is 
the output of technical reviews (Chapter 16). 
During testing (Chapters 19 through 21), test 
plans and procedures are produced. Other 
work products associated with process 
improvement may also be generated.

How do I ensure that I’ve done it right? Find 
errors before they become defects! That is, 
work to improve your defect removal effi-
ciency (Chapter 23), thereby reducing the 
amount of rework that your software team 
must perform.

Q u i c k  L o o k

Software Quality  
Assurance
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k e y 
c o n c e p t s

The software engineering approach described in this book works toward a single 
goal: to produce on-time, high-quality software. Yet many readers will be 
challenged by the question: “What is software quality?”
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Philip Crosby [Cro79], in his landmark book on quality, provides a wry answer to 
this question:

The problem of quality management is not what people don’t know about it. The problem 
is what they think they do know .  .  .

In this regard, quality has much in common with sex. Everybody is for it. (Under 
certain conditions, of course.) Everyone feels they understand it. (Even though they 
wouldn’t want to explain it.) Everyone thinks execution is only a matter of following 
natural inclinations. (After all, we do get along somehow.) And, of course, most people 
feel that problems in these areas are caused by other people. (If only they would take 
the time to do things right.)

Indeed, quality is a challenging concept—one that we addressed in some detail in 
Chapter 15.1

Some software developers continue to believe that software quality is something 
you begin to worry about after code has been generated. Nothing could be further 
from the truth! Software quality assurance (often called quality management) is an 
umbrella activity (Chapter 2) that is applied throughout the software process.

Software quality assurance (SQA) encompasses (Figure 17.1): (1) an SQA process, 
(2) specific quality assurance and quality control tasks (including technical reviews 
and a multitiered testing strategy), (3) effective software engineering practice (meth-
ods and tools), (4) control of all software work products and the changes made to 
them (Chapter 22), (5) a procedure to ensure compliance with software development 
standards (when applicable), and (6) measurement and reporting mechanisms.

In this chapter, we focus on the management issues and the process-specific 
activities that enable a software organization to ensure that it does “the right things 
at the right time in the right way.”

1 If you have not read Chapter 15, you should do so now.

Figure 17.1
Software 
quality 
assurance

Software
Quality

Assurance
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 17.1 Bac kg ro u n d is s u e s

Quality control and assurance are essential activities for any business that produces 
products to be used by others. Prior to the twentieth century, quality control was the 
sole responsibility of the craftsperson who built a product. As time passed and mass 
production techniques became commonplace, quality control became an activity 
performed by people other than the ones who built the product.

The first formal quality assurance and control function was introduced at Bell Labs 
in 1916 and spread rapidly throughout the manufacturing world. During the 1940s, 
more formal approaches to quality control were suggested. These relied on measure-
ment and continuous process improvement [Dem86] as key elements of quality 
management.

The history of quality assurance in software development parallels the history of 
quality in hardware manufacturing. During the early days of computing (1950s and 
1960s), quality was the sole responsibility of the programmer. Standards for quality 
assurance for software were introduced in military contract software development 
during the 1970s and have spread rapidly into software development in the commer-
cial world [IEE17]. Extending the definition presented earlier, software quality assur-
ance is a “planned and systematic pattern of actions” [Sch01] that are required to 
ensure high quality in software. The scope of quality assurance responsibility might 
best be characterized by paraphrasing a once-popular automobile commercial: “Quality 
Is Job #1.” The implication for software is that many different constituencies have 
software quality assurance responsibility—software engineers, project managers, 
customers, salespeople, and the individuals who serve within an SQA group.

The SQA group serves as the customer’s in-house representative. That is, the peo-
ple who perform SQA must look at the software from the customer’s point of view. 
Does the software adequately meet the quality factors noted in Chapter 15? Have 
software engineering practices been conducted according to preestablished standards? 
Have technical disciplines properly performed their roles as part of the SQA activity? 
The SQA group attempts to answer these and other questions to ensure that software 
quality is maintained.

 17.2 eL e m e n t s o f so f t wa r e Qua L i t y as s u r a nc e

Software quality assurance encompasses a broad range of concerns and activities that 
focus on the management of software quality. These can be summarized in the 
following manner [Hor03]:

Standards. The IEEE, ISO, and other standards organizations have pro-
duced a broad array of software engineering standards and related documents. 
Standards may be adopted voluntarily by a software engineering organization 
or imposed by the customer or other stakeholders. The job of SQA is to 
ensure that standards that have been adopted are followed and that all work 
products conform to them.
Reviews and audits. Technical reviews are a quality control activity per-
formed by software engineers for software engineers (Chapter 16). Their 
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intent is to uncover errors. Audits are a type of review performed by SQA 
personnel with the intent of ensuring that quality guidelines are being fol-
lowed for software engineering work. For example, an audit of the review 
process might be conducted to ensure that reviews are being performed in a 
manner that will lead to the highest likelihood of uncovering errors.
Testing. Software testing (Chapters 19 through 21) is a quality control func-
tion that has one primary goal—to find errors. The job of SQA is to ensure 
that testing is properly planned and efficiently conducted so that it has the 
highest likelihood of achieving its primary goal.
Error/defect collection and analysis. The only way to improve is to mea-
sure how you’re doing. SQA collects and analyzes error and defect data to 
better understand how errors are introduced and what software engineering 
activities are best suited to eliminating them.
Change management. Change is one of the most disruptive aspects of any 
software project. If it is not properly managed, change can lead to confusion, 
and confusion almost always leads to poor quality. SQA ensures that adequate 
change management practices (Chapter 22) have been instituted.
Education. Every software organization wants to improve its software engi-
neering practices. A key contributor to improvement is education of software 
engineers, their managers, and other stakeholders. The SQA organization 
takes the lead in software process improvement (Chapter 28) and is a key 
proponent and sponsor of educational programs.
Vendor management. Three categories of software are acquired from exter-
nal software vendors—shrink-wrapped packages (e.g., Microsoft Office), a 
tailored shell [Hor03] that provides a basic skeletal structure that is custom 
tailored to the needs of a purchaser, and contracted software that is custom 
designed and constructed from specifications provided by the customer orga-
nization. The job of the SQA organization is to ensure that high-quality soft-
ware results by suggesting specific quality practices that the vendor should 
follow (when possible) and incorporating quality mandates as part of any 
contract with an external vendor.
Security management. With the increase in cyber crime and new govern-
ment regulations regarding privacy, every software organization should insti-
tute policies that protect data at all levels, establish firewall protection for 
mobile apps, and ensure that software has not been tampered with internally. 
SQA ensures that appropriate process and technology are used to achieve 
software security (Chapter 18).
Safety. Because software is almost always a pivotal component of human-
rated systems (e.g., automotive or aircraft applications), the impact of hidden 
defects can be catastrophic. SQA may be responsible for assessing the impact 
of software failure and for initiating those steps required to reduce risk.
Risk management. Although the analysis and mitigation of risk (Chapter 26)  
is the concern of software engineers, the SQA organization ensures that risk 
management activities are properly conducted and that risk-related contingency 
plans have been established.
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In addition to each of these concerns and activities, SQA works to ensure that 
software support activities (e.g., maintenance, help lines, documentation, and manuals) 
are conducted or produced with quality as a dominant concern.

 17.3 sQa pro c e s s e s a n d pro d u c t ch a r ac t e r i st i c s

As we begin a discussion of software quality assurance, it’s important to note that SQA 
procedures and approaches that work in one software environment may not work as 
well in another. Even within a company that adopts a consistent approach2 to software 
engineering, different software products may exhibit different levels of quality [Par11].

The solution to this dilemma is to understand the specific quality requirements for 
a software product and then select the process and specific SQA actions and tasks 
that will be used to meet those requirements. The Software Engineering Institute’s 
CMMI and ISO 9000 standards are the most commonly used process frameworks. 
Each proposes “a syntax and semantics” [Par11] that will lead to the implementation 
of software engineering practices that improve product quality. Rather than instantiat-
ing either framework in its entirety, a software organization can “harmonize” the two 
models by selecting elements of both frameworks and matching them to the quality 
requirements of an individual product.

 17.4 sQa ta s k s,  goa L s,  a n d me t r i c s

Software quality assurance is composed of a variety of tasks associated with two dif-
ferent constituencies—the software engineers who do technical work and an SQA 
group that has responsibility for quality assurance planning, oversight, record keeping, 
analysis, and reporting.

Modern software quality assurance is often data driven, as shown in Figure 17.2. 
The product stakeholders define goals and quality measures, problem areas are 
identified, indicators are measured, and a determination is made as to whether or not 
process changes are needed. Software engineers address quality (and perform quality 
control activities) by applying solid technical methods and measures, conducting tech-
nical reviews, and performing well-planned software testing.

17.4.1 SQA Tasks
The charter of the SQA group is to assist the software team in achieving a high-
quality end product. The Software Engineering Institute recommends a set of SQA 
activities that address quality assurance planning, oversight, record keeping, analysis, 
and reporting. These activities are performed (or facilitated) by an independent SQA 
group that:

Prepares an SQA plan for a project. The plan is developed as part of 
project planning and is reviewed by all stakeholders. Quality assurance activi-
ties performed by the software engineering team and the SQA group are gov-
erned by the plan. The plan identifies evaluations to be performed, audits and 

2 For example, CMMI-defined process and practices (Chapter 28).
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reviews to be conducted, standards that are applicable to the project, proce-
dures for error reporting and tracking, work products that are produced by the 
SQA group, and feedback that will be provided to the software team.
Participates in the development of the project’s software process 
description. The software team selects a process for the work to be 
performed. The SQA group reviews the process description for compliance 
with organizational policy, internal software standards, externally imposed 
standards (e.g., ISO-9001), and other parts of the software project plan.
Reviews software engineering activities to verify compliance with the 
defined software process. The SQA group identifies, documents, and tracks 
deviations from the process and verifies that corrections have been made.
Audits designated software work products to verify compliance with those 
defined as part of the software process. The SQA group reviews selected 
work products; identifies, documents, and tracks deviations; verifies that cor-
rections have been made; and periodically reports the results of its work to 
the project manager.
Ensures that deviations in software work and work products are docu-
mented and handled according to a documented procedure. Deviations 
may be encountered in the project plan, process description, applicable 
standards, or software engineering work products.
Records any noncompliance, and reports to senior management.  
Noncompliance items are tracked until they are resolved.

In addition to these activities, the SQA group coordinates the control and manage-
ment of change (Chapter 22) and helps to collect and analyze software metrics.

Figure 17.2
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17.4.2 Goals, Attributes, and Metrics
The SQA activities described in the preceding section are performed to achieve a set 
of pragmatic goals:

Requirements quality. The correctness, completeness, and consistency of 
the requirements model will have a strong influence on the quality of all work 
products that follow. SQA must ensure that the software team has properly 
reviewed the requirements model to achieve a high level of quality.
Design quality. Every element of the design model should be assessed by 
the software team to ensure that it exhibits high quality and that the design 
itself conforms to requirements. SQA looks for attributes of the design that 
are indicators of quality.
Code quality. Source code and related work products (e.g., other descriptive 
information) must conform to local coding standards and exhibit characteris-
tics that will facilitate maintainability. SQA should isolate those attributes that 
allow a reasonable analysis of the quality of code.

Software Quality Assurance

 The scene: Doug Miller’s office 
as the SafeHome software 
project begins.

The players: Doug Miller, manager of the 
SafeHome software engineering team, and 
other members of the product software 
engineering team.

The conversation:
Doug: How are things going with the informal 
reviews?

Jamie: We’re conducting informal reviews of 
the critical project elements in pairs as we 
code but before testing. It’s going faster than 
I thought.

Doug: That’s good, but I want to have Bridget 
Thorton’s SQA group conduct audits of our 
work products to ensure that we’re following 
our processes and meeting our quality goals.

Venod: Aren’t they already doing the bulk of 
the testing?

Doug: Yes, they are. But QA is more than test-
ing. We need to be sure that our documents 
are evolving along with our code and that 

we’re making sure we don’t introduce errors 
as we integrate new components.
Jamie: I really don’t want to be evaluated 
based on their findings.
Doug: No worries. The audits are focused on 
conformance of our work products to the re-
quirements and the process activities we’ve 
defined. We’ll only be using audit results to try 
to improve our processes as well as our 
software products.
Vinod: I must believe it’s going to take more 
of our time.
Doug: In the long run it will save us time when 
we find defects earlier. It also costs less to fix 
defects if they’re caught early.
Jamie: That sounds like a good thing then.
Doug: It’s also important to identify the activi-
ties where defects were introduced and add 
review tasks to catch them in the future.
Vinod: That’ll help us determine if we’re sam-
pling carefully enough with our review activities.
Doug: I think SQA activities will make us a 
better team in the long run.

safehome
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Quality control effectiveness. A software team should apply limited 
resources in a way that has the highest likelihood of achieving a high-quality 
result. SQA analyzes the allocation of resources for reviews and testing to 
assess whether they are being allocated in the most effective manner.

Table 17.1 (adapted from [Hya96]) identifies the attributes that are indicators for 
the existence of quality for each of the goals discussed. Metrics that can be used to 
indicate the relative strength of an attribute are also shown.

Table 17.1
Software 
quality goals, 
attributes, 
and metrics
Source: Adapted 
from Hyatt, L., 
and Rosenberg, L.,  
“A Software 
Quality Model 
and Metrics for 
Identifying Project 
Risks and As-
sessing Software 
Quality,” NASA 
SATC, 1996.

Goal Attribute Metric

Requirement  
quality

Ambiguity  Number of ambiguous modifiers  
(e.g., many, large, human-friendly)

Completeness Number of TBA, TBD

Understandability Number of sections/subsections

Volatility  Number of changes per requirement

Time (by activity) when change is requested

Traceability  Number of requirements not traceable to 
design/code

Model clarity  Number of UML models

Number of descriptive pages per model

Number of UML errors

Design quality Architectural integrity Existence of architectural model

Component completeness  Number of components that trace to 
architectural model

Complexity of procedural design

Interface complexity  Average number of pick to get to a typical 
function or content

Layout appropriateness

Patterns Number of patterns used

Code quality Complexity Cyclomatic complexity

Maintainability Design factors

Understandability Percent internal comments

Variable naming conventions

Percent reused components

Reusability Percent reused component

Documentation Readability index

QC effectiveness Resource allocation Staff hour percentage per activity

Completion rate Actual vs. budgeted completion time

Review effectiveness See review metrics

Testing effectiveness  Number of errors found and criticality

Effort required to correct an error

Origin of error
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 17.5 fo r m a L ap p roac h e s to sQa
In the preceding sections, we have argued that software quality is everyone’s job and 
that it can be achieved through competent software engineering practice as well as 
through the application of technical reviews, a multitiered testing strategy, better con-
trol of software work products and the changes made to them, and the application of 
accepted software engineering standards and process frameworks. In addition, quality 
can be defined in terms of a broad array of quality attributes and measured (indirectly) 
using a variety of indices and metrics.

Over the past three decades, a small, but vocal, segment of the software engineer-
ing community has argued that a more formal approach to software quality assurance 
is required. It can be argued that a computer program is a mathematical object. A 
rigorous syntax and semantics can be defined for every programming language, and 
a rigorous approach to the specification of software requirements is available. If the 
requirements model (specification) and the programming language can be represented 
in a rigorous manner, it should be possible to apply mathematic proof of correctness 
to demonstrate that a program conforms exactly to its specifications.

Attempts to prove programs correct are not new. Dijkstra [Dij76a] and Linger, 
Mills, and Witt [Lin79], among others, advocated proofs of program correctness and 
tied these to the use of structured programming concepts. Although formal methods 
are interesting to some software engineering researchers, commercial developers rarely 
make use of formal methods in 2018.

 17.6 stat i st i ca L so f t wa r e Qua L i t y as s u r a nc e

Statistical quality assurance reflects a growing trend throughout the industry to become 
more quantitative about quality. For software, statistical quality assurance implies the 
following steps:

 1. Information about software errors and defects is collected and categorized.
 2. An attempt is made to trace each error and defect to its underlying cause 

(e.g., nonconformance to specifications, design error, violation of stan-
dards, poor communication with the customer).

 3. Using the Pareto principle (80 percent of the defects can be traced to 20 percent 
of all possible causes), isolate the 20 percent (the vital few).

 4. Once the vital few causes have been identified, move to correct the problems 
that have caused the errors and defects.

This relatively simple concept represents an important step toward the creation of 
an adaptive software process in which changes are made to improve those elements 
of the process that introduce error.

17.6.1 A Generic Example
To illustrate the use of statistical methods for software engineering work, assume that 
a software engineering organization collects information on errors and defects for a 
period of 1 year. Some of the errors are uncovered as software is being developed. 
Other defects are encountered after the software has been released to its end users. 



348 PART 3 QUALITY AND SECURITY

Although hundreds of different problems are uncovered, all can be tracked to one 
(or more) of the following causes:

∙ Incomplete or erroneous specifications (IES)
∙ Misinterpretation of customer communication (MCC)
∙ Intentional deviation from specifications (IDS)
∙ Violation of programming standards (VPS)
∙ Error in data representation (EDR)
∙ Inconsistent component interface (ICI)
∙ Error in design logic (EDL)
∙ Incomplete or erroneous testing (IET)
∙ Inaccurate or incomplete documentation (IID)
∙ Error in programming language translation of design (PLT)
∙ Ambiguous or inconsistent human/computer interface (HCI)
∙ Miscellaneous (MIS)

To apply statistical SQA, a table is built (see Table 17.2). The table indicates that IES, 
MCC, and EDR are the vital few causes that account for 53 percent of all errors. It should 
be noted, however, that IES, EDR, PLT, and EDL would be selected as the vital few 
causes if only serious errors are considered. Once the vital few causes are determined, the 
software engineering organization can begin corrective action. For example, to correct 
MCC, you might implement requirements gathering techniques (Chapter 7) to improve 
the quality of customer communication and specifications. To improve EDR, you might 
acquire tools for data modeling and perform more stringent data design reviews.

Table 17.2
Data 
collection for 
statistical 
SQA

 Total Serious Moderate Minor

Error No. % No. % No. % No. %

IES 205 22% 34 27% 68 18% 103 24%

MCC 156 17% 12 9% 68 18% 76 17%

IDS 48 5% 1 1% 24 6% 23 5%

VPS 25 3% 0 0% 15 4% 10 2%

EDR 130 14% 26 20% 68 18% 36 8%

ICI 58 6% 9 7% 18 5% 31 7%

EDL 45 5% 14 11% 12 3% 19 4%

IET 95 10% 12 9% 35 9% 48 11%

IID 36 4% 2 2% 20 5% 14 3%

PLT 60 6% 15 12% 19 5% 26 6%

HCI 28 3% 3 2% 17 4% 8 2%

MIS 56 6% 0 0% 15 4% 41 9%

Totals 942 100% 128 100% 379 100% 435 100%
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It is important to note that corrective action focuses primarily on the vital few. 
As the vital few causes are corrected, new candidates pop to the top of the stack.

Statistical quality assurance techniques for software have been shown to provide 
substantial quality improvement (e.g., [Rya11], [Art97]). In some cases, software orga-
nizations have achieved a 50 percent reduction per year in defects after applying these 
techniques.

The application of the statistical SQA and the Pareto principle can be summarized 
in a single sentence: Spend your time focusing on things that really matter, but first 
be sure that you understand what really matters!

17.6.2 Six Sigma for Software Engineering
Six Sigma is the most widely used strategy for statistical quality assurance in industry 
today. Originally popularized by Motorola in the 1980s, the Six Sigma strategy “is a 
business-management strategy designed to improve the quality of process outputs by 
minimizing variation and causes of defects in processes. It is a subset of the Total 
Quality Management (TQM) methodology with a heavy focus on statistical applica-
tions used to reduce costs and improve quality” [Voe18]. The term Six Sigma is 
derived from six standard deviations—3.4 instances (defects) per million occurrences—
implying an extremely high-quality standard. The Six Sigma methodology defines 
three core steps:

∙ Define customer requirements and deliverables and project goals via 
well-defined methods of customer communication.

∙ Measure the existing process and its output to determine current quality 
performance (collect defect metrics).

∙ Analyze defect metrics and determine the vital few causes.

If an existing software process is in place, but improvement is required, Six Sigma 
suggests two additional steps:

∙ Improve the process by eliminating the root causes of defects.
∙ Control the process to ensure that future work does not reintroduce the causes 

of defects.

These core and additional steps are sometimes referred to as the DMAIC (define, 
measure, analyze, improve, and control) method.

If an organization is developing a software process (rather than improving an 
existing process), the core steps are augmented as follows:

∙ Design the process to (1) avoid the root causes of defects and (2) to meet 
customer requirements.

∙ Verify that the process model will, in fact, avoid defects and meet customer 
requirements.

This variation is sometimes called the DMADV (define, measure, analyze, design, 
and verify) method.

A comprehensive discussion of Six Sigma is best left to resources dedicated to the 
subject. If you have further interest, see [Voe18], [Pyz14], and [Sne18].
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 17.7 so f t wa r e re L i a B i L i t y

There is no doubt that the reliability of a computer program is an important element 
of its overall quality. If a program repeatedly and frequently fails to perform, it mat-
ters little whether other software quality factors are acceptable.

Software reliability, unlike many other quality factors, can be measured directly 
and estimated using historical and developmental data. Software reliability is defined 
in statistical terms as “the probability of failure-free operation of a computer program 
in a specified environment for a specified time” [Mus87]. To illustrate, program X is 
estimated to have a reliability of 0.999 over eight elapsed processing hours. In other 
words, if program X were to be executed 1000 times and require a total of 8 hours 
of elapsed processing time (execution time), it is likely to operate correctly (without 
failure) 999 times.

Whenever software reliability is discussed, a pivotal question arises: What is 
meant by the term failure? In the context of any discussion of software quality and 
reliability, failure is nonconformance to software requirements. Yet, even within this 
definition, there are gradations. Failures can be only annoying or catastrophic. One 
failure can be corrected within seconds, while another requires weeks or even 
months to correct. Complicating the issue even further, the correction of one failure 
may in fact result in the introduction of other errors that ultimately result in other 
failures.

17.7.1 Measures of Reliability and Availability
Early work in software reliability attempted to extrapolate the mathematics of hard-
ware reliability theory to the prediction of software reliability. Most hardware-related 
reliability models are predicated on failure due to wear rather than failure due to 
design defects. In hardware, failures due to physical wear (e.g., the effects of tem-
perature, corrosion, shock) are more likely than a design-related failure. Unfortunately, 
the opposite is true for software. In fact, all software failures can be traced to design 
or implementation problems; wear (see Chapter 1) is not a factor.

There has been an ongoing debate over the relationship between key concepts in 
hardware reliability and their applicability to software. Although an irrefutable link 
has yet to be established, it is worthwhile to consider a few simple concepts that apply 
to both system elements.

If we consider a computer-based system, a simple measure of reliability is mean 
time between failure (MTBF):3

MTBF = MTTF + MTTR

where the acronyms MTTF and MTTR are mean time to failure and mean time to 
repair,4 respectively.

3 It is important to note that MTBF and related measures are based on CPU time, not wall 
clock time.

4 Although debugging (and related corrections) may be required following a failure, in many 
cases the software will work properly after a restart with no other change.
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Many researchers argue that MTBF is a far more useful measure than other  
quality-related software metrics discussed in Chapter 23. Stated simply, an end user 
is concerned with failures, not with the total defect count. Because each defect contained 
within a program does not have the same failure rate, the total defect count provides 
little indication of the reliability of a system. For example, consider a program that has 
been in operation for 3000 processor hours without failure. Many defects in this pro-
gram may remain undetected for tens of thousands of hours before they are discovered. 
The MTBF of such obscure errors might be 30,000 or even 60,000 processor hours. 
Other defects, not yet discovered, might have a failure rate of 4000 or 5000 hours. Even 
if every one of the first category of errors (those with long MTBF) is removed, the 
impact on software reliability is negligible.

However, MTBF can be problematic for two reasons: (1) it projects a time span 
between failures but does not provide us with a projected failure rate, and (2) MTBF 
can be misinterpreted to mean average life span even though this is not what it 
implies.

An alternative measure of reliability is failures in time (FIT)—a statistical measure 
of how many failures a component will have over 1 billion hours of operation. There-
fore, 1 FIT is equivalent to one failure in every billion hours of operation.

In addition to a reliability measure, you should also develop a measure of avail-
ability. Software availability is the probability that a program is operating according 
to requirements at a given point in time and is defined as

Availability =
MTTF

MTTF + MTTR
× 100%

The MTBF reliability measure is equally sensitive to MTTF and MTTR. The avail-
ability measure is somewhat more sensitive to MTTR, an indirect measure of the 
maintainability of software. Of course, some aspects of availability have nothing to 
do with failure. For example, scheduling downtime (for support functions) causes the 
software to be unavailable. For a comprehensive discussion of software reliability 
measures, see [Laz11].

17.7.2 Use of AI to Model Reliability
Some software engineers view data science as the application of artificial intelli-
gence techniques to solve software engineering problems. One of the things artificial 
intelligence methods attempt to do is provide reasonable solutions to problems 
where the needed data may be incomplete. Software reliability is defined as the 
probability of failure-free software operation for a specified time period in a spec-
ified environment. This means that we can never know the exact moment when a 
software product will fail because we will never have the complete data needed to 
calculate the probability.

Software engineers have used statistical techniques based on Bayes’ theorem5 in 
quantitative decision-making situations for several years. Bayesian inference is a 
method of statistical inference in which Bayes’ theorem is used to update the probability 

5 Bayes’ theorem for conditional probabilities is P(A|B) = (P(B|A) * P(A)) / P(B). For more 
details, see http://www.statisticshowto.com/bayes-theorem-problems/.
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for a hypothesis (such as system reliability) as more evidence or information becomes 
available. Bayesian inference can be used to estimate probabilistic quantities using 
historic data even when some information is missing. Using Bayesian techniques has 
allowed for real-time solutions to probability estimation problems that are beyond 
human reasoning [Tos17].

Proactive failure prediction using machine learning was discussed briefly in 
Section 15.4.3. It would be nice to be able to predict system failures in subsequent 
sprints before you deliver the prototype being developed in the current sprint. Mak-
ing use of predictive data analytics such as a regression model involving MTBF has 
been used to estimate where and what types of defects might occur in future 
prototypes [Bat18].

A genetic algorithm is a heuristic search method used in artificial intelligence and 
computing. It is used for finding near-optimal solutions to search problems based on 
the theory of natural selection and evolutionary biology. Genetic algorithms can be 
used to grow reliability models by discovering relationships in historic system data. 
These models have been used to identify software components that may fail in the 
future. Sometimes these models have been created based on metrics estimated from 
UML models before any codes has been written [Pad17]. This type of work is very 
important to developers interested in refactoring software products or reusing software 
components in other products.

17.7.3 Software Safety
Software safety is a software quality assurance activity that focuses on the identifica-
tion and assessment of potential hazards that may affect software negatively and cause 
an entire system to fail. If hazards can be identified early in the software process, 
software design features can be specified that will either eliminate or control potential 
hazards.

A modeling and analysis process is conducted as part of software safety. Ini-
tially, hazards are identified and categorized by criticality and risk. For example, 
some of the hazards associated with a computer-based cruise control for an auto-
mobile might be: (1) causes uncontrolled acceleration that cannot be stopped,  
(2) does not respond to depression of brake pedal (by turning off), (3) does not 
engage when switch is activated, and (4) slowly loses or gains speed. Once these 
system-level hazards are identified, analysis techniques are used to assign severity 
and probability of occurrence.6 To be effective, software must be analyzed in the 
context of the entire system. For example, a subtle user input error (people are 
system components) may be magnified by a software fault to produce control data 
that improperly positions a mechanical device. If and only if a set of external 
environmental conditions is met, the improper position of the mechanical device 
will cause a disastrous failure. Analysis techniques [Eri15] such as fault tree anal-
ysis, real-time logic, and Petri net models can be used to predict the chain of events 
that can cause hazards and the probability that each of the events will occur to 
create the chain.

6 This approach is similar to the risk analysis methods described in Chapter 26. The primary 
difference is the emphasis on technology issues rather than project-related topics.
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Once hazards are identified and analyzed, safety-related requirements can be spec-
ified for the software. That is, the specification can contain a list of undesirable events 
and the desired system responses to these events. The role of software in managing 
undesirable events is then indicated.

Although software reliability and software safety are related to one another, it is 
important to understand the subtle difference between them. Software reliability uses 
statistical analysis to determine the likelihood that a software failure will occur. How-
ever, the occurrence of a failure does not necessarily result in a hazard or mishap. 
Software safety examines the ways in which failures result in conditions that can lead 
to a mishap. That is, failures are not considered in a vacuum but are evaluated in the 
context of an entire computer-based system and its environment.

A comprehensive discussion of software safety is beyond the scope of this book. 
If you have further interest in software safety and related system issues, see [Fir13], 
[Har12a], and [Lev12].

 17.8 th e iso 9000 Qua L i t y sta n da r d s 7

A quality assurance system may be defined as the organizational structure, responsi-
bilities, procedures, processes, and resources for implementing quality management 
[ANS87]. Quality assurance systems are created to help organizations ensure their 
products and services satisfy customer expectations by meeting their specifications. 
These systems cover a wide variety of activities encompassing a product’s entire life 
cycle including planning, controlling, measuring, testing, and reporting, and improv-
ing quality levels throughout the development and manufacturing process. ISO 9000 
describes quality assurance elements in generic terms that can be applied to any busi-
ness regardless of the products or services offered.

To become registered to one of the quality assurance system models contained in 
ISO 9000, a company’s quality system and operations are scrutinized by third-party 
auditors for compliance to the standard and for effective operation. Upon successful 
registration, a company is issued a certificate from a registration body represented by 
the auditors. Semiannual surveillance audits ensure continued compliance to the 
standard.

The requirements delineated by ISO 9001:2015 address topics such as management 
responsibility, quality system, contract review, design control, document and data con-
trol, product identification and traceability, process control, inspection and testing, 
corrective and preventive action, control of quality records, internal quality audits, 
training, servicing, and statistical techniques. For a software organization to become 
registered to ISO 9001:2015, it must establish policies and procedures to address each 
of the requirements just noted (and others) and then be able to demonstrate that these 
policies and procedures are being followed. If you desire further information on ISO 
9001:2015, see [ISO14].

7 This section, written by Michael Stovsky, has been adapted from Fundamentals of ISO 9000, 
a workbook developed for Essential Software Engineering, a video curriculum developed 
by R. S. Pressman & Associates, Inc. Reprinted with permission.
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 17.9 th e sQa pL a n

The SQA plan provides a road map for instituting software quality assurance. Devel-
oped by the SQA group (or by the software team if an SQA group does not exist), 
the plan serves as a template for SQA activities that are instituted for each software 
project.

A standard for SQA plans has been published by the IEEE [IEE17]. The standard 
recommends a structure that identifies: (1) the purpose and scope of the plan, (2) a 
description of all software engineering work products (e.g., models, documents, source 
code) that fall within the purview of SQA, (3) all applicable standards and practices 
that are applied during the software process, (4) SQA actions and tasks (including 
reviews and audits) and their placement throughout the software process, (5) the tools 
and methods that support SQA actions and tasks, (6) software configuration manage-
ment (Chapter 22) procedures, (7) methods for assembling, safeguarding, and main-
taining all SQA-related records, and (8) organizational roles and responsibilities 
relative to product quality.

The ISO 9001:2015 Standard
The following outline defines the basic 
elements of the ISO 9001:2015 standard. 

Comprehensive information on the standard can 
be obtained from the International Organization 
for Standardization (www.iso.ch) and other Internet 
sources (e.g., www.praxiom.com).

Establish the elements of a quality management 
system.

 Develop, implement, and improve the  
system.

 Define a policy that emphasizes the 
importance of the system.

Document the quality system.

 Describe the process.

 Produce an operational manual.

 Develop methods for controlling (updating) 
documents.

 Establish methods for record keeping.

Support quality control and assurance.

 Promote the importance of quality among all 
stakeholders.

 Focus on customer satisfaction.

 Define a quality plan that addresses objectives, 
responsibilities, and authority.

 Define communication mechanisms among 
stakeholders.

Establish review mechanisms for the quality 
management system.

 Identify review methods and feedback 
mechanisms.

 Define follow-up procedures.

Identify quality resources including personnel, 
training, and infrastructure elements.

Establish control mechanisms.

 For planning.

 For customer requirements.

 For technical activities (e.g., analysis, design, 
testing).

 For project monitoring and management.

Define methods for remediation.

 Assess quality data and metrics.

 Define approach for continuous process and 
quality improvement.

info
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 17.10 Su m m a ry

Software quality assurance is a software engineering umbrella activity that is applied 
at each step in the software process. SQA encompasses procedures for the effective 
application of methods and tools, oversight of quality control activities such as tech-
nical reviews and software testing, procedures for change management, procedures for 
assuring compliance to standards, and measurement and reporting mechanisms.

To properly conduct software quality assurance, data about the software engineer-
ing process should be collected, evaluated, and disseminated. Statistical SQA helps 
to improve the quality of the product and the software process itself. Software reli-
ability models extend measurements, enabling collected defect data to be extrapolated 
into projected failure rates and reliability predictions.

In summary, you should note the words of Dunn and Ullman [Dun82]: “Software 
quality assurance is the mapping of the managerial precepts and design disciplines of 
quality assurance onto the applicable managerial and technological space of software 
engineering.” The ability to ensure quality is the measure of a mature engineering 
discipline. When the mapping is successfully accomplished, mature software engineer-
ing is the result.

Pro b l e m S a n d Po i n t S to Po n d e r

17.1. Some people say that “variation control is the heart of quality control.” Because every 
program that is created is different from every other program, what are the variations that we 
look for and how do we control them?

17.2. Is it possible to assess the quality of software if the customer keeps changing what it is 
supposed to do?

17.3. Quality and reliability are related concepts but are fundamentally different in a number 
of ways. Discuss the differences.

17.4. Can a program be correct and still not be reliable? Explain.

17.5. Can a program be correct and still not exhibit good quality? Explain.

17.6. Why is there often tension between a software engineering group and an independent 
software quality assurance group? Is this healthy?

17.7. You have been given the responsibility for improving the quality of software across your 
organization. What is the first thing that you should do? What’s next?

17.8. Besides counting errors and defects, are there other countable characteristics of software 
that imply quality? What are they and can they be measured directly?

17.9. The MTBF concept for reliability is open to criticism. Explain why.

17.10. Consider two safety-critical systems that are controlled by computer. List at least three 
hazards for each that can be directly linked to software failures.

Design element: Quick Look icon magnifying glass: © Roger Pressman



356

Software Security  
Engineering
Contributed by: Nancy Mead Carnegie Mellon University 
Software Engineering Institute

18
C H A P T E R

What is it? Software security engineering en-
compasses a set of techniques that can im-
prove the security of software while it is under 
development. 

Who does it? Although software engineers do 
not need to become security experts, they 
need to collaborate with security experts. The 
security experts may be members of the soft-
ware team, on a separate specialized team, or 
they may be outside consultants.

Why is it important? The media continually re-
ports instances of hacking—whether by gang-
sters, corporate competitors, hostile nations, 
or any other bad actor. The consequences for 
critical infrastructure, financial institutions, 
health care, and all aspects of modern life are 
significant. 

What are the steps? There are a number of 
steps that can be taken to ensure that software 
is secure. We will discuss some of them here 
and provide pointers to resources for further 
exploration.

What is the work product? As you will see, 
there are many work products that are devel-
oped in the process of secure software engi-
neering. The ultimate work product, or course, 
is the software that you have developed using 
secure software engineering practices.

How do I ensure that I’ve done it right?  
Everything that we will discuss as a method to 
improve software security, whether at the or-
ganizational or project level, can and should 
be reviewed by the interested parties. In addi-
tion, secure development processes can be 
improved, if they are found to be lacking. 
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k e y 
c o n c e p t s

Stop and take a look around. Where do you see software being deployed? Sure, 
it’s in your laptop, tablet, and cell phone. What about your appliances—refrigera-
tor, dishwasher, and so forth? How about your car? Financial transactions—ATM, 
online banking, financial software, tax software? Your supplier of electricity? 
Definitely using software. Do you have any wearable devices on? A fit-bit? Maybe 
you have medical devices, like a pacemaker. The bottom line is: Software is all 
around us, on us, and sometimes in us. Every software product has the potential 
to be hacked, sometimes with dire consequences. This is the reason that we, as 
software engineers, need to be concerned about software security.
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 18.1 Wh y so f t Wa r e se c u r i t y eng i n e e r i ng 
is  im p o rta n t

Software security is about more than just securing operational software with firewalls, 
strong passwords, and encryption. It’s also about developing software in such a way 
that it is more secure from the outset. Techniques are now available that will help us 
develop software that is significantly more secure than it would be otherwise.

In this chapter, we’re going to look as some of the models and techniques that can 
help us achieve better software security. We’ll start by looking at security process 
models. Then we’ll examine specific process activities, including such activities as 
requirements engineering, misuse or abuse cases, security risk analysis, threat model-
ing, attack surface, secure coding, and measurement. We’ll also consider security 
process improvement models. Finally, we’ll summarize and provide you with a list of 
references so that you can dive into any of these topics in more depth.

Software security engineering research is a very active area. In this book we’re 
only providing an overview of methods and tools to support actual practice. There are 
many books (for example, [Mea16], [Shu13], and [Hel18]) and other resources devoted 
exclusively to software security engineering, and we will point you to some of them.

 18.2 se c u r i t y Li f e-cyc L e mo d e L s

The Microsoft Security Development Lifecycle (SDL) [Mea16] [Mic18] is an industry-
leading software security process. A Microsoft-wide initiative and a mandatory policy 
since 2004, the SDL enabled Microsoft to embed security and privacy in its software 
and culture. The SDL introduces security and privacy early and throughout all phases 
of the development process and is without question the most widely known and used 
security development life-cycle model.

Microsoft defined a collection of principles it calls Secure by Design, Secure by 
Default, Secure in Deployment, and Communications (SD3+C) to help determine 
where security efforts are needed. These are as follows [Mic10]:

Secure by Design
Secure architecture, design, and structure. Developers consider security issues part of 

the basic architectural design of software development. They review detailed designs 
for possible security issues, and they design and develop mitigations for all threats.

Threat modeling and mitigation. Threat models are created, and threat mitigations are 
present in all design and functional specifications.

Elimination of vulnerabilities. No known security vulnerabilities that would present a sig-
nificant risk to the anticipated use of the software remain in the code after review. This 
review includes the use of analysis and testing tools to eliminate classes of vulnerabilities.

Improvements in security. Less secure legacy protocols and code are deprecated, and, 
where possible, users are provided with secure alternatives that are consistent with 
industry standards.

Secure by Default
Least privilege. All components run with the fewest possible permissions.
Defense in depth. Components do not rely on a single threat mitigation solution that leaves 

users exposed if it fails.
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Conservative default settings. The development team is aware of the attack surface for the 
product and minimizes it in the default configuration.

Avoidance of risky default changes. Applications do not make any default changes 
to the operating system or security settings that reduce security for the host com-
puter. In some cases, such as for security products, it is acceptable for a software 
program to strengthen (increase) security settings for the host computer. The most 
common violations of this principle are games that either open firewall ports without 
informing the user or instruct users to open firewall ports without informing users of 
possible risks.

Less commonly used services off by default. If fewer than 80 percent of a program’s 
users use a feature, that feature should not be activated by default. Measuring 
80 percent usage in a product is often difficult because programs are designed for 
many different personas. It can be useful to consider whether a feature addresses a 
core/primary use scenario for all personas. If it does, the feature is sometimes referred 
to as a P1 feature.

Secure in Deployment
Deployment guides. Prescriptive deployment guides outline how to deploy each feature 

of a program securely, including providing users with information that enables them 
to assess the security risk of activating non-default options (and thereby increasing the 
attack surface).

Analysis and management tools. Security analysis and management tools enable admin-
istrators to determine and configure the optimal security level for a software release.

Patch deployment tools. Deployment tools aid in patch deployment.

Communications
Security response. Development teams respond promptly to reports of security vulner-

abilities and communicate information about security updates.
Community engagement. Development teams proactively engage with users to answer 

questions about security vulnerabilities, security updates, or changes in the security 
landscape.

The secure software development process model looks like the one shown in 
Figure 18.1.

The Microsoft SDL documentation describes what architects, designers, develop-
ers, and testers are required to do for each of the 16 recommended practices. The data 
that Microsoft collected after implementing the SDL shows a significant reduction in 

Figure 18.1 Secure Software Development Process Model at Microsoft
Adapted from Shunn, A., et al. Strengths in Security Solutions, Software Engineering Institute, Carnegie 
Mellon University, 2013. Available at http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=77878.
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vulnerabilities, which led to a need for fewer patches, and thus a significant cost 
savings. We recommend that you browse the SDL website to learn more about these 
practices. Since the SDL was developed, there have been numerous papers, books, 
training, and so on, to go with the SDL model.1

 18.3 se c u r e de v e L o p m e n t Li f e-cyc L e ac t i v i t i e s

A different approach that is independent of a life-cycle model is the touchpoints for 
software security [McG06], which argues that the activities (touchpoints) are what 
matter, not the model. The activities can be incorporated into any life-cycle model, 
and thus are considered to be process agnostic. The touchpoints later formed the basis 
for BSIMM, a maturity model that will be discussed later in this chapter. Some orga-
nizations consider the touchpoints to be the minimum set of activities that should be 
performed in secure software development. A pictorial version of the touchpoints is 
shown in Figure 18.2. In this diagram, the recommended security activities appear 
above the corresponding software development activity, or life-cycle phase:

With the SDL and touchpoints in mind, we’ll look at some of the important secure 
software development activities that are associated with them.

1 More recently, Microsoft has shown how the SDL activities can be integrated with an agile 
development approach: https://www.microsoft.com/en-us/SDL/Discover/sdlagile.aspx.
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 18.4 se c u r i t y re Q u i r e m e n t s eng i n e e r i ng

Although security requirements are an important part of secure software develop-
ment, in practice they are often neglected. When they exist, they are often an add-
on, copied from a generic list of security features. The requirements engineering 
that is needed to get a better set of security requirements seldom takes place [All08].

Requirements engineering practice typically addresses desired user features. There-
fore, attention is given to the functionality of the system from the user’s perspective, 
but little attention is given to what the system should not do [Bis02]. Users expect 
systems to be secure, and these assumptions need to make their way into security 
requirements for software systems before they are developed, not after the fact. Often 
the users’ assumptions about security are overlooked because system features are the 
primary focus.

In addition to security life-cycle models, there are many process models that are 
specific to security requirements. These include: core security requirements artifacts 
[Mof04], Software Cost Reduction (SCR) [Hei02], SQUARE (Security QUAlity 
Requirements Engineering) [Mea05], and Security Requirements Engineering Process 
(SREP) [Mel06]. For the remainder of this section, we’ll consider SQUARE as a 
representative example of security life-cycle models.

18.4.1 SQUARE
SQUARE is a representative security requirements engineering process model, but 
it’s important to keep in mind that if you already have a development process model, 
such as the one presented in Chapter 4, you can just pick up some of the SQUARE 
steps to enhance your existing model. There’s no need to develop a whole new 
process to address security in your software development activities. We suggest that 
you add security definitions to your glossary; perform risk analysis, including iden-
tification of potential attacks via misuse cases or threat modeling; develop mitigation 
strategies; and perform categorization and prioritization of candidate security 
requirements.

The SQUARE process model provides for eliciting, categorizing, and prioritizing 
security requirements for software-intensive systems. Its focus is to build security 
concepts into the early stages of the development life cycle. It can also be used for 
fielded systems and those undergoing improvements and modifications. The process 
is shown in Table 18.1, followed by brief descriptions of each step.

18.4.2 The SQUARE Process
The SQUARE process is best applied by the project’s requirements engineers and 
security experts with supportive executive management and stakeholders. Let’s take a 
look at the steps.2

  Step 1. Agree on definitions.   So that there is not semantic confusion, this 
step is needed as a prerequisite to security requirements engineering. On a 

2 To dig deeper, see the resources available at the SEPA 9/e website.
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given project, team members tend to have definitions in mind, based on 
their prior experience, but those definitions are often different from one 
another [Woo05]. Sources such as the Institute for Electrical and Electron-
ics Engineers (IEEE) and the Software Engineering Body of Knowledge 
(SWEBOK) provide a range of definitions to select from or tailor 
[SWE14].

  Step 2. Identify assets and security goals.   This step occurs at the project’s 
organizational level and is needed to support software development. Different 
stakeholders usually have concerns about different assets, and thus have dif-
ferent goals. For example, a stakeholder in human resources may be con-
cerned about maintaining the confidentiality of personnel records, whereas a 
stakeholder in a research area may be concerned with ensuring that research 
project information is not accessed, modified, or stolen.

  Step 3. Develop artifacts.   This step is necessary to support all subsequent 
security requirements engineering activities. Often, organizations do not have 
key documents needed to support requirements definition, or they may not be 
up to date. This means that a lot of time may be spent backtracking to try to 
obtain documents, or the team will have to bring them up to date before 
going further.

  Step 4. Perform risk assessment.   This step requires an expert in risk assess-
ment methods, the support of the stakeholders, and the support of a security 
requirements engineer. There are a number of risk assessment methods, but 
regardless of the one that you choose, the outcomes of risk assessment can 
help in identifying the high-priority security exposures.

  Step 5. Select elicitation technique.   This step becomes important when there 
are diverse stakeholders. A more formal elicitation technique, such as the 
Accelerated Requirements Method [Hub99], Joint Application Design 
[Woo89], or structured interviews, can be effective in overcoming communica-
tion issues when there are stakeholders with different cultural backgrounds. In 
other cases, elicitation may simply consist of sitting down with a primary 
stakeholder to try to understand that stakeholder’s security requirements needs.

  Step 6. Elicit security requirements.   This step encompasses the actual 
elicitation process using the selected technique. Most elicitation techniques 
provide detailed guidance on how to perform elicitation. This builds on the 
artifacts that were developed in earlier steps.

  Step 7. Categorize requirements.   This step allows the security requirements 
engineer to distinguish among essential requirements, goals (desired require-
ments), and architectural constraints that may be present. This categorization 
also helps in the prioritization activity that follows.

  Step 8. Prioritize requirements.   This step depends on the prior step and 
may also involve performing a cost-benefit analysis to determine which 
security requirements have a high payoff relative to their cost. Of course 
prioritization may also depend on other consequences of security breaches, 
such as loss of life, loss of reputation, and loss of consumer confidence.
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  Step 9. Requirements inspection.   This review activity can be accomplished 
at varying levels of formality, discussed in Chapter 16. Once inspection is 
complete, the project team should have an initial set of prioritized security 
requirements that can be revisited as needed later in the project.

 18.5 mi s u s e a n d ab u s e ca s e s a n d at tac k pat t e r n s

Misuse (or abuse) cases can help you view your software in the same way that 
attackers do. By thinking about negative events, you can better understand how to 
develop secure software. A misuse case can be thought of as a use case that the 
attacker initiates.

One of the goals of misuse cases [Sin00] is to decide up front how software should 
react to potential attacks. You can also use misuse and normal use cases together to 
conduct threat and hazard analysis [Ale03].

We suggest creating misuse cases through brainstorming. Teaming security experts 
with subject matter experts (SMEs) covers a lot of ground quickly. During brainstorm-
ing, software security experts ask many questions of developers to help identify the 
places where the system is likely to have weaknesses. This involves a careful look at 
all user interfaces and considers events that developers assume can’t happen, but that 
attackers can actually cause to happen.

Here are some questions that need to be considered: How can the system distin-
guish between valid and invalid input data? Can it tell whether a request is coming 
from a legitimate application or a rogue application? Can an insider cause a system 
to malfunction? Trying to answer such questions helps developers to analyze their 
assumptions and allows them to fix problems up front.

Misuse cases can be in table or diagram form. Figure 18.3 provides an example 
misuse case that shows how DroidCleaner malware can successfully attack a cell 
phone using an open-source e-mail application called K-9. This is extracted from a 
much larger report that you may wish to study [Ali14].

In this misuse case, the user keeps e-mail on the phone’s external storage area. The 
attacker gains access to the phone’s storage by compromising the operating system. 
A common way for the attacker to gain access to the phone is by tricking the user 
into installing a Trojan, to which the user unwittingly grants access to the drive dur-
ing the install process. The attacker is then able to use the Trojan to download files, 
including the e-mail contents file.

Attack patterns can provide some help by providing a blueprint for creating an 
attack. For example, buffer overflow is one type of security exploitation. Attackers 
trying to capitalize on a buffer overflow make use of similar steps [OWA16]. 
Attack patterns can document these steps (e.g., timing, resources, techniques) as 
well as practices software developers can use to prevent or mitigate their success 
[Hog04]. When you’re trying to develop misuse and abuse cases, attack patterns 
can help.

Misuse cases need to be prioritized as they are generated. In addition, they need 
to strike the right balance between cost and benefit. The project budget may not allow 
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a software team to implement all defined mitigation strategies at once. In such cases, 
the strategies can be prioritized and implemented incrementally. The team can also 
exclude certain cases as being extremely unlikely.

Templates for misuse and abuse cases appear in a number of references. They can 
be text or diagrams and may be supported by tools. Good sources for templates are 
in materials by Sindre and Opdahl [Sin01] and Alexander [Ale02].

 18.6 se c u r i t y ri s k ana Lys i s

A wide variety of security risk assessment methods have been proposed. Typical 
examples include SEI CERT’s Security Engineering Risk Analysis (SERA) method3 
and the NIST Risk Management Framework (RMF).4

RMF has emerged as an approach that is widely used, providing guidelines for the 
users. The RMF steps for security are:

∙ Categorize the information system and the information processed, stored, and 
transmitted by that system based on an impact analysis.

∙ Select an initial set of baseline security controls for the information system based 
on the security categorization; using an organizational assessment of risk and 
local conditions, tailor and supplement the security control baseline as needed.

∙ Implement the security controls, and describe how the controls are employed 
within the information system and its operational environment.

∙ Assess the security controls using appropriate assessment procedures to deter-
mine the extent to which the controls are implemented correctly, operating as 
intended, and producing the desired outcome with respect to meeting the 
security requirements for the system.

Figure 18.3 Misuse case (exploited by DroidCleaner): Data in an e-mail stored on the smartphone 
is stolen

User Attacker

Android

Save E-mail
Contents

Download E-mail
Contents

Grant Access
to File

Gain Access to
E-mail Contents

Access E-mail Access E-mail<<extend>>

Manage Access <<extend>>

<<Include>> <<Include>> Compromise Phone Security

3 See https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=485410.
4 See https://csrc.nist.gov/publications/detail/sp/800-37/rev-1/final.
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∙ Authorize the information system operation based on a determination of the 
risk to organizational operations and assets, individuals, or other organizations 
(including national defense), from the operation of the information system that 
this risk is acceptable.

∙ Monitor the security controls in the information system on an ongoing basis 
including assessing control effectiveness, documenting changes to the system 
or its environment of operation, conducting security impact analyses of the 
associated changes, and reporting the security state of the system to desig-
nated organizational officials.

It’s important to note that NIST also provides a set of security controls to select 
from, thus simplifying the risk assessment work. Recently, the RMF has been modi-
fied to include privacy concerns.

 18.7 th r e at mo d e L i ng,  pr i o r i t i z at i o n, 
a n d mi t i gat i o n

A threat modeling method (TMM) is an approach for creating an abstraction of a soft-
ware system, aimed at identifying attackers’ abilities and goals, and using that abstrac-
tion to generate and catalog possible threats that the system must mitigate [Shu16].

STRIDE (an acronym for six threat categories) is representative of a number of 
threat modeling methods [Mea18] and is the most well-established TMM, representing 
the state of the practice. At its core, STRIDE requires breaking down a system into 
its various elements, assessing each of these elements for their vulnerability to threats, 
and then mitigating these threats [Her06]. In practice, a typical STRIDE implementa-
tion includes modeling a system with data flow diagrams (DFDs),5 mapping the DFD 
elements to the six threat categories, determining the specific threats via checklists or 
threat trees, and documenting the threats and steps for their prevention [Sca15]. 
STRIDE can be implemented manually; however, a free Microsoft Secure Develop-
ment Lifecycle (SDL) Threat Modeling Tool [Mic17] can also be used. Table 18.2 
identifies the security property associated with each of the six threat categories.

Table 18.2
Threat 
categories  
and security 
properties

Threat Security Property

Spoofing Authentication

Tampering Integrity

Repudiation Nonrepudiation

Information disclosure Confidentiality

Denial of service Availability

Elevation of privilege Authorization

5 A brief tutorial on data flow diagrams can be downloaded from https://ratandon.mysite.syr 
.edu/cis453/notes/DFD_over_Flowcharts.pdf.
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DFDs are designed to show how a system works by using standard symbols to 
graphically represent the interaction between data stores (e.g., databases, files, regis-
tries), processes (e.g., DLLs, Web services), data flows (e.g., function calls, remote 
procedure calls), and external entities (e.g., people, other systems) [Sho14]. Once 
complete, each of these system elements in turn can be associated with one or more 
relevant threat categories, as depicted in Table 18.3.

In the next stage, the typical STRIDE user works through a checklist (that may be 
in the form of a threat tree) of specific threats that are associated with each match 
between a DFD element and threat category. Such checklists are accessible through 
STRIDE reference books or tools.

Once the threats have been identified, mitigation strategies can be developed and 
prioritized. Typically, prioritization is based on cost and value considerations. Consid-
ering the cost of implementing the mitigation strategy is important, but it’s equally 
important to also consider the cost of not implementing it, which is reflected in value. 
Remember that risks that are realized result in costs that are not only expressed in terms 
of dollars, but could also reflect loss of reputation, loss of trust, and even loss of life.

 18.8 at tac k su r fac e

An attack surface can be defined6 in the following manner:

The attack surface describes all of the different points where an attacker could get into 
a system, and where they could get data out.

The attack surface of an application is:

 1. the sum of all paths for data/commands into and out of the application, and
 2. the code that protects these paths (including resource connection and authentica-

tion, authorization, activity logging, data validation and encoding), and
 3. all valuable data used in the application, including secrets and keys, intellectual 

property, critical business data, personal data and PII, and
 4. the code that protects these data (including encryption and checksums, access 

auditing, and data integrity and operational security controls). [OWA18]

Table 18.3
Threat 
categories of 
DFD system 
elements

Element Spoofing Tampering Repudiation
Information 
Disclosure

Denial of 
Service

Elevation of 
Privilege

Data flows X X X

Data stores X X X

Processes X X X X X X

External entity X X

6 See https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Attack_Surface_
Analysis_Cheat_Sheet.md.
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The OWASP Foundation [OWA18] states that attack surface analysis is:

. . . targeted to be used by developers to understand and manage application security risks 
as they design and change an application, as well as by application security specialists 
doing a security risk assessment. The focus here is on protecting an application from 
external attack—it does not take into account attacks on the users or operators of the 
system (e.g., malware injection, social engineering attacks), and there is less focus on 
insider threats, although the principles remain the same. The internal attack surface is likely 
to be different to the external attack surface and some users may have a lot of access.

Attack Surface Analysis is about mapping out what parts of a system need to be 
reviewed and tested for security vulnerabilities. The point of attack surface analysis is to 
understand the risk areas in an application, to make developers and security specialists 
aware of what parts of the application are open to attack, to find ways of minimizing 
this, and to notice when and how the Attack Surface changes and what this means from 
a risk perspective.

 18.9 se c u r e co d i ng

Secure coding is just what the name implies—coding in such a way that vulnerabili-
ties are not introduced as a result of coding errors. It’s not surprising that most soft-
ware vulnerabilities occur because of sloppy and erroneous coding practices, many of 
which can be easily avoided.

For example, a condition known as buffer overflow results from one of the most 
well-known and common coding errors. OWASP7 describes it as follows:

A buffer overflow condition exists when a program attempts to put more data in a buf-
fer than it can hold or when a program attempts to put data in a memory area past a 
buffer. In this case, a buffer is a sequential section of memory allocated to contain 
anything from a character string to an array of integers. Writing outside the bounds of 
a block of allocated memory can corrupt data, crash the program, or cause the execution 
of malicious code.

Buffer overflow is just one example of coding errors that can result in vulnerabil-
ities. Fortunately, a number of coding standards now exist to provide guidance on 
secure coding. The SEI/CERT website8 provides a list of the top-10 secure coding 
practices:

 1. Validate input. Validate input from all untrusted data sources.
 2. Heed compiler warnings. Compile code using the highest warning level 

available for your compiler and eliminate warnings by modifying the code.
 3. Architect and design for security policies. Create a software architecture 

and design your software to implement and enforce security policies.
 4. Keep it simple. Keep the design as simple and as small as possible.
 5. Default deny. Base access decisions on permission rather than exclusion.

7 See https://www.owasp.org/index.php/Buffer_overflow_attack.
8 See https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices.
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 6. Adhere to the principle of least privilege. Every process should execute 
with the least set of privileges necessary to complete the job.

 7. Sanitize data sent to other systems. Sanitize all data passed to complex 
subsystems such as command shells, relational databases, and commercial 
off-the-shelf (COTS) components.

 8. Practice defense in depth. Manage risk with multiple defensive strategies.
 9. Use effective quality assurance techniques.
 10. Adopt a secure coding standard.

SEI CERT and others also provide secure coding standards.9 In addition to using 
a secure coding standard, you should inspect for coding errors that lead to vulnera-
bilities. This is just a natural add-on to your normal code inspection and review 
process (Chapter 16). Static analysis tools10 are used to automatically analyze code and 
are another mechanism for detecting vulnerabilities due to coding errors.

 18.10 me a s u r e m e n t

Developing adequate measures of software security is a difficult problem, and one for 
which there are differing viewpoints. On the one hand, you can look at the develop-
ment processes followed and assess whether the resultant software is likely to be 
secure. On the other hand, you can look at the incidence of vulnerabilities and suc-
cessful break-ins and measure those as a way of assessing software security. However, 
neither of these measurement approaches will allow you to say with 100 percent cer-
tainty that our software is secure. When you add supporting software such as operating 
systems and external interoperable systems, the measurement of software security 
becomes even more difficult. Nevertheless some progress has been made.

Measures of software quality can go a long way toward measuring software secu-
rity. Specifically, vulnerabilities invariably point to software defects. Although not all 
software defects are security problems, vulnerabilities in software generally result 
from a defect of some kind, whether it is in the requirements, architecture, or code. 
Therefore, measures such as defect and vulnerability counts [Woo14] are useful. 
Microsoft uses measures such as attack surface analysis and tries to keep the attack 
surface (places where software can be compromised) to a minimum.

Just as use of maturity models such as CMMI (Chapter 28) suggests that higher-
quality software will result, mature security development processes, such as those 
emphasized by BSIMM,11 will result in more secure software. In some cases, organi-
zations are encouraged to identify the unique set of security metrics that are relevant 
to them. BSIMM makes reference to this, as does SAMM.12

9 See https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards.
10 A list of commercially available tools can be found at https://en.wikipedia.org/wiki/List_of_ 

tools_for_static_code_analysis.
11 See https://www.bsimm.com/.
12 See https://www.owasp.org/index.php/OWASP_SAMM_Project.
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It’s important to note that none of the measurement characteristics implied by 
various maturity models is perfect. If you follow good secure software development 
processes, does that guarantee that the software is secure? No! If you find a lot of 
vulnerabilities, does that mean that most of them have been found or that there are 
still more to be found because this is a particularly poor piece of software? There are 
no simple answers. However, to assess vulnerabilities and associated software security, 
we have to collect data so that patterns can be analyzed over time. If we don’t collect 
data about software security, we will never be able to measure its improvement.

Tables 18.4 and 18.5 provide examples of how to assess software security during 
each life-cycle phase. The full tables and discussion can be found in [Mea17] and 
[Alb10].

Table 18.4 
Examples of 
life-cycle-
phase 
measures

Life-Cycle Phase Example Software Security Measures

Requirements engineering Percentage of relevant software security principles reflected in 
requirements-specific actions (assuming security principles 
essential for a given development project have been selected)

 Percentage of security requirements that have been subject to 
analysis (risk, feasibility, cost-benefit, performance trade-offs) 
prior to being included in the specification

 Percentage of security requirements covered by attack patterns, 
misuse and abuse cases, and other specified means of threat 
modeling and analysis

Architecture and design Percentage of architectural and design components subject to 
attack surface analysis and measurement

 Percentage of architectural and design components subject to 
architectural risk analysis

 Percentage of high-value security controls covered by a security 
design pattern

Table 18.5
Example 
measures 
based on 
the seven 
principles 
of evidence

Principle Description

Risk Number of active and latent threats, categorized

 Incidents reported by category of threat

 Likelihood of occurrence for each threat category

 Financial and/or human safety estimate of impact for each 
threat category

Trusted dependencies Number of levels of subcontracting in the supply chain (in other 
words, have the subcontractors, in turn, executed subcontracts, 
and what is the depth of this activity?)

 Number of suppliers by level

 Hierarchical and peer dependencies between suppliers by level

 Number of (vetted) trusted suppliers in the supply chain by level
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 18.11 se c u r i t y pro c e s s im p rov e m e n t  
a n d mat u r i t y mo d e L s

A number of process improvement and maturity models are available for software 
development in general, such as the Capability Maturity Model Integration (CMMI).13 
For cyber security maturity, the CMMI Institute offers a newer product, the Cyber 
Capability Maturity Management platform.14 OWASP offers the Software Assurance 
Maturity Model (SAMM).15 SAMM is an open framework to help organizations for-
mulate and implement a strategy for software security that is tailored to the specific 
risks facing the organization.

A comprehensive discussion of these models is beyond the scope of this book. To 
provide a simple overview, consider the overall objective of SAMM:

∙ Evaluate an organization’s existing software security practices.
∙ Build a balanced software security assurance program in well-defined iterations.
∙ Demonstrate concrete improvements to a security assurance program.
∙ Define and measure security-related activities throughout an organization.

Perhaps the most well-known maturity model that is specifically for software secu-
rity is the Building Security in Maturity Model (BSIMM). BSIMM has periodic 
releases, typically every year or two. The BSIMM model and its recent summarized 
assessment results can be downloaded from the BSIMM website.16 According to the 
BSIMM developers, BSIMM is meant to be used by those who create and execute a 
software security initiative.

All the maturity models mentioned here (and others) have benefits, and the essen-
tial elements of the models are freely available. However, sometimes the assessment 
is done by external entities. It’s possible to do an internal self-assessment and define 
the associated improvement program, but it requires dedicated resources and effort. 
Alternatively, some of these organizations offer assessment programs, thus providing 
an external view of the strengths and areas for improvement within a software 
organization.

 18.12 su m m a ry

All software engineers should have an understanding of what it takes to develop secure 
software. The steps that are needed to improve the security of your software products 
are relevant in each activity in the software process, regardless of which process model 
is used.

Although there are still many open questions, and technologies that need additional 
research, there are many resources available today to assist with this challenge. For 
every activity that normally takes place in the software process, try to incorporate 

13 See https://cmmiinstitute.com/.
14 See https://cmmiinstitute.com/products/cybermaturity.
15 See https://www.owasp.org/index.php/OWASP_SAMM_Project.
16 See https://www.bsimm.com/.



CHAPTER 18 SOFTWARE SECURITY ENGINEERING  371

security aspects. Models such as Microsoft SDL and the SQUARE model can be 
assessed to determine which steps you can incorporate into your development process.

Add security to a risk analysis activity, especially using detailed guidance available 
from NIST. Given the number of secure coding standards already available, it is cer-
tainly possible for anyone to learn how to code securely. Inspect your code for remain-
ing vulnerabilities. Learn how to identify security holes and develop and prioritize 
mitigation strategies. Perform static analysis testing on your code. Visit the OWASP 
and BSIMM websites, among others, to learn about maturity in software security 
engineering.

As software becomes ever more ubiquitous, the number of vulnerabilities and suc-
cessful hacks grow as well. It will take all our efforts to stem the tide, but many of 
the tools already exist to tackle this problem. The consequences of failing to address 
software security are high, and the benefits of developing secure software are huge.

Pro b l e m s a n d Po i n t s to Po n d e r

18.1. What is the most important thing that a software team can do to improve software 
security?

18.2. If you were recommending one activity for your organization to improve software secu-
rity, what would it be? If you were recommending multiple activities, what are they, and what 
would be the priorities, considering that it’s not likely that all of them will be implemented 
at once?

18.3. How could you incorporate software security into your existing process model or into a 
new process model?

18.4. Sit down with a colleague and identify security risks on a software project that is in 
development. Come up with mitigation strategies and prioritize them.

18.5. Are you collecting measurement data that could be used or repurposed to help measure 
software security? If not, is there data that could easily be collected for this purpose?

18.6. Use the Internet to find out the details needed to create a phishing attack pattern.

18.7. Explain some of the problems that might be encountered if you wait until after the system 
is completed to address security risks.

18.8. Use the Internet to determine the average cost to the consumer of a single incidence of 
identity theft.

18.9. Consider a MobileApp that you make use of on your personal phone. List three to five 
security risks that developers should consider when developing apps like this one.

18.10. Determine the security requirements of a bill-paying wallet-type MobileApp.

Design element: Quick Look icon magnifying glass: © Roger Pressman
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19 Software  
Testing—Component Level

What is it? Software is tested to uncover errors 
that were made inadvertently as it was de-
signed and constructed. A software compo-
nent testing strategy considers testing of 
individual components and integrating them 
into a working system.

Who does it? A software component testing 
strategy is developed by the project manager, 
software engineers, and testing specialists.

Why is it important? Testing often accounts 
for more project effort than any other software 
engineering action. If it is conducted haphaz-
ardly, time is wasted, unnecessary effort is ex-
pended, and even worse, errors sneak 
through undetected.

What are the steps? Testing begins “in the 
small” and progresses “to the large.” By this 
we mean that early testing focuses on a 

single component or on a small group of re-
lated components and applies tests to 
uncover errors in the data and processing 
logic that have been encapsulated by the 
component(s). After components are tested, 
they must be integrated until the complete 
system is constructed.

What is the work product? A test specifica-
tion documents the software team’s approach 
to testing by defining a plan that describes an 
overall strategy and a procedure that defines 
specific testing steps and the types of test 
cases that will be conducted.

How do I ensure that I’ve done it right? An 
effective test plan and procedure will lead to 
the orderly construction of the software and 
the discovery of errors at each stage in the 
construction process.
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k e y 
c o n c e p t s

Software component testing incorporates a strategy that describes the steps to be 
conducted as part of testing, when these steps are planned and then undertaken, 
and how much effort, time, and resources will be required. Within the testing 
strategy, software component testing implements a collection of component test-
ing tactics that address test planning, test-case design, test execution, and resul-
tant data collection and evaluation. Both component testing strategy and tactics 
are considered in this chapter.
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To be effective, a component testing strategy should be flexible enough to promote 
a customized testing approach but rigid enough to encourage reasonable planning and 
management tracking as the project progresses. Component testing remains a respon-
sibility of individual software engineers. Who does the testing, how engineers com-
municate their results with one another, and when testing is done is determined by 
the software integration approach and design philosophy adopted by the development 
team.

These “approaches and philosophies” are what we call strategy and tactics—topics 
to be discussed in this chapter. In Chapter 20 we discuss the integration testing 
techniques that often end up defining the team development strategy.

 19.1 A st r At e g i c Ap p roAc h to so f t wA r e te st i ng

Testing is a set of activities that can be planned in advance and conducted system-
atically. For this reason, a template for software testing—a set of steps into which we 
can place specific test-case design techniques and testing methods—should be defined 
for the software process.

A number of software testing strategies have been proposed in the literature [Jan16] 
[Dak14] [Gut15]. All provide you with a template for testing, and all have the following 
generic characteristics:

∙ To perform effective testing, you should conduct technical reviews  
(Chapter 16). By doing this, many errors will be eliminated before testing 
commences.

∙ Testing begins at the component level and works “outward” toward the 
integration of the entire computer-based system.

∙ Different testing techniques are appropriate for different software engineering 
approaches and at different points in time.

∙ Testing is conducted by the developer of the software and (for large projects) 
an independent test group.

∙ Testing and debugging are different activities, but debugging must be accom-
modated in any testing strategy.

A strategy for software testing incorporates a set of tactics that accommodate the 
low-level tests necessary to verify that a small source code segment has been correctly 
implemented as well as high-level tests that validate major system functions against 
customer requirements. A strategy should provide guidance for the practitioner and a 
set of milestones for the manager. Because the steps of the test strategy occur at a 
time when deadline pressure begins to rise, progress must be measurable and problems 
should surface as early as possible.

19.1.1 Verification and Validation
Software testing is one element of a broader topic that is often referred to as verifica-
tion and validation (V&V). Verification refers to the set of tasks that ensure that 
software correctly implements a specific function. Validation refers to a different set 
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of tasks that ensure that the software that has been built is traceable to customer 
requirements. Boehm [Boe81] states this another way:

Verification: “Are we building the product right?”
Validation: “Are we building the right product?”

The definition of V&V encompasses many software quality assurance activities 
(Chapter 19).1

Verification and validation include a wide array of SQA activities: technical 
reviews, quality and configuration audits, performance monitoring, simulation, feasi-
bility study, documentation review, database review, algorithm analysis, development 
testing, usability testing, qualification testing, acceptance testing, and installation test-
ing. Although testing plays an extremely important role in V&V, many other activities 
are also necessary.

Testing does provide the last bastion from which quality can be assessed and, more 
pragmatically, errors can be uncovered. But testing should not be viewed as a safety 
net. As they say, “You can’t test in quality. If it’s not there before you begin testing, 
it won’t be there when you’re finished testing.” Quality is incorporated into software 
throughout the process of software engineering, and testing cannot be applied as a fix 
at the end of the process. Proper application of methods and tools, effective technical 
reviews, and solid management and measurement all lead to quality that is confirmed 
during testing.

19.1.2 Organizing for Software Testing
For every software project, there is an inherent conflict of interest that occurs as test-
ing begins. The people who have built the software are now asked to test the software. 
This seems harmless in itself; after all, who knows the program better than its devel-
opers? Unfortunately, these same developers have a vested interest in demonstrating 
that the program is error-free, that it works according to customer requirements, and 
that it will be completed on schedule and within budget. Each of these interests 
mitigates against thorough testing.

From a psychological point of view, software analysis and design (along with cod-
ing) are constructive tasks. The software engineer analyzes, models, and then creates 
a computer program and its documentation. Like any builder, the software engineer 
is proud of the edifice that has been built and looks askance at anyone who attempts 
to tear it down. When testing commences, there is a subtle, yet definite, attempt to 
“break” the thing that the software engineer has built. From the point of view of the 
builder, testing can be considered to be (psychologically) destructive. So the builder 
treads lightly, designing and executing tests that will demonstrate that the program 
works, rather than to uncover errors. Unfortunately, errors will be nevertheless present. 
And, if the software engineer doesn’t find them, the customer will!

1 It should be noted that there is a strong divergence of opinion about what types of testing 
constitute “validation.” Some people believe that all testing is verification and that validation 
is conducted when requirements are reviewed and approved, and later, by the user when the 
system is operational. Other people view unit and integration testing (Chapters 19 and 20) 
as verification and higher-order testing (Chapter 21) as validation.
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There are often a number of misconceptions that you might infer from the preced-
ing discussion: (1) that the developer of software should do no testing at all, (2) that 
the software should be “tossed over the wall” to strangers who will test it mercilessly, 
and (3) that testers get involved with the project only when the testing steps are about 
to begin. Each of these statements is incorrect.

The software developer is always responsible for testing the individual units (com-
ponents) of the program, ensuring that each performs the function or exhibits the 
behavior for which it was designed. In many cases, the developer also conducts inte-
gration testing—a testing step that leads to the construction (and test) of the complete 
software architecture. Only after the software architecture is complete does an inde-
pendent test group become involved.

The role of an independent test group (ITG) is to remove the inherent problems 
associated with letting the builder test the thing that has been built. Independent test-
ing removes the conflict of interest that may otherwise be present. After all, ITG 
personnel are paid to find errors.

However, you don’t turn the program over to ITG and walk away. The developer 
and the ITG work closely throughout a software project to ensure that thorough tests 
will be conducted. While testing is conducted, the developer must be available to 
correct errors that are uncovered.

The ITG is part of the software development project team in the sense that it 
becomes involved during analysis and design and stays involved (planning and specify-
ing test procedures) throughout a large project. However, in many cases the ITG reports 
to the software quality assurance organization, thereby achieving a degree of indepen-
dence that might not be possible if it were a part of the software engineering team.

19.1.3 The Big Picture
The software process may be viewed as the spiral illustrated in Figure 19.1. Ini-
tially, system engineering defines the role of software and leads to software require-
ments analysis, where the information domain, function, behavior, performance, 
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constraints, and validation criteria for software are established. Moving inward 
along the spiral, you come to design and finally to coding. To develop computer 
software, you spiral inward along streamlines that decrease the level of abstraction 
on each turn.

A strategy for software testing may also be viewed in the context of the spiral 
(Figure 19.1). Unit testing begins at the vortex of the spiral and concentrates on each 
unit (e.g., component, class, or WebApp content object) of the software as imple-
mented in source code. Testing progresses by moving outward along the spiral to 
integration testing, where the focus is on design and the construction of the software 
architecture. Taking another turn outward on the spiral, you encounter validation 
testing, where requirements established as part of requirements modeling are vali-
dated against the software that has been constructed. Finally, you arrive at system 
testing, where the software and other system elements are tested as a whole. To test 
computer software, you spiral out along streamlines that broaden the scope of testing 
with each turn.

Considering the process from a procedural point of view, testing within the context 
of software engineering is actually a series of four steps that are implemented sequen-
tially. The steps are shown in Figure 19.2. Initially, tests focus on each component 
individually, ensuring that it functions properly as a unit. Hence, the name unit testing. 
Unit testing makes heavy use of testing techniques that exercise specific paths in a 
component’s control structure to ensure complete coverage and maximum error detec-
tion. Next, components must be assembled or integrated to form the complete software 
package. Integration testing addresses the issues associated with the dual problems of 
verification and program construction. Test-case design techniques that focus on inputs 
and outputs are more prevalent during integration, although techniques that exercise 
specific program paths may be used to ensure coverage of major control paths. 

Figure 19.2 Software testing steps
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After the software has been integrated (constructed), a set of high-order tests is con-
ducted. Validation criteria (established during requirements analysis) must be evalu-
ated. Validation testing provides final assurance that software meets all functional, 
behavioral, and performance requirements.

The last high-order testing step falls outside the boundary of software engineering 
and into the broader context of computer system engineering (discussed in Chapter 21). 
Software, once validated, must be combined with other system elements (e.g., hard-
ware, people, databases). System testing verifies that all elements mesh properly and 
that overall system function and performance is achieved.

Preparing for Testing

The scene: Doug Miller’s office, 
as component-level design con-

tinues and construction of certain components 
begins.

The players: Doug Miller, software engineer-
ing manager; Vinod, Jamie, Ed, and Shakira, 
members of the SafeHome software 
engineering team.

The conversation:
Doug: It seems to me that we haven’t spent 
enough time talking about testing.

Vinod: True, but we’ve all been just a little 
busy. And besides, we have been thinking 
about it . . . in fact, more than thinking.

Doug (smiling): I know . . . we’re all overloaded, 
but we’ve still got to think down the line.

Shakira: I like the idea of designing unit tests 
before I begin coding any of my components, 
so that’s what I’ve been trying to do. I have a 
pretty big file of tests to run once code for my 
components is complete.

Doug: That’s an Extreme Programming [an 
agile software development process, see 
Chapter 3] concept, no?

Ed: It is. Even though we’re not using Extreme 
Programming per se, we decided that it’d be a 
good idea to design unit tests before we build 
the component—the design gives us all of the 
information we need.

Jamie: I’ve been doing the same thing.

Vinod: And I’ve taken on the role of the inte-
grator, so every time one of the guys passes a 
component to me, I’ll integrate it and run a 
series of regression tests [see Section 20.3 for 
a discussion on regression testing] on the 
partially integrated program. I’ve been working 
to design a set of appropriate tests for each 
function in the system.

Doug (to Vinod): How often will you run the 
tests?

Vinod: Every day . . . until the system is 
integrated . . . well, I mean until the software 
increment we plan to deliver is integrated.

Doug: You guys are way ahead of me!

Vinod (laughing): Anticipation is everything in 
the software biz, Boss.

sAfehome

19.1.4 Criteria for “Done”
A classic question arises every time software testing is discussed: “When are we done 
testing—how do we know that we’ve tested enough?” Sadly, there is no definitive 
answer to this question, but there are a few pragmatic responses and early attempts 
at empirical guidance.
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One response to the question is: “You’re never done testing; the burden simply 
shifts from you (the software engineer) to the end user.” Every time the user executes 
a computer program, the program is being tested. This sobering fact underlines the 
importance of other software quality assurance activities. Another response (somewhat 
cynical but nonetheless accurate) is: “You’re done testing when you run out of time 
or you run out of money.”

Although few practitioners would argue with these responses, you need more rigor-
ous criteria for determining when sufficient testing has been conducted. The statistical 
quality assurance approach (Section 17.6) suggests statistical use techniques [Rya11] 
that execute a series of tests derived from a statistical sample of all possible program 
executions by all users from a targeted population. By collecting metrics during soft-
ware testing and making use of existing statistical models, it is possible to develop 
meaningful guidelines for answering the question: “When are we done testing?”

 19.2 pL A n n i ng A n d re c o r d k e e p i ng

Many strategies can be used to test software. At one extreme, you can wait until the 
system is fully constructed and then conduct tests on the overall system in the hope 
of finding errors. This approach, although appealing, simply does not work. It will 
result in buggy software that disappoints all stakeholders. At the other extreme, you 
could conduct tests on a daily basis, whenever any part of the system is constructed.

A testing strategy that is chosen by many software teams (and the one we recom-
mend) falls between the two extremes. It takes an incremental view of testing, begin-
ning with the testing of individual program units, moving to tests designed to facilitate 
the integration of the units (sometimes on a daily basis), and culminating with tests 
that exercise the constructed system as it evolves. The remainder of this chapter will 
focus on component-level testing and test-case design.

Unit testing focuses verification effort on the smallest unit of software design—the 
software component or module. Using the component-level design description as a 
guide, important control paths are tested to uncover errors within the boundary of the 
module. The relative complexity of tests and the errors those tests uncover is limited 
by the constrained scope established for unit testing. The unit test focuses on the 
internal processing logic and data structures within the boundaries of a component. 
This type of testing can be conducted in parallel for multiple components.

The best strategy will fail if a series of overriding issues are not addressed. Tom 
Gilb [Gil95] argues that a software testing strategy will succeed only when software 
testers: (1) specify product requirements in a quantifiable manner long before testing 
commences, (2) state testing objectives explicitly, (3) understand the users of the 
software and develop a profile for each user category, (4) develop a testing plan that 
emphasizes “rapid cycle testing,”2 (5) build “robust” software that is designed to test 

2 Gilb [Gil95] recommends that a software team “learn to test in rapid cycles (2 percent of 
project effort) of customer-useful, at least field ‘trialable,’ increments of functionality and/
or quality improvement.” The feedback generated from these rapid cycle tests can be used 
to control quality levels and the corresponding test strategies.
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itself (the concept of antibugging is discussed briefly in Section 9.3), (6) use effective 
technical reviews as a filter prior to testing, (7) conduct technical reviews to assess 
the test strategy and test cases themselves, and (8) develop a continuous improvement 
approach (Chapter 28) for the testing process.

These principles are reflected in agile software testing as well. In agile develop-
ment, the test plan needs to be established before the first sprint meeting and reviewed 
by stakeholders. This plan merely lays out the rough time line, standards, and tools 
to be used. The test cases and directions for their use are developed and reviewed by 
the stakeholders as the code needed to implement each user story is created. Testing 
results are shared with all team members as soon as practical to allow changes in both 
existing and future code development. For this reason, many teams choose to keep 
their test recordkeeping in online documents.

Test recordkeeping does not need to be burdensome. The test cases can be recorded 
in a Google Docs spreadsheet that briefly describes the test case, contains a pointer 
to the requirement being tested, contains expected output from the test case data or 
the criteria for success, allows testers to indicate whether the test was passed or failed 
and the dates the test case was run, and should have room for comments about why 
a test may have failed to aid in debugging. This type of online form can be viewed 
as needed for analysis, and it is easy to summarize at team meetings. Test-case design 
issues are discussed in Section 19.3.

19.2.1 Role of Scaffolding
Component testing is normally considered as an adjunct to the coding step. The design 
of unit tests can occur before coding begins or after source code has been generated. 
A review of design information provides guidance for establishing test cases that are 
likely to uncover errors. Each test case should be coupled with a set of expected results.

Because a component is not a stand-alone program, some type of scaffolding is 
required to create a testing framework. As part of this framework, driver and/or stub 
software must often be developed for each unit test. The unit-test environment is 
illustrated in Figure 19.3. In most applications a driver is nothing more than a “main 
program” that accepts test-case data, passes such data to the component (to be tested), 
and prints relevant results. Stubs serve to replace modules that are subordinate (invoked 
by) the component to be tested. A stub or “dummy subprogram” uses the subordinate 
module’s interface, may do minimal data manipulation, prints verification of entry, 
and returns control to the module undergoing testing.

Drivers and stubs represent testing “overhead.” That is, both are software that must 
be coded (formal design is not commonly applied) but that is not delivered with the 
final software product. If drivers and stubs are kept simple, actual overhead is rela-
tively low. Unfortunately, many components cannot be adequately unit-tested with 
“simple” scaffolding software. In such cases, complete testing can be postponed until 
the integration test step (where drivers or stubs are also used).

19.2.2 Cost-Effective Testing
Exhaustive testing requires every possible combination of input values and test-case 
orderings be processed by the component being tested (e.g., consider the move gen-
erator in a computer chess game). In some cases, this would require the creation of 
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a near-infinite number of data sets. The return on exhaustive testing is often not worth 
the effort, since testing alone cannot be used to prove a component is correctly imple-
mented. There are some situations in which you will not have the resources to do 
comprehensive unit testing. In these cases, testers should select modules crucial to the 
success of the project and those that are suspected to be error-prone because they have 
complexity metrics as the focus for your unit testing. Some techniques for minimizing 
the number of test cases required to do a good job testing are discussed in Sections 19.4 
through 19.6.

Figure 19.3
Unit-test 
environment

Interface
Local data structures
Boundary conditions
Independent paths
Error-handling paths

RESULTS

Exhaustive Testing
Consider a 100-line program in the lan-
guage C. After some basic data declara-

tion, the program contains two nested loops that 
execute from 1 to 20 times each, depending on 
conditions specified at input. Inside the interior 
loop, four if-then-else constructs are required. 
There are approximately 1014 possible paths that 
may be executed in this program!

To put this number in perspective, we assume 
that a magic test processor (“magic” because no 

such processor exists) has been developed for 
exhaustive testing. The processor can develop 
a test case, execute it, and evaluate the results 
in one millisecond. Working 24 hours a day, 
365 days a year, the processor would work for 
3170 years to test the program. This would, 
undeniably, cause havoc in most development 
schedules.

Therefore, it is reasonable to assert that ex-
haustive testing is impossible for large software 
systems.

Info
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 19.3 Te sT-Ca s e De s i g n

It is a good idea to design unit test cases before you develop code for a component. 
This ensures that you’ll develop code that will pass the tests or at least the tests you 
thought of already.

Unit tests are illustrated schematically in Figure 19.4. The module interface is tested 
to ensure that information properly flows into and out of the program unit under test 
(Section 19.5.1). Local data structures are examined to ensure that data stored tempo-
rarily maintains its integrity during all steps in an algorithm’s execution. All indepen-
dent paths through the control structure are exercised to ensure that all statements in 
a module have been executed at least once (Section 19.4.2). Boundary conditions are 
tested to ensure that the module operates properly at boundaries established to limit 
or restrict processing (Section 19.5.3). And finally, all error-handling paths are tested.

Data flow across a component interface is tested before any other testing is initi-
ated. If data do not enter and exit properly, all other tests are moot. In addition, local 
data structures should be exercised and the local impact on global data should be 
ascertained (if possible) during unit testing.

Selective testing of execution paths is an essential task during the unit test. Test 
cases should be designed to uncover errors due to erroneous computations, incorrect 
comparisons, or improper control flow.

Boundary testing is one of the most important unit-testing tasks. Software often fails 
at its boundaries. That is, errors often occur when the nth element of an n-dimensional 
array is processed, when the ith repetition of a loop with i passes is invoked, or when 
the maximum or minimum allowable value is encountered. Test cases that exercise 

Figure 19.4
Unit test

Interface
Local data structures
Boundary conditions
Independent paths
Error-handling paths
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data structure, control flow, and data values just below, at, and just above maxima 
and minima are very likely to uncover errors.

A good design anticipates error conditions and establishes error-handling paths to 
reroute or cleanly terminate processing when an error does occur. Yourdon [You75] 
calls this approach antibugging. Unfortunately, there is a tendency to incorporate error 
handling into software and then never test the error handling. Be sure that you design 
tests to execute every error-handling path. If you don’t, the path may fail when it is 
invoked, exacerbating an already dicey situation.

Among the potential errors that should be tested when error handling is evaluated 
are: (1) error description is unintelligible, (2) error noted does not correspond to error 
encountered, (3) error condition causes system intervention prior to error handling, 
(4) exception-condition processing is incorrect, or (5) error description does not pro-
vide enough information to assist in the location of the cause of the error.

Designing Unique Tests

The scene: Vinod’s cubical.

The players: Vinod and Ed, members of the 
SafeHome software engineering team.

The conversation:
Vinod: So these are the test cases you intend 
to run for the passwordValidation operation.

Ed: Yeah, they should cover pretty much all 
possibilities for the kinds of passwords a user 
might enter.

Vinod: So let’s see . . . you note that the 
correct password will be 8080, right?

Ed: Uh-huh.

Vinod: And you specify passwords 1234 and 
6789 to test for error in recognizing invalid 
passwords?

Ed: Right, and I also test passwords that are 
close to the correct password, see . . . 8081 
and 8180.

Vinod: Those are okay, but I don’t see much 
point in running both the 1234 and 6789 
inputs. They’re redundant . . . test the same 
thing, don’t they?

Ed: Well, they’re different values.

Vinod: That’s true, but if 1234 doesn’t uncover 
an error . . . in other words . . . the password-
Validation operation notes that it’s an invalid 
password, it’s not likely that 6789 will show us 
anything new.

Ed: I see what you mean.

Vinod: I’m not trying to be picky here . . . it’s 
just that we have limited time to do testing, so 
it’s a good idea to run tests that have a high 
likelihood of finding new errors.

Ed: Not a problem . . . I’ll give this a bit more 
thought.

sAfehome

19.3.1 Requirements and Use Cases
In requirements engineering (Chapter 7) we suggested starting the requirements gath-
ering process by working with the customers to generate user stories that developers 
can refine into formal use cases and analysis models. These use cases and models can 
be used to guide the systematic creation of test cases that do a good job of testing 
the functional requirements of each software component and provide good test cover-
age overall [Gut15].
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The analysis artifacts do not provide much insight into the creation of test cases 
for many nonfunctional requirements (e.g., usability or reliability). This is where the 
customer’s acceptance statements included in the user stories can form the basis for 
writing test cases for the nonfunctional requirements associated with components. 
Test-case developers make use of additional information based on their professional 
experience to quantify acceptance criteria to make it testable. Testing nonfunctional 
requirements may require the use of integration testing methods (Chapter 20) or other 
specialized testing techniques (Chapter 21).

The primary purpose of testing is to help developers discover defects that were 
previously unknown. Executing test cases that demonstrate the component is running 
correctly is often not good enough. As we mentioned earlier (Section 19.3), it is 
important to write test cases that exercise the error-handling capabilities of a compo-
nent. But if we are to uncover new defects, it is also important to write test cases to 
test that a component does not do things it is not supposed to do (e.g., accessing 
privileged data sources without proper permissions). These may be stated formally as 
anti-requirements3 and may require specialized security testing techniques (Section 21.7) 
[Ale17]. These so-called negative test cases should be included to make sure the 
component behaves according to the customer’s expectations.

19.3.2 Traceability
To ensure that the testing process is auditable, each test case needs to be traceable 
back to specific functional or nonfunctional requirements or anti-requirements. Often 
nonfunctional requirements need to be traceable to specific business or architectural 
requirements. Many agile developers resist the concept of traceability as an unneces-
sary burden on developers. But many test process failures can be traced to missing 
traceability paths, inconsistent test data, or incomplete test coverage [Rem14]. Regres-
sion testing (discussed in Section 20.3) requires retesting selected components that 
may be affected by changes made to other software components that it collaborates 
with. Although this is more often considered an issue in integration testing 
(Chapter 20), making sure that test cases are traceable to requirements is an important 
first step and needs to be done during component testing.

 19.4 wh i t e-Box te st i ng

White-box testing, sometimes called glass-box testing or structural testing, is a test-
case design philosophy that uses the control structure described as part of component-
level design to derive test cases. Using white-box testing methods, you can derive test 
cases that (1) guarantee that all independent paths within a module have been exer-
cised at least once, (2) exercise all logical decisions on their true and false sides, 
(3) execute all loops at their boundaries and within their operational bounds, and 
(4) exercise internal data structures to ensure their validity.

3 Anti-requirements are sometimes described during the creation of abuse cases that describe 
a user story from the perspective of a malicious user and are part of threat analysis (discussed 
in Chapter 18).



384 PART THREE QUALITY AND SECURITY

19.4.1 Basis Path Testing
Basis path testing is a white-box testing technique first proposed by Tom McCabe 
[McC76]. The basis path method enables the test-case designer to derive a logical 
complexity measure of a procedural design and use this measure as a guide for defin-
ing a basis set of execution paths. Test cases derived to exercise the basis set are 
guaranteed to execute every statement in the program at least one time during testing.

Before the basis path method can be introduced, a simple notation for the repre-
sentation of control flow, called a flow graph (or program graph), must be introduced.4 

A flow graph should be drawn only when the logical structure of a component is 
complex. The flow graph allows you to trace program paths more readily.

To illustrate the use of a flow graph, consider the procedural design representation 
in Figure 19.5a. Here, a flowchart is used to depict program control structure. 
Figure  19.5b maps the flowchart into a corresponding flow graph (assuming that no 
compound conditions are contained in the decision diamonds of the flowchart). 
Referring to Figure 19.5b, each circle, called a flow graph node, represents one or more 
procedural statements. A sequence of process boxes and a decision diamond can map 
into a single node. The arrows on the flow graph, called edges or links, represent flow 
of control and are analogous to flowchart arrows. An edge must terminate at a node, 
even if the node does not represent any procedural statements (e.g., see the flow graph 
symbol for the if-then-else construct). Areas bounded by edges and nodes are called 
regions. When counting regions, we include the area outside the graph as a region.

An independent path is any path through the program that introduces at least one 
new set of processing statements or a new condition. When stated in terms of a flow 

4 In actuality, the basis path method can be conducted without the use of flow graphs. 
However, they serve as a useful notation for understanding control flow and illustrating 
the approach.

Figure 19.5
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graph, an independent path must move along at least one edge that has not been 
traversed before the path is defined. For example, a set of independent paths for the 
flow graph illustrated in Figure 19.5b is

Path 1: 1-11
Path 2: 1-2-3-4-5-10-1-11
Path 3: 1-2-3-6-8-9-10-1-11
Path 4: 1-2-3-6-7-9-10-1-11

Note that each new path introduces a new edge. The path

1-2-3-4-5-10-1-2-3-6-8-9-10-1-11

is not considered to be an independent path because it is simply a combination of 
already specified paths and does not traverse any new edges.

Paths 1 through 4 constitute a basis set for the flow graph in Figure 19.5b. That 
is, if you can design tests to force execution of these paths (a basis set), every state-
ment in the program will have been guaranteed to be executed at least one time and 
every condition will have been executed on its true and false sides. It should be noted 
that the basis set is not unique. In fact, a number of different basis sets can be derived 
for a given procedural design.

How do you know how many paths to look for? The computation of cyclomatic 
complexity provides the answer. Cyclomatic complexity is a software metric that pro-
vides a quantitative measure of the logical complexity of a program. When used in 
the context of the basis path testing method, the value computed for cyclomatic com-
plexity defines the number of independent paths in the basis set of a program and 
provides you with an upper bound for the number of tests that must be conducted to 
ensure that all statements have been executed at least once.

Cyclomatic complexity has a foundation in graph theory and provides you with an 
extremely useful software metric. Complexity is computed in one of three ways:

 1. The number of regions of the flow graph corresponds to the cyclomatic 
complexity.

 2. Cyclomatic complexity V(G) for a flow graph G is defined as

V(G) = E − N + 2

  where E is the number of flow graph edges and N is the number of flow 
graph nodes.

 3. Cyclomatic complexity V(G) for a flow graph G is also defined as

V(G) = P + 1

  where P is the number of predicate nodes contained in the flow graph G.

Referring once more to the flow graph in Figure 19.5b, the cyclomatic complexity 
can be computed using each of the algorithms just noted:

 1. The flow graph has four regions.
 2. V(G) = 11 edges − 9 nodes + 2 = 4.
 3. V(G) = 3 predicate nodes + 1 = 4.
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Therefore, the cyclomatic complexity of the flow graph in Figure 19.5b is 4.
More important, the value for V(G) provides you with an upper bound for the 

number of independent paths that form the basis set and, by implication, an upper 
bound on the number of tests that must be designed and executed to guarantee cover-
age of all program statements. So in this case we would need to define at most four 
test cases to exercise each independent logic path.

Using Cyclomatic Complexity

The scene: Shakira’s cubicle.

The players: Vinod and Shakira—members of 
the SafeHome software engineering team who 
are working on test planning for the security 
function.

The conversation:
Shakira: Look . . . I know that we should 
unit-test all the components for the security 
function, but there are a lot of ‘em and if you 
consider the number of operations that have 
to be exercised, I don’t know . . . maybe we 
should forget white-box testing, integrate 
everything, and start running black-box tests.

Vinod: You figure we don’t have enough time 
to do component tests, exercise the opera-
tions, and then integrate?

Shakira: The deadline for the first increment 
is getting closer than I’d like . . . yeah, I’m 
concerned.

Vinod: Why don’t you at least run white-box 
tests on the operations that are likely to be the 
most error-prone?

Shakira (exasperated): And exactly how do I 
know which are the most error-prone?

Vinod: V of G.

Shakira: Huh?

Vinod: Cyclomatic complexity—V of G. Just 
compute V(G) for each of the operations within 
each of the components and see which have 
the highest values for V(G). They’re the ones 
that are most likely to be error-prone.

Shakira: And how do I compute V of G?

Vinod: It’s really easy. Here’s a book that 
describes how to do it.

Shakira (leafing through the pages): Okay, it 
doesn’t look hard. I’ll give it a try. The ops with 
the highest V(G) will be the candidates for 
white-box tests.

Vinod: Just remember that there are no guar-
antees. A component with a low V(G) can still 
be error-prone.

Shakira: Alright. But at least this’ll help me to 
narrow down the number of components that 
have to undergo white-box testing.

sAfehome

19.4.2 Control Structure Testing
The basis path testing technique described in Section 19.4.1 is one of a number of 
techniques for control structure testing. Although basis path testing is simple and 
highly effective, it is not sufficient in itself. In this section, other variations on control 
structure testing are discussed. These broaden testing coverage and improve the qual-
ity of white-box testing.

Condition testing [Tai89] is a test-case design method that exercises the logical 
conditions contained in a program module. Data flow testing [Fra93] selects test paths 
of a program according to the locations of definitions and uses of variables in the 
program.
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Loop testing is a white-box testing technique that focuses exclusively on the valid-
ity of loop constructs. Two different classes of loops [Bei90] can be defined: simple 
loops and nested loops. (Figure 19.6).

Simple Loops. The following set of tests can be applied to simple loops, where n 
is the maximum number of allowable passes through the loop.

 1. Skip the loop entirely.
 2. Only one pass through the loop.
 3. Two passes through the loop.
 4. m passes through the loop where m < n.

 5. n − 1, n, n + 1 passes through the loop.

Nested Loops. If we were to extend the test approach for simple loops to nested 
loops, the number of possible tests would grow geometrically as the level of nesting 
increases. This would result in an impractical number of tests. Beizer [Bei90] suggests 
an approach that will help to reduce the number of tests:

 1. Start at the innermost loop. Set all other loops to minimum values.
 2. Conduct simple loop tests for the innermost loop while holding the outer 

loops at their minimum iteration parameter (e.g., loop counter) values. 
Add other tests for out-of-range or excluded values.

 3. Work outward, conducting tests for the next loop, but keeping all other outer 
loops at minimum values and other nested loops to “typical” values.

 4. Continue until all loops have been tested.

Figure 19.6
Classes of 
loops

Simple loops Nested loops
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 19.5 BL Ac k-Box te st i ng

Black-box testing, also called behavioral testing or functional testing, focuses on the 
functional requirements of the software. That is, black-box testing techniques enable 
you to derive sets of input conditions that will fully exercise all functional require-
ments for a program. Black-box testing is not an alternative to white-box techniques. 
Rather, it is a complementary approach that is likely to uncover a different class of 
errors than white-box methods.

Black-box testing attempts to find errors in the following categories: (1) incorrect 
or missing functions, (2) interface errors, (3) errors in data structures or external 
database access, (4) behavior or performance errors, and (5) initialization and termi-
nation errors.

Unlike white-box testing, which is performed early in the testing process, black-box 
testing tends to be applied during later stages of testing. Because black-box testing 
purposely disregards control structure, attention is focused on the information domain. 
Tests are designed to answer the following questions:

∙ How is functional validity tested?
∙ How are system behavior and performance tested?
∙ What classes of input will make good test cases?
∙ Is the system particularly sensitive to certain input values?
∙ How are the boundaries of a data class isolated?
∙ What data rates and data volume can the system tolerate?
∙ What effect will specific combinations of data have on system operation?

By applying black-box techniques, you derive a set of test cases that satisfy the 
following criteria [Mye79]: test cases that reduce, by a count that is greater than one, 
the number of additional test cases that must be designed to achieve reasonable test-
ing, and test cases that tell you something about the presence or absence of classes 
of errors, rather than an error associated only with the specific test at hand.

19.5.1 Interface Testing
Interface testing is used to check that the program component accepts information 
passed to it in the proper order and data types and returns information in proper order 
and data format [Jan16]. Interface testing is often considered part of integration test-
ing. Because most components are not stand-alone programs, it is important to make 
sure that when the component is integrated into the evolving program it will not break 
the build. This is where the use stubs and drivers (Section 19.2.1) become important 
to component testers.

Stubs and drivers sometimes incorporate test cases to be passed to the component 
or accessed by the component. In other cases, debugging code may need to be inserted 
inside the component to check that data passed was received correctly (Section 19.3). 
In still other cases, the testing framework should contain code to check that data 
returned from the component is received correctly. Some agile developers prefer to 
do interface testing using a copy of the production version of the evolving program 
with some of this debugging code added.
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19.5.2 Equivalence Partitioning
Equivalence partitioning is a black-box testing method that divides the input domain 
of a program into classes of data from which test cases can be derived. An ideal test 
case single-handedly uncovers a class of errors (e.g., incorrect processing of all char-
acter data) that might otherwise require many test cases to be executed before the 
general error is observed.

Test-case design for equivalence partitioning is based on an evaluation of equiva-
lence classes for an input condition. Using concepts introduced in the preceding sec-
tion, if a set of objects can be linked by relationships that are symmetric, transitive, 
and reflexive, an equivalence class is present [Bei95]. An equivalence class represents 
a set of valid or invalid states for input conditions. Typically, an input condition is 
either a specific numeric value, a range of values, a set of related values, or a Boolean 
condition. Equivalence classes may be defined according to the following guidelines:

 1. If an input condition specifies a range, one valid and two invalid equivalence 
classes are defined.

 2. If an input condition requires a specific value, one valid and two invalid 
equivalence classes are defined.

 3. If an input condition specifies a member of a set, one valid and one invalid 
equivalence class are defined.

 4. If an input condition is Boolean, one valid and one invalid class are defined.

By applying the guidelines for the derivation of equivalence classes, test cases for 
each input domain data item can be developed and executed. Test cases are selected 
so that the largest number of attributes of an equivalence class are exercised at once.

19.5.3 Boundary Value Analysis
A greater number of errors occurs at the boundaries of the input domain rather than 
in the “center.” It is for this reason that boundary value analysis (BVA) has been 
developed as a testing technique. Boundary value analysis leads to a selection of test 
cases that exercise bounding values.

Boundary value analysis is a test-case design technique that complements equiva-
lence partitioning. Rather than selecting any element of an equivalence class, BVA leads 
to the selection of test cases at the “edges” of the class. Rather than focusing solely on 
input conditions, BVA derives test cases from the output domain as well [Mye79].

Guidelines for BVA are similar in many respects to those provided for equivalence 
partitioning:

 1. If an input condition specifies a range bounded by values a and b, test 
cases should be designed with values a and b and just above and just below 
a and b.

 2. If an input condition specifies a number of values, test cases should be 
developed that exercise the minimum and maximum numbers. Values just 
above and below minimum and maximum are also tested.

 3. Apply guidelines 1 and 2 to output conditions. For example, assume that a 
temperature versus pressure table is required as output from an engineering 
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analysis program. Test cases should be designed to create an output report that 
produces the maximum (and minimum) allowable number of table entries.

 4. If internal program data structures have prescribed boundaries (e.g., a table 
has a defined limit of 100 entries), be certain to design a test case to exercise 
the data structure at its boundary.

Most software engineers intuitively perform BVA to some degree. By applying 
these guidelines, boundary testing will be more complete, thereby having a higher 
likelihood for error detection.

 19.6 oB j e c t-or i e n t e d te st i ng

When object-oriented software is considered, the concept of the unit changes. 
Encapsulation drives the definition of classes and objects. This means that each 
class and each instance of a class packages attributes (data) and the operations that 
manipulate these data. An encapsulated class is usually the focus of unit testing. 
However, operations (methods) within the class are the smallest testable units. 
Because a class can contain a number of different operations, and a particular oper-
ation may exist as part of a number of different classes, the tactics applied to unit 
testing must change.

You can no longer test a single operation in isolation (the conventional view of 
unit testing) but rather as part of a class. To illustrate, consider a class hierarchy in 
which an operation X is defined for the superclass and is inherited by a number of 
subclasses. Each subclass uses operation X, but it is applied within the context of the 
private attributes and operations that have been defined for the subclass. Because the 
context in which operation X is used varies in subtle ways, it is necessary to test 
operation X in the context of each of the subclasses. This means that testing operation 
X in a stand-alone fashion (the conventional unit-testing approach) is usually ineffec-
tive in the object-oriented context.

19.6.1 Class Testing
Class testing for object-oriented (OO) software is the equivalent of unit testing for 
conventional software. Unlike unit testing of conventional software, which tends to 
focus on the algorithmic detail of a module and the data that flow across the module 
interface, class testing for OO software is driven by the operations encapsulated by 
the class and the state behavior of the class.

To provide brief illustrations of these methods, consider a banking application in 
which an Account class has the following operations: open(), setup(), deposit(), with-
draw(), balance(), summarize(), creditLimit(), and close() [Kir94]. Each of these 
operations may be applied for Account, but certain constraints (e.g., the account must 
be opened before other operations can be applied and closed after all operations are 
completed) are implied by the nature of the problem. Even with these constraints, 
there are many permutations of the operations. The minimum behavioral life history 
of an instance of Account includes the following operations:

open•setup•deposit•withdraw•close
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This represents the minimum test sequence for account. However, a wide variety 
of other behaviors may occur within this sequence:

open•setup•deposit•[deposit|withdraw|balance|summarize|creditLimit]n• 
withdraw•close

A variety of different operation sequences can be generated randomly. For example:
Test case r1: 

open•setup•deposit•deposit•balance•summarize•withdraw•close

Test case r2: 

open•setup•deposit•withdraw•deposit•balance•creditLimit•withdraw•close

These and other random order tests are conducted to exercise different class instance 
life histories. Use of test equivalence partitioning (Section 19.5.2) can reduce the 
number of test cases required.

Class Testing

The scene: Shakira’s cubicle.

The players: Jamie and Shakira, members of 
the SafeHome software engineering team who 
are working on test-case design for the 
security function.

The conversation:
Shakira: I’ve developed some tests for the 
Detector class [Figure 11.4]—you know, the one 
that allows access to all of the Sensor objects 
for the security function. You familiar with it?

Jamie (laughing): Sure, it’s the one that 
allowed you to add the “doggie angst”  
sensor.

Shakira: The one and only. Anyway, it has an 
interface with four ops: read(), enable(), dis-
able(), and test(). Before a sensor can be read, 
it must be enabled. Once it’s enabled, it can be 
read and tested. It can be disabled at any time, 
except if an alarm condition is being pro-
cessed. So I defined a simple test sequence 
that will exercise its behavioral life history.  
(She shows Jamie the following sequence.)

#1: enable•test•read•disable

Jamie: That’ll work, but you’ve got to do more 
testing than that!

Shakira: I know, I know. Here are some other 
sequences I’ve come up with. (She shows 
Jamie the following sequences.)

#2: enable•test•[read]n•test•disable
#3: [read]n

#4: enable•disable•[test | read]

Jamie: So let me see if I understand the intent 
of these. #1 goes through a normal life history, 
sort of a conventional usage. #2 repeats the 
read operation n times, and that’s a likely sce-
nario. #3 tries to read the sensor before it’s 
been enabled . . . that should produce an error 
message of some kind, right? #4 enables and 
disables the sensor and then tries to read it. 
Isn’t that the same as test #2?

Shakira: Actually no. In #4, the sensor has 
been enabled. What #4 really tests is whether 
the disable op works as it should. A read() or 
test() after disable() should generate the error 
message. If it doesn’t, then we have an error in 
the disable op.

Jamie: Cool. Just remember that the four tests 
have to be applied for every sensor type since 
all the ops may be subtly different depending 
on the type of sensor.

Shakira: Not to worry. That’s the plan.

sAfehome
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19.6.2 Behavioral Testing
The use of the state diagram as a model that represents the dynamic behavior of a 
class is discussed in Chapter 8. The state diagram for a class can be used to help 
derive a sequence of tests that will exercise the dynamic behavior of the class (and 
those classes that collaborate with it). Figure 19.7 [Kir94] illustrates a state diagram 
for the Account class discussed earlier. Referring to the figure, initial transitions move 
through the empty acct and setup acct states. The majority of all behavior for instances 
of the class occurs while in the working acct state. A final withdrawal and account 
closure cause the account class to make transitions to the nonworking acct and dead 
acct states, respectively.

The tests to be designed should achieve coverage of every state. That is, the oper-
ation sequences should cause the Account class to transition through all allowable 
states:

Test case s1: open•setupAccnt•deposit (initial)•withdraw (final)•close

Adding additional test sequences to the minimum sequence,
Test case s2:  open•setupAccnt•deposit(initial)•deposit•balance•credit• 

withdraw (final)•close

Test case s3:  open•setupAccnt•deposit(initial)•deposit•withdraw•accntInfo• 

withdraw (final)•close

Figure 19.7
State diagram 
for the 
Account class
Source: Kirani, 
Shekhar and  
Tsai, W. T., 
“Specification and 
Verification of  
Object-Oriented 
Programs,” 
Technical Report 
TR 94-64, 
University of 
Minnesota, 
December  
1994, 79.
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Still more test cases could be derived to ensure that all behaviors for the class have 
been adequately exercised. In situations in which the class behavior results in a col-
laboration with one or more classes, multiple state diagrams are used to track the 
behavioral flow of the system.

The state model can be traversed in a “breadth-first” [McG94] manner. In this 
context, breadth-first implies that a test case exercises a single transition and that when 
a new transition is to be tested, only previously tested transitions are used.

Consider a CreditCard object that is part of the banking system. The initial state 
of CreditCard is undefined (i.e., no credit card number has been provided). Upon 
reading the credit card during a sale, the object takes on a defined state; that is, the 
attributes card number and expiration date, along with bank-specific identifiers, are 
defined. The credit card is submitted when it is sent for authorization, and it is 
approved when authorization is received. The transition of CreditCard from one state 
to another can be tested by deriving test cases that cause the transition to occur. A 
breadth-first approach to this type of testing would not exercise submitted before it 
exercised undefined and defined. If it did, it would make use of transitions that had 
not been previously tested and would therefore violate the breadth-first criterion.

 19.7 su m m A ry

Software testing accounts for the largest percentage of technical effort in the software 
process. Regardless of the type of software you build, a strategy for systematic test 
planning, execution, and control begins by considering small elements of the software 
and moves outward toward the program as a whole.

The objective of software testing is to uncover errors. For conventional software, 
this objective is achieved through a series of test steps. Unit and integration tests 
(discussed in Chapter 20) concentrate on functional verification of a component and 
incorporation of components into the software architecture. The strategy for testing 
object-oriented software begins with tests that exercise the operations within a class 
and then moves to thread-based testing for integration (discussed in Section 20.4.1). 
Threads are sets of classes that respond to an input or event.

Test cases should be traceable to software requirements. Each test step is accom-
plished through a series of systematic test techniques that assist in the design of test 
cases. With each testing step, the level of abstraction with which software is consid-
ered is broadened. The primary objective for test-case design is to derive a set of tests 
that have the highest likelihood for uncovering errors in software. To accomplish this 
objective, two different categories of test-case design techniques are used: white-box 
testing and black-box testing.

White-box tests focus on the program control structure. Test cases are derived to 
ensure that all statements in the program have been executed at least once during test-
ing and that all logical conditions have been exercised. Basis path testing, a white-box 
technique, makes use of program graphs (or graph matrices) to derive the set of linearly 
independent tests that will ensure coverage. Condition and data flow testing further 
exercise program logic, and loop testing complements other white-box techniques by 
providing a procedure for exercising loops of varying degrees of complexity.
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Black-box tests are designed to validate functional requirements without regard to 
the internal workings of a program. Black-box testing techniques focus on the infor-
mation domain of the software, deriving test cases by partitioning the input and out-
put domain of a program in a manner that provides thorough test coverage. Equivalence 
partitioning divides the input domain into classes of data that are likely to exercise a 
specific software function. Boundary value analysis probes the program’s ability to 
handle data at the limits of acceptability.

Unlike testing (a systematic, planned activity), debugging can be viewed as an art. 
Beginning with a symptomatic indication of a problem, the debugging activity must 
track down the cause of an error. Testing can sometimes help find the root cause of 
the error. But often, the most valuable resource is the counsel of other members of 
the software engineering staff.

Pro b l e m s a n d Po i n t s to Po n d e r

19.1. Using your own words, describe the difference between verification and validation. Do 
both make use of test-case design methods and testing strategies?

19.2. List some problems that might be associated with the creation of an independent test 
group. Are an ITG and an SQA group made up of the same people?

19.3. Why is a highly coupled module difficult to unit test?

19.4. Is unit testing possible or even desirable in all circumstances? Provide examples to justify 
your answer.

19.5. Can you think of any additional testing objectives that are not discussed in Section 19.1.1?

19.6. Select a software component that you have designed and implemented recently. Design 
a set of test cases that will ensure that all statements have been executed using basis path testing.

19.7. Myers [Mye79] uses the following program as a self-assessment for your ability to spec-
ify adequate testing: A program reads three integer values. The three values are interpreted as 
representing the lengths of the sides of a triangle. The program prints a message that states 
whether the triangle is scalene, isosceles, or equilateral. Develop a set of test cases that you 
feel will adequately test this program.

19.8. Design and implement the program (with error handling where appropriate) specified in 
Problem 19.7. Derive a flow graph for the program and apply basis path testing to develop test 
cases that will guarantee that all statements in the program have been tested. Execute the cases 
and show your results.

19.9. Give at least three examples in which black-box testing might give the impression that 
“everything’s OK,” while white-box tests might uncover an error. Give at least three examples 
in which white-box testing might give the impression that “everything’s OK,” while black-box 
tests might uncover an error.

19.10. In your own words, describe why the class is the smallest reasonable unit for testing 
within an OO system.

Design element: Quick Look icon magnifying glass: © Roger Pressman
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C H A P T E R

20

What is it? Integration testing assembles com-
ponents in a manner that allows the testing of 
increasingly larger software functions with the 
intent of finding errors as the software is  
assembled.

Who does it? During early stages of testing, a 
software engineer performs all tests. How-
ever, as the testing process progresses, test-
ing specialists may become involved in 
addition to other stakeholders.

Why is it important? Test cases must be de-
signed using disciplined techniques to ensure 
that the components have been integrated 
properly into the complete software product.

What are the steps? Internal program logic is 
exercised using “white-box” test-case design 

techniques and software requirements are  
exercised using “black-box” test-case design 
techniques. 

What is the work product? A set of test cases 
designed to exercise internal logic, interfaces, 
component collaborations, and external re-
quirements is designed and documented, ex-
pected results are defined, and actual results 
are recorded.

How do I ensure that I’ve done it right?  
When you begin testing, change your point 
of view. Try hard to “break” the software! 
Design test cases in a disciplined fashion, 
and review the test cases you do create for 
thoroughness. 

Q u i c k  L o o k

Software Testing— 
Integration Level

artificial intelligence  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .403
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k e y 
c o n c e p t s

A single developer may be able to test software components without involving 
other team members. This is not true for integration testing where a component 
must interact properly with components developed by other team members. Inte-
gration testing exposes many weaknesses of software development groups who 
have not gelled as a team. Integration testing presents an interesting dilemma for 
software engineers, who by their nature are constructive people. In fact, all test-
ing requires that developers discard preconceived notions of the “correctness” of 
software just developed and instead work hard to design test cases to “break” 
the software. This means that team members need to be able to accept sugges-
tions from other team members that their code is not behaving properly when it 
is tested as part of the latest software increment.



396 PART THREE QUALITY AND SECURITY

Beizer [Bei90] describes a “software myth” that all testers face. He writes: “There’s 
a myth that if we were really good at programming, there would be no bugs to 
catch  .  .  . There are bugs, the myth says, because we are bad at what we do; and if 
we are bad at it, we should feel guilty about it.”

Should testing instill guilt? Is testing really destructive? The answer to these 
questions is, No!

At the beginning of this book, we stressed the fact that software is only one element 
of a larger computer-based system. Ultimately, software is incorporated with other 
system elements (e.g., hardware, people, information), and systems testing (a series of 
system integration and validation tests) is conducted. These tests fall outside the scope 
of the software process and are not conducted solely by software engineers. However, 
steps taken during software design and testing can greatly improve the probability of 
successful software integration in the larger system.

In this chapter, we discuss techniques for software integration testing strategies 
applicable to most software applications. Specialized software testing strategies are 
discussed in Chapter 21.

 20.1 so f t wa r e te st i ng fu n da m e n ta L s

The goal of testing is to find errors, and a good test is one that has a high probabil-
ity of finding an error. Kaner, Falk, and Nguyen [Kan93] suggest the following attri-
butes of a “good” test:

A good test has a high probability of finding an error. To achieve this goal, the 
tester must understand the software and attempt to develop a mental picture of how 
the software might fail.

A good test is not redundant. Testing time and resources are limited. There is 
no point in conducting a test that has the same purpose as another test. Every test 
should have a different purpose (even if it is subtly different).

A good test should be “best of breed” [Kan93]. In a group of tests that 
have a similar intent, time and resource limitations may dictate the execution 
of only those tests that have the highest likelihood of uncovering a whole class 
of errors.

A good test should be neither too simple nor too complex. Although it is some-
times possible to combine a series of tests into one test case, the possible side 
effects associated with this approach may mask errors. In general, each test should 
be executed separately.

Any engineered product (and most other things) can be tested in one of two 
ways: (1) Knowing the specified function that a product has been designed to 
perform, tests can be conducted that demonstrate each function is fully operational 
while at the same time searching for errors in each function. (2) Knowing the 
internal workings of a product, tests can be conducted to ensure that “all gears 
mesh,” that is, internal operations are performed according to specifications and 
all internal components have been adequately exercised. The first test approach 
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takes an external view of testing and is called black-box testing. The second requires 
an internal view of testing and is termed white-box testing.1 Both are useful in 
integration testing [Jan16].

20.1.1 Black-Box Testing
Black-box testing alludes to integration testing that is conducted by exercising the 
component interfaces with other components and with other systems. It examines 
some fundamental aspect of a system with little regard for the internal logical 
structure of the software. Instead, the focus is on ensuring the component executes 
correctly in the larger software build when the input data and software context 
specified by its preconditions is correct and behaves in the ways specified by its 
postconditions. It is of course important to make sure that the component behaves 
correctly when its preconditions are not satisfied (e.g., it can handle bad inputs 
without crashing).

Black-box testing is based on the requirements specified in user stories (Chapter 7). 
Test-case authors do not need to wait for the component implementation code to be 
written once the component interface is defined. Several cooperating components may 
need to be written to implement the functionality defined by a single user story. Val-
idation testing (Section 20.5) often defines black-box test cases in terms of the end-
user visible input actions and observable output behaviors, without any knowledge of 
how the components themselves were implemented.

20.1.2 White-Box Testing
White-box testing, sometimes called glass-box testing or structural testing, is an inte-
gration testing philosophy that uses implementation knowledge of the control struc-
tures described as part of component-level design to derive test cases. White-box 
testing of software is predicated on close examination of procedural implementation 
details and data structure implementation details. White-box tests can be designed 
only after component-level design (or source code) exists. The logical details of the 
program must be available. Logical paths through the software and collaborations 
between components are the focus of white-box integration testing.

At first glance it would seem that very thorough white-box testing would lead to 
“100 percent correct programs.” All we need do is define all logical paths, develop 
test cases to exercise them, and evaluate results, that is, generate test cases to exercise 
program logic exhaustively. Unfortunately, exhaustive testing presents certain logisti-
cal problems. For even small programs, the number of possible logical paths can be 
very large. White-box testing should not, however, be dismissed as impractical. Test-
ers should select a reasonable number of important logical paths to exercise once 
component integration occurs. Important data structures should also be tested for 
validity after component integration.

1 The terms functional testing and structural testing are sometimes used in place of black-box 
and white-box testing, respectively.
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 20.2 in t e g r at i o n te st i ng

A neophyte in the software world might ask a seemingly legitimate question once all 
modules have been unit-tested: “If they all work individually, why do you doubt that 
they’ll work when we put them together?” The problem, of course, is “putting them 
together”—interfacing. Data can be lost across an interface; one component can have 
an inadvertent, adverse effect on another; subfunctions, when combined, may not 
produce the desired major function; individually acceptable imprecision may be mag-
nified to unacceptable levels; and global data structures can present problems. Sadly, 
the list goes on and on.

Integration testing is a systematic technique for constructing the software architec-
ture while at the same time conducting tests to uncover errors associated with inter-
facing. The objective is to take unit-tested components and build a program structure 
that has been dictated by design.

There is often a tendency to attempt nonincremental integration, that is, to construct 
the program using a “big bang” approach. In the big bang approach, all components 
are combined in advance and the entire program is tested as a whole. Chaos usually 
results! Errors are encountered, but correction is difficult because isolation of causes 
is complicated by the vast expanse of the entire program. Taking the big bang approach 
to integration is a lazy strategy that is doomed to failure.

Incremental integration is the antithesis of the big bang approach. The program is 
constructed and tested in small increments, where errors are easier to isolate and 
correct; interfaces are more likely to be tested completely; and a systematic test 
approach may be applied. Integrate incrementally and testing as you go is a more 
cost-effective strategy. We discuss several common incremental integration testing 
strategies in the remainder of this chapter.

20.2.1 Top-Down Integration
Top-down integration testing is an incremental approach to construction of the soft-
ware architecture. Modules (also referred to as components in this book) are integrated 
by moving downward through the control hierarchy, beginning with the main control 
module (main program). Modules subordinate (and ultimately subordinate) to the main 
control module are incorporated into the structure in either a depth-first or breadth-
first manner.

Referring to Figure 20.1, depth-first integration integrates all components on a 
major control path of the program structure. Selection of a major path is somewhat 
arbitrary and depends on application-specific characteristics (e.g., components needed 
to implement one use case). For example, selecting the left-hand path, components 
M1, M2, M5 would be integrated first. Next, M8 or (if necessary for proper function-
ing of M2) M6 would be integrated. Then, the central and right-hand control paths are 
built. Breadth-first integration incorporates all components directly subordinate at 
each level, moving across the structure horizontally. From the figure, components M2, 
M3, and M4 would be integrated first. The next control level, M5, M6, and so on, 
follows. The integration process is performed in a series of five steps:

 1. The main control module is used as a test driver, and stubs are substituted for 
all components directly subordinate to the main control module.
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 2. Depending on the integration approach selected (i.e., depth or breadth first), 
subordinate stubs are replaced one at a time with actual components.

 3. Tests are conducted as each component is integrated.
 4. On completion of each set of tests, another stub is replaced with the real 

component.
 5. Regression testing (discussed later in this section) may be conducted to ensure 

that new errors have not been introduced.

The process continues from step 2 until the entire program structure is built.
The top-down integration strategy verifies major control or decision points early 

in the test process. In a “well-factored” program structure, decision making occurs at 
upper levels in the hierarchy and is therefore encountered first. If major control prob-
lems do exist, early recognition is essential. If depth-first integration is selected, a 
complete function of the software may be implemented and demonstrated. Early 
demonstration of functional capability is a confidence builder for all stakeholders.

20.2.2 Bottom-Up Integration
Bottom-up integration testing, as its name implies, begins construction and testing 
with atomic modules (i.e., components at the lowest levels in the program structure). 
Bottom-up integration eliminates the need for complex stubs. Because components 
are integrated from the bottom up, the functionality provided by components subor-
dinate to a given level is always available and the need for stubs is eliminated. A 
bottom-up integration strategy may be implemented with the following steps:

 1. Low-level components are combined into clusters (sometimes called builds) 
that perform a specific software subfunction.

 2. A driver (a control program for testing) is written to coordinate test-case 
input and output.

 3. The cluster is tested.
 4. Drivers are removed and clusters are combined, moving upward in the 

program structure.

M1

M3 M4

M5

M2

M6 M7

M8

Figure 20.1
Top-down 
integration
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Integration follows the pattern illustrated in Figure 20.2. Components are combined 
to form clusters 1, 2, and 3. Each of the clusters is tested using a driver (shown as a 
dashed block). Components in clusters 1 and 2 are subordinate to Ma. Drivers D1 and 
D2 are removed, and the clusters are interfaced directly to Ma. Similarly, driver D3 for 
cluster 3 is removed prior to integration with module Mb. Both Ma and Mb will 
ultimately be integrated with component Mc, and so forth.

As integration moves upward, the need for separate test drivers lessens. In fact, if 
the top two levels of program structure are integrated top down, the number of driv-
ers can be reduced substantially and integration of clusters is greatly simplified.

20.2.3 Continuous Integration
Continuous integration is the practice of merging components into the evolving soft-
ware increment once or more each day. This is a common practice for teams follow-
ing agile development practices such as XP (Section 3.5.1) or DevOps (Section 3.5.2). 
Integration testing must take place quickly and efficiently if a team is attempting to 
always have a working program in place as part of continuous delivery. It is some-
times hard to maintain systems with the use of continuous integration tools [Ste18]. 
Maintenance and continuous integration issues are discussed in more detail in 
Section 22.4.

Smoke testing is an integration testing approach that can be used when product 
software is developed by an agile team using short increment build times. Smoke 
testing might be characterized as a rolling or continuous integration strategy. The 
software is rebuilt (with new components added) and smoke tested every day. It is 
designed as a pacing mechanism for time-critical projects, allowing the software team 

Figure 20.2 Bottom-up integration
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to assess the project on a frequent basis. In essence, the smoke-testing approach 
encompasses the following activities:

 1. Software components that have been translated into code are integrated into 
a build. A build includes all data files, libraries, reusable modules, and 
engineered components that are required to implement one or more product 
functions.

 2. A series of tests is designed to expose errors that will keep the build 
from properly performing its function. The intent should be to uncover 
“show-stopper” errors that have the highest likelihood of throwing the 
software project behind schedule.

 3. The build is integrated with other builds, and the entire product (in its current 
form) is smoke tested daily. The integration approach may be top down or 
bottom up.

The daily frequency of testing gives both managers and practitioners a realistic 
assessment of integration testing progress. McConnell [McC96] describes the smoke 
test in the following manner:

The smoke test should exercise the entire system from end to end. It does not have to 
be exhaustive, but it should be capable of exposing major problems. The smoke test 
should be thorough enough that if the build passes, you can assume that it is stable 
enough to be tested more thoroughly.

Smoke testing provides a number of benefits when it is applied on complex, 
time-critical software projects:

∙ Integration risk is minimized. Because smoke tests are conducted daily, 
incompatibilities and other showstopper errors are uncovered early, thereby 
reducing the likelihood of serious schedule impact when errors are uncovered.

∙ The quality of the end product is improved. Because the approach is con-
struction (integration) oriented, smoke testing is likely to uncover functional 
errors as well as architectural and component-level design errors. If these 
errors are corrected early, better product quality will result.

∙ Error diagnosis and correction are simplified. Like all integration testing 
approaches, errors uncovered during smoke testing are likely to be associated 
with “new software increments”—that is, the software that has just been 
added to the build(s) is a probable cause of a newly discovered error.

∙ Progress is easier to assess. With each passing day, more of the software has 
been integrated and more has been demonstrated to work. This improves team 
morale and gives managers a good indication that progress is being made.

In some ways smoke testing resembles regression testing (discussed in Section 20.3), 
which helps to ensure that the newly added components do not interfere with the 
behaviors of existing components that were previously tested. To do this, it is a good 
idea to rerun a subset of the test cases that executed with the existing software com-
ponent before the new components were added. The effort required to rerun test cases 
is not trivial, and automated testing can be used to reduce the time and effort re-created 
to rerun these test cases [Net18]. A complete discussion of automated testing is 
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beyond the scope of this chapter, but links to representative tools can be found on the 
Web pages that supplement this book.2

20.2.4 Integration Test Work Products
An overall plan for integration of the software and a description of specific tests is 
documented in a test specification. This work product incorporates a test plan and a 
test procedure and becomes part of the software configuration. Testing is divided into 
phases and incremental builds that address specific functional and behavioral charac-
teristics of the software. For example, integration testing for the SafeHome security 
system might be divided into the following test phases: user interaction, sensor pro-
cessing, communications functions, and alarm processing.

Each integration test phase delineates a broad functional category within the soft-
ware and generally can be related to a specific domain within the software architec-
ture. Therefore, software increments are created to correspond to each phase.

A schedule for integration, the development of scaffolding software (Section 19.2.1), 
and related topics are also discussed as part of the test plan. Start and end dates for 
each phase are established, and “availability windows” for unit-tested modules are 
defined. When developing a project schedule, you’ll have to consider the manner in 
which integration occurs so that components will be available when needed. A brief 
description of scaffolding software (stubs and drivers) concentrates on characteristics 
that might require special effort. Finally, test environment and resources are described. 
Unusual hardware configurations, exotic simulators, and special test tools or tech-
niques are a few of many topics that may also be discussed.

The detailed testing procedure that is required to accomplish the test plan is 
described next. The order of integration and corresponding tests at each integration 
step are described. A listing of all test cases (annotated for subsequent reference) and 
expected results are also included. In the agile world, this level of test-case description 
occurs when code to implement the user story is being developed so the code can be 
tested as soon as it is ready for integration.

A history of actual test results, problems, or peculiarities is recorded in a test report 
that can be appended to the test specification. It is often best to implement the test 
report as a shared Web document to allow all stakeholders access to the latest test 
results and the current state of the software increment. Information contained in this 
online document can be vital to developers during software maintenance (Section 4.9).

 20.3 art i f i c i a L in t e L L i g e nc e a n d  
re g r e s s i o n te st i ng

Each time a new module is added as part of integration testing, the software changes. 
New data flow paths are established, new input/output (I/O) may occur, and new 
control logic is invoked. Side effects associated with these changes may cause prob-
lems with functions that previously worked flawlessly. In the context of an integration 

2 See the SEPA 9e website.
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test strategy, regression testing is the reexecution of some subset of tests that have 
already been conducted to ensure that changes have not propagated unintended side 
effects. Regression tests should be executed every time a major change is made to the 
software (including the integration of new components). Regression testing helps to 
ensure that changes (due to testing or for other reasons) do not introduce unintended 
behavior or additional errors.

Regression testing may be conducted manually, by reexecuting a subset of all test 
cases or using automated capture/playback tools. Capture/playback tools enable the 
software engineer to capture test cases and results for subsequent playback and com-
parison. The regression test suite (the subset of tests to be executed) contains three 
different classes of test cases:

∙ A representative sample of tests that will exercise all software functions
∙ Additional tests that focus on software functions that are likely to be affected 

by the change
∙ Tests that focus on the software components that have been changed

As integration testing proceeds, the number of regression tests can grow quite large. 
Therefore, the regression test suite should be designed to include only those tests that 
address one or more classes of errors in each of the major program functions.

Yoo and Harman [Yoo13] write about potential uses of artificial intelligence (AI) 
in identifying test cases for use in regression test suites. A software tool could exam-
ine the dependencies among the components in the software increment after the new 
components have been added and generate test cases automatically to use for regres-
sion testing. Another possibility would be using machine learning techniques to select 
sets of test cases that will optimize the discovery of component collaboration errors. 
This work is promising, but still requires significant human interaction to review the 
test cases and the recommended order for executing them.

Regression Testing

 The scene: Doug Miller’s office, 
as integration testing is under 
way.

The players: Doug Miller, software engineer-
ing manager; Vinod, Jamie, Ed, and Shakira, 
members of the SafeHome software 
engineering team.

The conversation:
Doug: It seems to me that we are not 
spending enough time retesting software 
components after new components are 
integrated.

Vinod: I guess that is true, but isn’t it good 
enough that we are testing the new compo-
nents’ interactions with the components they 
are supposed to collaborate with?

Doug: Not always. Sometimes components 
make unintended change to data used by 
other components. I know we are busy, but it is 
important to discover these problems early.

Shakira: We do have a test-case repository 
we have been drawing from. Perhaps we can 
randomly select several test cases to run using 
our automated testing framework.

safeHome
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 20.4 in t e g r at i o n te st i ng i n t H e oo co n t e x t

Object-oriented software does not have an obvious hierarchical control structure, so 
traditional top-down and bottom-up integration strategies (Section 20.2) have little 
meaning. In addition, integrating operations one at a time into a class (the conven-
tional incremental integration approach) is often impossible because of the “direct and 
indirect interactions of the components that make up the class” [Ber93].

There are two different strategies for integration testing of OO systems: thread-
based testing and use-based testing [Bin99]. The first, thread-based testing, integrates 
the set of classes required to respond to one input or event for the system. Each thread 
is integrated and tested individually. Regression testing is applied to ensure that no 
side effects occur. An important strategy for integration testing of OO software is 
thread-based testing. Threads are sets of classes that respond to an input or event.

The second integration approach, use-based testing, begins the construction of the 
system by testing those classes (called independent classes) that use very few (if any) 
server classes. After the independent classes are tested, the next layer of classes, called 
dependent classes, that use the independent classes are tested. This sequence of test-
ing layers of dependent classes continues until the entire system is constructed. Use-
based tests focus on classes that do not collaborate heavily with other classes.

The use of scaffolding software also changes when integration testing of OO sys-
tems is conducted. Drivers can be used to test operations at the lowest level and for 
the testing of whole groups of classes. A driver can also be used to replace the user 
interface so that tests of system functionality can be conducted prior to implementa-
tion of the interface. Stubs can be used in situations in which collaboration between 
classes is required but one or more of the collaborating classes has not yet been fully 
implemented.

Cluster testing is one step in the integration testing of OO software. Here, a clus-
ter of collaborating classes (determined by examining the CRC and object-relationship 
model) is exercised by designing test cases that attempt to uncover errors in the 
collaborations.

Doug: That’s a start. But maybe we should 
be more strategic in how we select our 
test cases.

Ed: I suppose we could use our test-case/
requirement traceability table and check our 
CRC card model.

Vinod: I have been using continuous integra-
tion, meaning I integrate each component as 
soon as one of the developers passes it to me. 
I try to run a series of regression tests on the 
partially integrated program.

Jamie: I’ve been trying to design a set of 
appropriate tests for each function in the 

system. Maybe I should tag some of the more 
important ones for Vinod to use for regression 
testing.

Doug (to Vinod): How often will you run the 
regression test cases?

Vinod: Every day I integrate a new component 
I will use the regression test cases . . . until we 
decide the software increment is done.

Doug: Let’s try using Jamie’s regression test 
cases as they are created and see how 
things go.
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20.4.1 Fault-Based Test-Case Design3

The object of fault-based testing within an OO system is to design tests that have a 
high likelihood of uncovering plausible faults. Because the product or system must 
conform to customer requirements, preliminary planning required to perform fault-
based testing begins with the analysis model. The strategy for fault-based testing is 
to hypothesize a set of plausible faults and then derive tests to prove each hypothesis. 
The tester looks for plausible faults (i.e., aspects of the implementation of the system 
that may result in defects). To determine whether these faults exist, test cases are 
designed to exercise the design or code.

Of course, the effectiveness of these techniques depends on how testers perceive a 
plausible fault. If real faults in an OO system are perceived to be implausible, then this 
approach is really no better than any random testing technique. However, if the analysis 
and design models can provide insight into what is likely to go wrong, then fault-based 
testing can find significant numbers of errors with relatively low expenditures of effort.

Integration testing looks for plausible faults in operation calls or message connec-
tions. Three types of faults are encountered in this context: unexpected result, wrong 
operation/message used, and incorrect invocation. To determine plausible faults as 
functions (operations) are invoked, the behavior of the operation must be examined.

Integration testing applies to attributes as well as to operations. The “behaviors” 
of an object are defined by the values that its attributes are assigned. Testing should 
exercise the attributes to determine whether proper values occur for distinct types of 
object behavior.

It is important to note that integration testing attempts to find errors in the client 
object, not the server. Stated in conventional terms, the focus of integration testing is 
to determine whether errors exist in the calling code, not the called code. The operation 
call is used as a clue, a way to find test requirements that exercise the calling code.

The approach for multiple-class partition testing is similar to the approach used for 
partition testing of individual classes. A single class is partitioned as discussed in 
Section 19.6.1. However, the test sequence is expanded to include those operations 
that are invoked via messages to collaborating classes. An alternative approach parti-
tions tests based on the interfaces to a particular class. Referring to Figure 20.3, the 
Bank class receives messages from the ATM and Cashier classes. The methods 
within Bank can therefore be tested by partitioning them into those that serve ATM 
and those that serve Cashier.

Kirani and Tsai [Kir94] suggest the following sequence of steps to generate 
multiple-class random test cases:

 1. For each client class, use the list of class operations to generate a series of ran-
dom test sequences. The operations will send messages to other server classes.

 2. For each message that is generated, determine the collaborator class and the 
corresponding operation in the server object.

3 Sections 20.4.1 and 20.4.2 have been adapted from an article by Brian Marick originally 
posted on the Internet newsgroup comp.testing. This adaptation is included with the permis-
sion of the author. For further information on these topics, see [Mar94]. It should be noted 
that the techniques discussed in Sections 20.4.1 and 20.4.2 are also applicable for conven-
tional software.
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 3. For each operation in the server object (that has been invoked by messages 
sent from the client object), determine the messages that it transmits.

 4. For each of the messages, determine the next level of operations that are 
invoked and incorporate these into the test sequence.

To illustrate [Kir94], consider a sequence of operations for the Bank class relative 
to an ATM class (Figure 20.3):

verifyAcct•verifyPIN•[[verifyPolicy•withdrawReq]|depositReq|acctInfoREQ]n

A random test case for the Bank class might be

Test case r3 = verifyAcct•verifyPIN•depositReq

To consider the collaborators involved in this test, the messages associated with 
each of the operations noted in test case r3 are considered. Bank must collaborate 
with ValidationInfo to execute the verifyAcct() and verifyPIN(). Bank must collabo-
rate with Account to execute depositReq(). Hence, a new test case that exercises these 
collaborations is

Test case r4 =  verifyAcct [Bank:validAcctValidationInfo]•verifyPIN 
[Bank: validPinValidationInfo]•depositReq [Bank: depositaccount]

20.4.2 Scenario-Based Test-Case Design
Fault-based testing misses two main types of errors: (1) incorrect specifications and 
(2) interactions among subsystems. When errors associated with an incorrect specifi-
cation occur, the product doesn’t do what the customer wants. It might do the wrong 

Figure 20.3 Class collaboration diagram for banking application

Source: Kirani, Shekhar and  Tsai, W. T., “Specification and Verification of Object-Oriented Programs,” Technical Report TR 
94-64, University of Minnesota, December 4, 1994, 72.
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thing or omit important functionality. But in either circumstance, quality (conformance 
to requirements) suffers. Errors associated with subsystem interaction occur when the 
behavior of one subsystem creates circumstances (e.g., events, data flow) that cause 
another subsystem to fail.

Scenario-based testing will uncover errors that occur when any actor interacts with 
the software. Scenario-based testing concentrates on what the user does, not what the 
product does. This means capturing the tasks (via use cases) that the user has to 
perform and then applying them and their variants as tests. This is very similar to 
thread testing.

Scenario testing uncovers interaction errors. But to accomplish this, test cases must 
be more complex and more realistic than fault-based tests. Scenario-based testing 
tends to exercise multiple subsystems in a single test (users do not limit themselves 
to the use of one subsystem at a time).

Test-case design becomes more complicated as integration of the object-oriented 
system begins. It is at this stage that testing of collaborations between classes must 
begin. To illustrate “interclass test-case generation” [Kir94], we expand the banking 
example introduced in Section 19.6 to include the classes and collaborations noted in 
Figure 20.3. The direction of the arrows in the figure indicates the direction of mes-
sages, and the labeling indicates the operations that are invoked as a consequence of 
the collaborations implied by the messages.

Like the testing of individual classes, class collaboration testing can be accom-
plished by applying random and partitioning methods, as well as scenario-based test-
ing and behavioral testing.

 20.5 Va L i dat i o n te st i ng

Like all testing steps, validation tries to uncover errors, but the focus is at the require-
ments level—on things that will be immediately apparent to the end user. Validation 
testing begins at the culmination of integration testing, when individual components 
have been exercised, the software is completely assembled as a package, and interfac-
ing errors have been uncovered and corrected. At the validation or system level, the 
distinction between different software categories disappears. Testing focuses on user-
visible actions and user-recognizable output from the system.

Validation can be defined in many ways, but a simple (albeit harsh) definition is 
that validation succeeds when software functions in a manner that can be reasonably 
expected by the customer. At this point, a battle-hardened software developer might 
protest: “Who or what is the arbiter of reasonable expectations?” If a software require-
ments specification has been developed, it describes each user story, all user-visible 
attributes, and the customer’s acceptance criteria for each. The customer’s acceptance 
criteria form the basis for a validation-testing approach.

Software validation is achieved through a series of tests that demonstrate conform-
ity with requirements. A test plan outlines the classes of tests to be conducted, and a 
test procedure defines specific test cases that are designed to ensure that all functional 
requirements are satisfied, all behavioral characteristics are achieved, all content is 
accurate and properly presented, all performance requirements are attained, documen-
tation is correct, and usability and other requirements are met (e.g., transportability, 
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compatibility, error recovery, maintainability). If a deviation from specification is 
uncovered, a deficiency list is created. A method for resolving deficiencies (acceptable 
to stakeholders) must be established. Specialized testing methods for these nonfunc-
tional requirements are discussed in Chapter 21.

An important element of the validation process is a configuration review. The intent 
of the review is to ensure that all elements of the software configuration have been 
properly developed, are cataloged, and have the necessary detail to bolster the support 
activities. The configuration review, sometimes called an audit, is discussed in more 
detail in Chapter 22.

Preparing for Validation

The scene: Doug Miller’s office, 
as component-level design con-

tinues and construction of certain components 
continues.

The players: Doug Miller, software engineer-
ing manager; Vinod, Jamie, Ed, and Shakira, 
members of the SafeHome software 
engineering team.

The conversation:
Doug: The first increment will be ready for 
validation in what . . . about three weeks?

Vinod: That’s about right. Integration is going 
well. We’re smoke testing daily, finding some 
bugs, but nothing we can’t handle. So far, so 
good.

Doug: Talk to me about validation.

Shakira: Well, we’ll use all of the use cases 
as the basis for our test design. I haven’t 
started yet, but I’ll be developing tests 
for all of the use cases that I’ve been  
responsible for.

Ed: Same here.

Jamie: Me too, but we’ve got to get our act to-
gether for acceptance testing and also for al-
pha and beta testing, no?

Doug: Yes. In fact I’ve been thinking; we could 
bring in an outside contractor to help us with 
validation. I have the money in the budget . . . 
and it’d give us a new point of view.

Vinod: I think we’ve got it under control.

Doug: I’m sure you do, but an ITG gives us an 
independent look at the software.

Jamie: We’re tight on time here, Doug. I for 
one don’t have the time to babysit anybody 
you bring in to do the job.

Doug: I know, I know. But if an ITG works from 
requirements and use cases, not too much 
babysitting will be required.

Vinod: I still think we’ve got it under control.

Doug: I hear you, Vinod, but I am going to 
overrule on this one. Let’s plan to meet with 
the ITG rep later this week. Get ‘em started 
and see what they come up with.

Vinod: Okay, maybe it’ll lighten the load a bit.

safeHome

At the validation or system level, the details of class connections disappear. The 
validation of OO software focuses on user-visible actions and user-recognizable out-
puts from the system. To assist in the derivation of validation tests, the tester should 
draw upon use cases (Chapters 7 and 8) that are part of the requirements model. The 
use case provides a scenario that has a high likelihood of uncovered errors in 
user-interaction requirements. Conventional black-box testing methods (Chapter 19) 
can be used to drive validation tests. In addition, you may choose to derive test cases 
from the object-behavior model created as part of object-oriented analysis (OOA).
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 20.6 te st i ng pat t e r n s

The use of patterns as a mechanism for describing solutions to specific design problems 
was discussed in Chapter 15. But patterns can also be used to propose solutions to other 
software engineering situations—in this case, software testing. Testing patterns describe 
common testing problems and solutions that can assist you in dealing with them.

Much of software testing, even during the past decade, has been an ad hoc activity. 
If testing patterns can help a software team to communicate about testing more effec-
tively, to understand the motivating forces that lead to a specific approach to testing, 
and to approach the design of tests as an evolutionary activity in which each iteration 
results in a more complete suite of test cases, then patterns have accomplished much.

Testing patterns are described in much the same way as design patterns (Chapter 15). 
Dozens of testing patterns have been proposed in the literature (e.g., [Mar02]). The 
following three testing patterns (presented in abstract form only) provide representa-
tive examples:

Pattern name: PairTesting

Abstract: A process-oriented pattern, pair testing describes a technique that is analogous 
to pair programming [Chapter 3] in which two testers work together to design and execute 
a series of tests that can be applied to unit, integration or validation testing activities.

Pattern name: SeparateTestInterface

Abstract: There is a need to test every class in an object-oriented system, including 
“internal classes” (i.e., classes that do not expose any interface outside of the component 
that used them). The SeparateTestInterface pattern describes how to create “a test 
interface that can be used to describe specific tests on classes that are visible only 
internally to a component” [Lan01].

Pattern name: ScenarioTesting

Abstract: Once unit and integration tests have been conducted, there is a need to 
determine whether the software will perform in a manner that satisfies users. The 
ScenarioTesting pattern describes a technique for exercising the software from the user’s 
point of view. A failure at this level indicates that the software has failed to meet a user 
visible requirement [Kan01].

A comprehensive discussion of testing patterns is beyond the scope of this book. 
If you have further interest, see [Bin99], [Mar02], [Tho04], [Mac10], and [Gon17] for 
additional information on this important topic.

 20.7 su m m a ry

Integration testing builds the software architecture while at the same time conducting 
tests to uncover errors associated with interfacing between software components. The 
objective is to take unit-tested components and build a program structure that has been 
dictated by design.

Experienced software developers often say, “Testing never ends; it just gets trans-
ferred from you [the software engineer] to your customer. Every time your customer 
uses the program, a test is being conducted.” By applying test-case design, you can 
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achieve more complete testing and thereby uncover and correct the highest number 
of errors before the “customer’s tests” begin.

Hetzel [Het84] describes white-box testing as “testing in the small.” His implication 
is that the white-box tests that have been considered in this chapter are typically 
applied to small program components (e.g., modules or small groups of modules). 
Black-box testing, on the other hand, broadens your focus and might be called “test-
ing in the large.”

Black-box integration testing is based on the requirements specified in the user 
stories or some other analysis modeling representation. Test-case authors do not need 
to wait for the component implementation code to be written, as long as they under-
stand the required functionality of the components undergoing testing. Validation test-
ing is often accomplished with black-box test cases that produce end-user visible input 
actions and observable output behaviors.

White-box testing requires a close examination of procedural implementation 
details and data structure implementation details for the components undergoing test-
ing. White-box tests can be designed only after component-level design (or source 
code) exists. Logical paths through the software and collaborations between compo-
nents are the focus of white-box integration testing.

Integration testing of OO software can be accomplished using a thread-based or 
use-based strategy. Thread-based testing integrates the set of classes that collaborate 
to respond to one input or event. Use-based testing constructs the system in layers, 
beginning with those classes that do not make use of server classes. Integration test-
case design methods can also make use of random and partition tests. In addition, 
scenario-based testing and tests derived from behavioral models can be used to test a 
class and its collaborators. A test sequence tracks the flow of operations across class 
collaborations.

OO system validation testing is black-box oriented and can be accomplished by 
applying the same black-box methods discussed for conventional software. However, 
scenario-based testing dominates the validation of OO systems, making the use case 
a primary driver for validation testing.

Regression testing is the process of reexecuting a selected test case following any 
change made to a software system. Regression tests should be executed whenever new 
components or changes are added to a software increment. Regression testing helps 
to ensure that changes do not introduce unintended behavior or additional errors.

Testing patterns describe common testing problems and solutions that can assist 
you in dealing with them. If testing patterns can help a software team to communicate 
about testing more effectively, to understand the motivating forces that lead to a spe-
cific approach to testing, and to approach the design of test cases as an evolutionary 
activity in which each iteration results in a more complete suite of test cases, then 
patterns have accomplished much.

pro b L e m s a n d po i n t s to po n d e r

20.1. How can project scheduling affect integration testing?

20.2. Who should perform validation testing—the software developer or the software user? 
Justify your answer.
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20.3. Will exhaustive testing (even if it is possible for very small programs) guarantee that a 
program is 100 percent correct?

20.4. Why should “testing” begin with requirements analysis and design?

20.5. Should nonfunctional requirements (e.g., security or performance) be tested as part of 
integration testing?

20.6. Why do we have to retest subclasses that are instantiated from an existing class, if the 
existing class has already been thoroughly tested?

20.7. What is the difference between thread-based and use-based strategies for integration 
testing?

20.8. Develop a complete test strategy for the SafeHome system discussed earlier in this book. 
Document it in a test specification.

20.9. Pick one of the SafeHome system user stories to use as the basis of scenarios-based 
testing, and construct a set of integration test cases needed to do integration testing for that 
user story.

20.10. For the test cases you wrote in Problem 20.9, identify a subset of test cases you will use 
for regression testing software components that are added to the program.

Design element: Quick Look icon magnifying glass: © Roger Pressman
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21 Software Testing—Specialized 
Testing for Mobility

What is it? Mobility testing is a collection of re-
lated activities with a single goal: to uncover 
errors in MobileApp content, function, usabil-
ity, navigability, performance, capacity, and 
security. 

Who does it? Software engineers and other 
project stakeholders (managers, customers, 
end users) all participate in mobility testing.

Why is it important? If end users encounter 
errors or difficulties within the MobileApp, they 
will go elsewhere for the personalized content 
and function they need. 

What are the steps? The mobility testing 
process begins by focusing on user-visible 
aspects of the MobileApp and proceeds  

to tests that exercise technology and 
infrastructure. 

What is the work product? A MobileApp 
test plan is often produced. A suite of test 
cases is developed for each testing step, and 
an archive of test results is maintained for 
future use. 

How do I ensure that I’ve done it right?  
Although you can never be sure that you’ve 
performed every test that is needed, you can 
be certain that testing has uncovered errors 
(and that those errors have been corrected). In 
addition, if you’ve established a test plan, you 
can check to ensure that all planned tests 
have been conducted. 
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k e y 
c o n c e p t s

The same sense of urgency that drives MobileApp projects also pervades all 
mobility projects. Stakeholders are worried that they will miss a market window 
and press to introduce the MobileApp to its intended market. Technical activities 
that often occur late in the process, such as performance and security testing, 
are sometimes given short shrift. Usability testing that should occur during the 
design phase may end up being deferred until just before delivery. These can be 
catastrophic mistakes. To avoid this situation, you and other team members must 
ensure that each work product exhibits high quality, or users will move to a 
competing product [Soa11].
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MobileApp requirements and design models cannot be tested solely with executable 
test cases. You and your team should conduct technical reviews (Chapter 16) that 
examine usability (Chapter 12) as well as MobileApp performance and security.

There are several important questions to ask when creating a mobility testing 
strategy [Sch09]:

∙ Do you have to build a fully functional prototype before you test with users?
∙ Should you test with the user’s device or provide a device for testing?
∙ What devices and user groups should you include in testing?
∙ What are the trade-offs associated with lab testing versus remote testing?

We address each of these questions throughout this chapter.

 21.1 Mo b i L e te st i ng gu i d e L i n e s

MobileApps that run entirely on a mobile device can be tested using traditional soft-
ware testing methods (Chapters 19 and 20). Alternatively, they can be tested using 
emulators running on personal computers. Things become more complicated when 
thin-client MobileApps1 are to be tested. They exhibit many of the same testing chal-
lenges found in WebApps (Section 20.2), but thin-client MobileApps have the addi-
tional concerns associated with transmission of data through Internet gateways and 
telephone networks [Was10].

In general, users expect MobileApps to be context aware and deliver personalized 
user experiences based on the physical location of a device in relation to available 
network features. Testing MobileApps in dynamic ad hoc networks for every possible 
device and network configuration is difficult, if not impossible.

MobileApps are expected to deliver much of the complex functionality and 
reliability found in desktop applications, but they are resident on mobile platforms 
with relatively limited resources. The following guidelines provide a basis for mobile 
application testing [Kea07]:

∙ Understand the network and device landscape before testing to identify 
bottlenecks (Section 21.6).

∙ Conduct tests in uncontrolled real-world test conditions (field-based testing, 
Section 21.8).

∙ Select the right automation test tool (Section 21.11).
∙ Use the Weighted Device Platform Matrix method to identify the most critical 

hardware/platform combination to test (Section 21.8).
∙ Check the end-to-end functional flow in all possible platforms at least once 

(Section 21.10).

1 Thin-client apps typically have software for the user interface running on the mobile device 
(or Web browser software) and use a network interface to an Internet-based application or 
cloud-based data storage.



414 PART THREE QUALITY AND SECURITY

∙ Conduct performance testing, GUI testing, and compatibility testing using 
actual devices (Sections 21.8 and 21.11).

∙ Measure performance only in realistic conditions of wireless traffic and user 
load (Section 21.8).

 21.2 th e te st i ng st r at e g i e s

The strategy for testing mobile applications adopts the basic principles for all software 
testing. However, the unique nature of MobileApps demands the consideration of a 
number of specialized issues:

∙ User-experience testing. Users are involved early in the development process 
to ensure that the MobileApp lives up to the usability and accessibility expec-
tations of the stakeholders on all supported devices (Section 21.3).

∙ Device compatibility testing. Testers verify that the MobileApp works cor-
rectly on all required hardware and software combinations (Section 21.9).

∙ Performance testing. Testers check nonfunctional requirements unique to 
mobile devices (e.g., download times, processor speed, storage capacity, 
power availability) (Section 21.8).

∙ Connectivity testing. Testers ensure that the MobileApp can access any 
needed networks or Web services and can tolerate weak or interrupted 
network access (Section 21.6).

∙ Security testing. Testers ensure that the MobileApp does not compromise the 
privacy or security requirements of its users (Section 21.7).

∙ Testing in the wild. The app is tested under realistic conditions on actual 
user devices in a variety of networking environments around the globe 
(Section 21.9).

∙ Certification testing. Testers ensure that the MobileApp meets the standards 
established by the app stores that will distribute it.

Technology alone is not sufficient to guarantee commercial success of a Mobile-
App. Users abandon MobileApps quickly if they do not work well or fail to meet 
expectations. It is important to recall that testing has two important goals: (1) to cre-
ate test cases that uncover defects early in the development cycle and (2) to verify the 
presence of important quality attributes. The quality attributes for MobileApps are 
based on those set forth in ISO 2050:2011 [ISO17] and encompass functionality, reli-
ability, usability, efficiency, maintainability, and portability (Chapter 17).

Developing a MobileApp testing strategy requires an understanding of both soft-
ware testing and the challenges that make mobile devices and their network infrastruc-
ture unique [Kho12a]. In addition to a thorough knowledge of conventional software 
testing approaches (Chapters 19 and 20), a MobileApp tester should have a good 
understanding of telecommunications principles and an awareness of the differences 
and capabilities of mobile operating systems platforms. This basic knowledge must 
be complemented with a thorough understanding of the different types of mobile test-
ing (e.g., MobileApp testing, mobile handset testing, mobile website testing), the use 
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of simulators, test automation tools, and remote data access services (RDA). Each of 
these topics is discussed later in this chapter.

 21.3 us e r ex p e r i e nc e te st i ng is s u e s

In a crowded marketplace in which products provide the same functionality, users will 
choose the MobileApp that is easiest to use. The user interface and its interaction 
mechanisms are visible to the MobileApp users. It is important to test the quality of 
the user experience provided by the MobileApp to ensure that it meets the expecta-
tions of its users.

What characteristics of MobileApp usability become the focus of testing, and what 
specific objectives are addressed? Many of the procedures for assessing the usability 
of software user interfaces discussed in Chapters 12 and 13 can be used to assess 
MobileApps. Similarly, many of the strategies used to assess the quality of WebApps 
(Section 21.5) may be used to test the user interface portion of the MobileApp. There 
is more to building a good MobileApp user interface than simply shrinking the size 
of a user interface from an existing desktop application.

21.3.1 Gesture Testing
Touch screens are ubiquitous on mobile devices, and, as a consequence, developers 
have added multitouch gestures (e.g., swiping, zooming, scrolling, selection) as a 
means of augmenting the user interaction possibilities without losing screen real 
estate. Figure 21.1 shows several commonly found gestures on MobileApps. Unfor-
tunately, gesture-intensive interfaces present a number of review and testing 
challenges.

Paper prototypes, sometimes developed as part of the design, cannot be used to 
adequately review the adequacy or efficacy of gestures. When testing is initiated, it’s 
difficult to use automated tools to test touch or gesture interface actions. The location 

Figure 21.1
Mobile app 
gestures

Tap Double Tap Drag Flick

Pinch Spread Press Press + Tap 
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of screen objects is affected by screen size and resolution, as well as previous user 
actions, making accurate gesture testing difficult. And even as testing is conducted, 
gestures are hard to log accurately for replay.

Instead, testers need to create test framework programs that make calls to functions 
that simulate gesture events. All of this is expensive and time consuming.

Accessibility testing for visually impaired users is challenging because gesture 
interfaces typically do not provide either tactile or auditory feedback. Usability and 
accessibility testing for gestures become very important for ubiquitous devices like 
smartphones. It may be important to test the operation of the device when gesture 
operations are not available.

Ideally, user stories or use cases are written in sufficient detail to allow their use 
as the basis for test scripts. It is important to recruit representative users and include 
all targeted devices to take screen differences into account when testing gestures with 
a MobileApp. Finally, testers should ensure that the gestures conform to the standards 
and contexts set for the mobile device or platform.

21.3.2 Virtual Keyboard Input
Because a virtual keyboard may obscure part of the display screen when activated, it 
is important to test the MobileApp to ensure that important screen information is not 
hidden from the user while typing. If the screen information must be hidden, it is 
important to test the ability of the MobileApp to allow page flipping by the user 
without losing typed information [Sch09].

Virtual keyboards are typically smaller than personal computer keyboards, and 
therefore, it is difficult to type with 10 fingers. Because the keys themselves are 
smaller and harder to hit and provide no tactile feedback, the MobileApp must be 
tested to ensure that it allows easy error correction and can manage mistyped words 
without crashing.

Predictive technologies (i.e., autocompletion of partially typed words) are often 
used with virtual keyboards to help expedite user input. It is important to test the 
correctness of the word completions for the natural language chosen by the user, if 
the MobileApp is designed for a global market. It is also important to test the usabil-
ity of any mechanism that allows the user to override a suggested completion.

Virtual keyboard testing is often conducted in the usability laboratory, but some 
should be conducted in the wild. If virtual keyboard tests uncover significant prob-
lems, the only alternative may be to ensure that the MobileApp can accept input from 
devices other than a virtual keyboard (e.g., a physical keyboard or voice input).

21.3.3 Voice Input and Recognition
Voice input has become an increasingly common method for providing input and 
commands in hands-busy, eyes-busy situations. Voice input may take several forms 
with different levels of programming complexity required to process each. Voice-
mail input occurs when a message is simply recorded for playback later. Discrete 
word recognition can be used to allow users to verbally select items from a menu 
with a small number of choices. Continuous speech recognition translates dictated 
speech into meaningful text strings. Each type of voice input has its own testing 
challenges.
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According to Shneiderman [Shn09], all forms of voice input and processing are 
hindered by interference from noisy environments. Using voice commands to control 
a device impresses a greater cognitive load on the user, as compared to pointing to a 
screen object or pressing a key. The user must think of the correct word or words to 
get the MobileApp to perform the desired action. However, the breadth and accuracy 
of speech recognition systems are evolving rapidly, and it is likely the voice recogni-
tion will become the dominant form of communication in many MobileApps.

Testing the quality and reliability of voice input and recognition should take 
environmental conditions and individual voice variation into account. Errors will be 
made by users of the MobileApp and by the portions of the system processing the 
input. The MobileApp should be tested to ensure that bad input does not crash 
the MobileApp or the device. Large numbers of users and environments should be 
involved to be sure the MobileApp is working with an acceptable error rate. It is 
important to log errors to help developers improve the ability of the MobileApp to 
process speech input.

21.3.4 Alerts and Extraordinary Conditions
When a MobileApp runs in a real-time environment, there are factors that may impact 
its behavior. For example, a Wi-Fi signal may be lost, or an incoming text message, 
phone call, or calendar alert may be received while the user is working with the 
MobileApp.

These factors can disrupt the MobileApp user’s work flow, yet most users opt to 
allow alerts and other interruptions as they work. A MobileApp test environment must 
be able to simulate these alerts and conditions. In addition, you should test the Mobile-
App’s ability to handle alerts and conditions in a production environment on actual 
devices (Section 21.9).

Part of MobileApp testing should focus on the usability issues relating to alerts 
and pop-up messages. Testing should examine the clarity and context of alerts, the 
appropriateness of their location on the device display screen, and when foreign lan-
guages are involved, verification that the translation from one language to another is 
correct.

Many alerts and conditions may be triggered differently on various mobile devices 
or by network or context changes. Although many of the exception-handling processes 
can be simulated with a software test harness, you should not rely solely on testing 
in the development environment. This again emphasizes the importance of testing the 
MobileApp in the wild on actual devices.

Many computer-based systems must recover from faults and resume processing 
with little or no downtime. In some cases, a system must be fault tolerant; that is, 
processing faults must not cause overall system function to cease. In other cases, a 
system failure must be corrected within a specified period of time or severe economic 
damage will occur.

Recovery testing is a system test that forces the software to fail in a variety of ways 
and verifies that recovery is properly performed. If recovery is automatic (performed 
by the system itself), reinitialization, checkpointing mechanisms, data recovery, and 
restart are evaluated for correctness. If recovery requires human intervention, the mean 
time to repair (MTTR) is evaluated to determine whether it is within acceptable limits.
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 21.4 We b ap p L i cat i o n te st i ng

Many Web testing practices are also appropriate for testing thin-client MobileApps 
and interactive simulations. The strategy for WebApp testing adopts the basic prin-
ciples for all software testing and applies a strategy and tactics that are used for 
object-oriented systems. The following steps summarize the approach:

 1. The content model for the WebApp is reviewed to uncover errors.
 2. The interface model is reviewed to ensure that all use cases can be 

accommodated.
 3. The design model for the WebApp is reviewed to uncover navigation errors.
 4. The user interface is tested to uncover errors in presentation and/or navigation 

mechanics.
 5. Each functional component is unit tested.
 6. Navigation throughout the architecture is tested.
 7. The WebApp is implemented in a variety of different environmental configu-

rations and is tested for compatibility with each configuration.
 8. Security tests are conducted in an attempt to exploit vulnerabilities in the 

WebApp or within its environment.
 9. Performance tests are conducted.
 10. The WebApp is tested by a controlled and monitored population of end users. 

The results of their interaction with the system are evaluated for errors.

Because many WebApps evolve continuously, the testing process is an ongoing 
activity, conducted by support staff who use regression tests derived from the tests 
developed when the WebApp was first engineered. Methods for WebApp testing are 
considered in Section 21.5.

 21.5 We b te st i ng st r at e g i e s

Testing is the process of exercising software with the intent of finding (and ultimately 
correcting) errors. This fundamental philosophy, first presented in Chapter 20, does 
not change for WebApps. In fact, because Web-based systems and applications reside 
on a network and interoperate with many different operating systems, browsers 
(or other personal communication devices), hardware platforms, communications 
protocols, and “backroom” applications, the search for errors represents a significant 
challenge.

Figure 21.2 juxtaposes the mobility testing process with the design pyramid for 
WebApps (Chapter 13). Note that as the testing flow proceeds from left to right and 
top to bottom, user-visible elements of the WebApp design (top elements of the pyr-
amid) are tested first, followed by infrastructure design elements.

Because many apps evolve continuously, the testing process is an ongoing activity, 
conducted by app support staff who use regression tests derived from the tests devel-
oped when the app was first engineered.
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Figure 21.2
The testing 
process

technology

user

WebApp Testing

The scene: Doug Miller’s office.

The players: Doug Miller, manager of the 
SafeHome software engineering group, and 
Vinod Raman, a member of the product 
software engineering team.

The conversation:
Doug: What do you think of the SafeHome 
Assured.com e-commerce WebApp V0.0?

Vinod: The outsourcing vendor has done a 
good job. Sharon [development manager for 
the vendor] tells me they’re testing as we 
speak.

Doug: I’d like you and the rest of the team to 
do a little informal testing on the e-commerce 
site.

Vinod (grimacing): I thought we were going to 
hire a third-party testing company to validate 

the WebApp. We’re still killing ourselves trying 
to get the product software out the door.

Doug: We’re going to hire a testing vendor for 
performance and security testing, and our out-
sourcing vendor is already testing. Just 
thought another point of view would be help-
ful, and besides, we’d like to keep costs in 
line, so . . .

Vinod (sighs): What are you looking for?

Doug: I want to be sure that the interface and 
all navigation are solid.

Vinod: I suppose we can start with the use 
cases for each of the major interface functions:

Learn about SafeHome.
Specify the SafeHome system you need.
Purchase a SafeHome system.
Get technical support.

safehoMe
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21.5.1 Content Testing
Errors in WebApp content can be as trivial as minor typographical mistakes or as 
significant as incorrect information, improper organization, or violation of intellectual 
property laws. Content testing attempts to uncover these and many other problems 
before the user encounters them.

Content testing has three important objectives: (1) to uncover syntactic errors (e.g., 
typos, grammar mistakes) in text-based documents, graphical representations, and 
other media; (2) to uncover semantic errors (i.e., errors in the accuracy or complete-
ness of information) in any content object presented as navigation occurs; and (3) to 
find errors in the organization or structure of content that is presented to the end user.

Content testing combines both reviews and the generation of executable test cases. 
Although technical reviews are not a part of testing, content review should be per-
formed to ensure that content has quality and to uncover semantic errors. Executable 
testing is used to uncover content errors that can be traced to dynamically derived 
content that is driven by data acquired from one or more databases.

To accomplish the first objective, automated spelling and grammar checkers may be 
used. However, many syntactic errors evade detection by such tools and must be discov-
ered by a human reviewer (tester). In fact, a large website might enlist the services of a 
professional copy editor to uncover typographical errors, grammatical mistakes, errors 
in content consistency, errors in graphical representations, and cross-referencing errors.

Semantic testing focuses on the information presented within each content object. 
The reviewer (tester) must answer the following questions:

∙ Is the information factually accurate?
∙ Is the information concise and to the point?
∙ Is the layout of the content object easy for the user to understand?
∙ Can information embedded within a content object be found easily?
∙ Have proper references been provided for all information derived from other 

sources?
∙ Is the information presented consistent internally and consistent with infor-

mation presented in other content objects?

Doug: Good. But take the navigation paths all 
the way to their conclusion.

Vinod (looking through a notebook of use 
cases): Yeah, when you select Specify the 
SafeHome system you need, that’ll take you to:

Select SafeHome components.
Get SafeHome component 

recommendations.
 We can exercise the semantics of each path.

Doug: While you’re there, check out the 
content that appears at each navigation node.

Vinod: Of course . . . and the functional 
elements as well. Who’s testing usability?

Doug: Oh . . . the testing vendor will coordi-
nate usability testing. We’ve hired a market 
research firm to line up 20 typical users for the 
usability study, but if you guys uncover any 
usability issues . . .

Vinod: I know, pass them along.

Doug: Thanks, Vinod.
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∙ Is the content offensive, misleading, or does it open the door to litigation?
∙ Does the content infringe on existing copyrights or trademarks?
∙ Does the content contain internal links that supplement existing content? 

Are the links correct?
∙ Does the aesthetic style of the content conflict with the aesthetic style of the 

interface?

Obtaining answers to each of these questions for a large WebApp (containing 
hundreds of content objects) can be a daunting task. However, failure to uncover 
semantic errors will shake the user’s faith in the WebApp and can lead to failure of 
the Web-based application.

21.5.2 Interface Testing
Interface testing exercises interaction mechanisms and validates aesthetic aspects of 
the user interface. The overall strategy for interface testing is to (1) uncover errors 
related to specific interface mechanisms (e.g., errors in the proper execution of a menu 
link or the way data are entered in a form) and (2) uncover errors in the way the 
interface implements the semantics of navigation, WebApp functionality, or content 
display. With the exception of WebApp-oriented specifics, the interface strategy noted 
here is applicable to all types of client-server software. To accomplish this strategy, 
a number of tactical steps are initiated:

∙ Interface features are tested to ensure that design rules, aesthetics, and related 
visual content are available for the user without error.

∙ Individual interface mechanisms are tested in a manner that is analogous to 
unit testing. For example, tests are designed to exercise all forms, client-side 
scripting, dynamic HTML, scripts, streaming content, and application-specific 
interface mechanisms (e.g., a shopping cart for an e-commerce application).

∙ Each interface mechanism is tested within the context of a use case or 
network semantic unit (NSU) (Chapter 13) for a specific user category.

∙ The complete interface is tested against selected use cases and NSUs to 
uncover errors in the semantics of the interface. It is at this stage that a series 
of usability tests are conducted.

∙ The interface is tested within a variety of environments (e.g., browsers) to 
ensure that it will be compatible.

21.5.3 Navigation Testing
A user travels through a WebApp in much the same way as a visitor walks through 
a store or museum. There are many pathways to take, stops to make, things to learn 
and look at, activities to initiate, and decisions to make. This navigation process is 
predictable in the sense that every visitor has a set of objectives when he arrives. 
At the same time, the navigation process can be unpredictable because the visitor, 
influenced by something she sees or learns, may choose a path or initiate an action 
that is not typical for the original objective. The job of navigation testing is (1) to 
ensure that the mechanisms that allow the WebApp user to travel through the 
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WebApp are all functional and (2) to validate that each NSU can be achieved by the 
appropriate user category.

The first phase of navigation testing actually begins during interface testing. Nav-
igation mechanisms (links and anchors of all types, redirects,2 bookmarks, frames and 
frame sets, site maps, and the accuracy of internal search facilities) are tested to ensure 
that each performs its intended function. Some of the tests noted can be performed 
by automated tools (e.g., link checking), while others are designed and executed man-
ually. The intent throughout is to ensure that errors in navigation mechanics are found 
before the WebApp goes online.

Each NSU (Chapter 13) is defined by a set of navigation paths (called “the user 
journey”) that connect navigation nodes (e.g., Web pages, content objects, or functional-
ity). Taken as a whole, each NSU allows a user to achieve specific requirements defined 
by one or more use cases for a user category. Navigation testing exercises each NSU to 
ensure that these requirements can be achieved. If NSUs have not been created as part 
of WebApp analysis or design, you can apply use cases for the design of navigation test 
cases. You should answer the following questions as each NSU or use case is tested:

∙ Is the NSU achieved in its entirety without error?
∙ Is every navigation node (defined for an NSU) reachable within the context of 

the navigation paths defined for the NSU?
∙ If the NSU can be achieved using more than one navigation path, has every 

relevant path been tested?
∙ If guidance is provided by the user interface to assist in navigation, are direc-

tions correct and understandable as navigation proceeds?
∙ Is there a mechanism (other than the browser “back” arrow) for returning to 

the preceding navigation node and to the beginning of the navigation path?
∙ Do mechanisms for navigation within a large navigation node (i.e., a long 

Web page) work properly?
∙ If a function is to be executed at a node and the user chooses not to provide 

input, can the remainder of the NSU be completed?
∙ If a function is executed at a node and an error in function processing occurs, 

can the NSU be completed?
∙ Is there a way to discontinue the navigation before all nodes have been 

reached, but then return to where the navigation was discontinued and 
proceed from there?

∙ Is every node reachable from the site map? Are node names meaningful to 
end users?

∙ If a node within an NSU is reached from some external source, is it possible 
to process to the next node on the navigation path? Is it possible to return to 
the previous node on the navigation path?

∙ Does the user understand his location within the content architecture as the 
NSU is executed?

2 When a server request is forwarded to a nonexistent URL.
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Navigation testing, like interface and usability testing, should be conducted by as 
many different constituencies as possible. You have responsibility for early stages of 
navigation testing, but later stages should be conducted by other project stakeholders, 
an independent testing team, and ultimately, by nontechnical users. The intent is to 
exercise WebApp navigation thoroughly.

 21.6 in t e r nat i o na L i z at i o n

Internationalization is the process of creating a software product so that it can be used 
in several countries and with various languages without requiring any engineering 
changes. Localization is the process of adapting a software application for use in 
targeted global regions by adding locale-specific requirements and translating text 
elements to appropriate languages. Localization effort may involve taking each coun-
try’s currency, culture, taxes, and standards (both technical and legal) into account in 
addition to differences in languages [Sla12]. Launching a MobileApp in many parts 
of the world without testing it there would be very foolish.

Because it can be very costly to build an in-house testing facility in each country 
for which localization is planned, outsourcing testing to local vendors in each country 
is often more cost effective [Reu12]. However, using an outsourcing approach risks a 
degradation of communication between the MobileApp development team and those 
who are performing localization tests.

Crowdsourcing has become popular in many online communities.3 Reuveni [Reu12] 
suggests that crowdsourcing could be used to engage localization testers dispersed 
around the globe outside of the development environment. To accomplish this, it is 
important to find a community that prides itself on its reputation and has a track 
record of successes. An easy-to-use real-time platform allows community members to 
communicate with the project decision makers. To protect intellectual property, only 
trustworthy community members who are willing to sign nondisclosure agreements 
are allowed to participate.

 21.7 se c u r i t y te st i ng

Any computer-based system that manages sensitive information or causes actions that 
can improperly harm (or benefit) individuals is a target for improper or illegal pen-
etration. Penetration spans a broad range of activities: hackers who attempt to pene-
trate systems for sport, disgruntled employees who attempt to penetrate for revenge, 
dishonest individuals who attempt to penetrate for illicit personal gain.

Security testing attempts to verify that protection mechanisms built into a system 
will, in fact, protect it from improper penetration. Given enough time and resources, 
thorough security testing will ultimately penetrate a system. The role of the system 
designer is to make penetration cost more than the value of the information that will 

3 Crowdsourcing is a distributed problem-solving model where community members work on 
solutions to problems posted to the group.
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be obtained. Security assurance and security engineering are discussed in more detail 
in Chapter 18.

Mobile security is a complex subject that must be fully understood before effective 
security testing can be accomplished.4 MobileApps and the client-side and server-side 
environments in which they are housed represent an attractive target for external hack-
ers, disgruntled employees, dishonest competitors, and anyone else who wishes to 
steal sensitive information, maliciously modify content, degrade performance, disable 
functionality, or embarrass a person, organization, or business.

Security tests are designed to probe vulnerabilities of the client-side environment, 
the network communications that occur as data are passed from client to server and 
back again, and the server-side environment. Each of these domains can be attacked, 
and it is the job of the security tester to uncover weaknesses that can be exploited by 
those with the intent to do so.

On the client side, vulnerabilities can often be traced to preexisting bugs in brows-
ers, e-mail programs, or communication software. On the server side, vulnerabilities 
include denial-of-service attacks and malicious scripts that can be passed along to the 
client side or used to disable server operations. In addition, server-side databases can 
be accessed without authorization (data theft).

To protect against these (and many other) vulnerabilities, firewalls, authentication, 
encryption, and authorization techniques can be used. Security tests should be designed 
to probe each of these security technologies in an effort to uncover security holes.

The actual design of security tests requires in-depth knowledge of the inner work-
ings of each security element and a comprehensive understanding of a full range of 
networking technologies. If the MobileApp or WebApp is business critical, maintains 
sensitive data, or is a likely target of hackers, it’s a good idea to outsource security 
testing to a vendor who specializes in it.

 21.8 pe r f o r M a nc e te st i ng

For real-time and embedded systems, software that provides required functionality but 
does not conform to performance requirements is unacceptable. Performance testing 
is designed to test the run-time performance of software within the context of an 
integrated system. Performance testing occurs throughout all steps in the testing pro-
cess. Even at the unit level, the performance of an individual module may be assessed 
as tests are conducted. However, it is not until all system elements are fully integrated 
that the true performance of a system can be ascertained.

Nothing is more frustrating than a MobileApp that takes minutes to load content 
when competitive apps download similar content in seconds. Nothing is more aggra-
vating than trying to log on to a WebApp and receiving a “server-busy” message, 
with the suggestion that you try again later. Nothing is more disconcerting than a 
MobileApp or WebApp that responds instantly in some situations and then seems to 
go into an infinite wait state in other situations. All of these occurrences happen on 
the Web every day, and all of them are performance related.

4 Books by Bell et al. [Bel17], Sullivan and Liu [Sul11], and Cross [Cro07] provide useful 
information about the subject.
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Performance testing is used to uncover performance problems that can result from 
a lack of server-side resources, inappropriate network bandwidth, inadequate data-
base capabilities, faulty or weak operating system capabilities, poorly designed 
WebApp functionality, and other hardware or software issues that can lead to 
degraded client-server performance. The intent is twofold: (1) to understand how the 
system responds as loading (i.e., number of users, number of transactions, or overall 
data volume), and (2) to collect metrics that will lead to design modifications to 
improve performance.

Performance tests are often coupled with stress testing and usually require both 
hardware and software instrumentation. That is, it is often necessary to measure 
resource utilization (e.g., processor cycles) in an exacting fashion. External instrumen-
tation can monitor execution intervals, log events (e.g., interrupts) as they occur, and 
sample machine states on a regular basis. By instrumenting a system, the tester can 
uncover situations that lead to degradation and possible system failure.

Some aspects of MobileApp performance, at least as the end user perceives it, are 
difficult to test. Network loading, the vagaries of network interfacing hardware, and 
similar issues are not easily tested at the client or browser level. Mobile performance 
tests are designed to simulate real-world loading situations. As the number of simul-
taneous app users grows, or the number of online transactions increases, or the amount 
of data (downloaded or uploaded) increases, performance testing will help answer the 
following questions:

∙ Does the server response time degrade to a point where it is noticeable and 
unacceptable?

∙ At what point (in terms of users, transactions, or data loading) does 
performance become unacceptable?

∙ What system components are responsible for performance degradation?
∙ What is the average response time for users under a variety of loading 

conditions?
∙ Does performance degradation have an impact on system security?
∙ Is app reliability or accuracy affected as the load on the system grows?
∙ What happens when loads that are greater than maximum server capacity are 

applied?
∙ Does performance degradation have an impact on company revenues?

To develop answers to these questions, two different performance tests are con-
ducted: (1) load testing examines real-world loading at a variety of load levels and in 
a variety of combinations, and (2) stress testing forces loading to be increased to the 
breaking point to determine how much capacity the app environment can handle.

The intent of load testing is to determine how the WebApp and its server-side 
environment will respond to various loading conditions. As testing proceeds, permu-
tations to the following variables define a set of test conditions:

N, number of concurrent users
T, number of online transactions per unit of time
D, data load processed by the server per transaction
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In every case, these variables are defined within normal operating bounds of the 
system. As each test condition is run, one or more of the following measures are 
collected: average user response, average time to download a standardized unit of data, 
or average time to process a transaction. You should examine these measures to deter-
mine whether a precipitous decrease in performance can be traced to a specific com-
bination of N, T, and D.

Load testing can also be used to assess recommended connection speeds for users 
of the WebApp. Overall throughput, P, is computed in the following manner:

P = N × T × D

As an example, consider a popular sports news site. At a given moment, 20,000 
concurrent users submit a request (a transaction, T) once every 2 minutes on average. 
Each transaction requires the WebApp to download a new article that averages 3K 
bytes in length. Therefore, throughput can be calculated as:

P =
20,000 × 0.5 × 3kb

60
= 500 Kbytes/sec

= 4 megabits per second

The network connection for the server would therefore have to support this data 
rate and should be tested to ensure that it does.

Stress testing for mobile apps attempts to find errors that will occur under extreme 
operating conditions. In addition, it provides a mechanism for determining whether 
the MobileApp will degrade gracefully without compromising security. Among the 
many actions that might create extreme conditions are: (1) running several mobile 
apps on the same device, (2) infecting system software with viruses or malware,  
(3) attempting to take over a device and use it to spread spam, (4) forcing the mobile 
app to process inordinately large numbers of transactions, and (5) storing inordinately 
large quantities of data on the device. As these conditions are encountered, the 
MobileApp is checked to ensure that resource-intensive services (e.g., streaming 
media) are handled properly.

 21.9 re a L-ti M e te st i ng

The time-dependent, asynchronous nature of many mobile and real-time applications 
adds a new and potentially difficult element to the testing mix—time. Not only does 
the test-case designer have to consider conventional test cases but also event handling 
(i.e., interrupt processing), the timing of the data, and the parallelism of the tasks 
(processes) that handle the data. In many situations, test data provided when a real-time 
system is in one state will result in proper processing, while the same data provided 
when the system is in a different state may lead to error. In addition, the intimate 
relationship that exists between real-time software and its hardware environment can 
also cause testing problems. Software tests must consider the impact of hardware faults 
on software processing. Such faults can be extremely difficult to simulate realistically.

Many MobileApp developers advocate testing in the wild, or testing in the users’ 
native environments with the production release versions of the MobileApp resources 
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[Soa11]. Testing in the wild is designed to be agile and respond to changes as the 
MobileApp evolves [Ute12].

Some of the characteristics of testing in the wild include adverse and unpredict-
able environments, outdated browsers and plug-ins, unique hardware, and imperfect 
connectivity (both Wi-Fi and mobile carrier). To mirror real-world conditions, the 
demographic characteristics of testers should match those of targeted users, as well 
as those of their devices. In addition, you should include use cases involving small 
numbers of users, less-popular browsers, as well as a diverse set of mobile devices. 
Testing in the wild is always somewhat unpredictable, and test plans must be 
adapted as testing progresses. For further information, Rooksby and his colleagues 
have identified themes that are present in successful strategies for testing in the 
wild [Roo09].

Because MobileApps are often developed for multiple devices and designed to be 
used in many different contexts and locations, a weighted device platform matrix 
(WDPM) helps ensure that test coverage includes each combination of mobile device 
and context variables. The WDPM can also be used to help prioritize the device/
context combinations so that the most important are tested first.

The steps to build the WDPM (Table 21.1) for several devices and operating sys-
tems are: (1) list the important operating system variants as the matrix column labels, 
(2) list the targeted devices as the matrix row labels, (3) assign a ranking (e.g., 0 to 
10) to indicate the relative importance of each operating system and each device, and 
(4) compute the product of each pair of rankings and enter each product as the cell 
entry in the matrix (use NA for combinations that are not available).

Testing effort should be adjusted so that the device/platform combinations with the 
highest ratings receive the most attention for each context variable under consider-
ation.5 In Table 21.1, Device4 and OS3 have the highest rating and would receive 
high-priority attention during testing.

Actual mobile devices have inherent limitations precipitated by the combination of 
hardware and firmware delivered in the device. If the range of potential device plat-
forms is large, it is expensive and time consuming to perform MobileApp testing.

5 Context variables are variables that are associated with either the current connection or the 
current transaction that the MobileApp will use to direct its visible-user behavior.

Table 21.1
Weighted 
device 
platform 
matrix

OS1 OS2 OS3

Ranking 3 4 7

Device1 7 N/A 28 49

Device2 3 9 N/A N/A

Device3 4 12 N/A N/A

Device4 9 N/A 36 63
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Mobile devices are not designed with testing in mind. Limited processing power 
and storage capacity may not allow loading of the diagnostic software needed to record 
the test-case performance. Emulated devices are often easier to manage and allow 
easier acquisition of test data. Each mobile network (there are hundreds, worldwide) 
uses its own unique infrastructure to support the mobile Web. Emulators often cannot 
emulate the effects and timing of network services, and you may not see problems 
that users will have when the MobileApp runs on an actual device.

Creating test environments in-house is an expensive and error-prone process. 
Cloud-based testing can offer a standardized infrastructure and preconfigured software 
images, freeing the MobileApp team from the need to worry about finding servers or 
purchasing their own licenses for software and testing tools [Goa14]. Cloud service 
providers give testers access to scalable, ready-to-use virtual laboratories with a library 
of operating systems, test and execution management tools, and storage necessary for 
creating a test environment that closely mirrors the real world [Tao17].

Cloud-based testing is not without potential problems: lack of standards, potential 
security issues, data location and integrity issues, incomplete infrastructure support, 
improper usages of services, and performance issues are only some of the common 
challenges that face development teams that use the cloud approach.

Last, it is important to monitor power consumption specifically associated with the 
use of the MobileApp on a mobile device. Transmitting information from mobile 
devices consumes more power than monitoring a network for a signal. Processing 
streaming media consumes more power than loading a Web page or sending a text 
message. Assessing power consumption accurately must be done in real time on the 
actual device and in the wild.

 21.10 te st i ng ai syst e M s

As we discussed in Chapter 13, mobile users expect products like MobileApps, VR 
systems, and video games to be context aware. Whether the software product is react-
ing to the user’s environment [Abd16], automatically adapting the user interface based 
on past user behaviors [Par15], or providing a realistic nonplaying character (NPC) 
in a game situation [Ste16], artificial intelligence (AI) techniques are involved. Often 
these techniques make use of things like machine learning, data mining, statistics, 
heuristic programming, or rule-based systems that are outside the scope of this book. 
There are several problems common to testing these systems that can be addressed 
with the techniques we have discussed.

AI techniques make use of information that has been obtained from human experts 
or summarized from large numbers of observations saved in a data store of some kind. 
These data need to be organized in some way so that they can be accessed and updated 
efficiently if the software product is to be context aware or self-adaptive. The heuris-
tics for making use of these data to assist decision making in the software are usually 
described by humans in use cases or formulas obtained from statistical data analysis. 
Part of what makes these systems hard to test is the large number of data interactions 
that need to be accounted for by the software, but whose occurrence is hard to predict. 
Software engineers often need to rely on simulation and model-based techniques to 
test AI systems.
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21.10.1 Static and Dynamic Testing
Static testing is a software verification technique that focuses on review rather than 
executable testing. It is important to ensure that human experts (stakeholders who 
understand the application domain) agree with the ways in which the developers have 
represented the information and its use in the AI system. Like all software verification 
techniques, it is important to ensure that the program code represents the AI specifica-
tions, which means mapping between use case inputs and outputs is reflected in the code.

Dynamic testing for AI systems is a validation technique that exercises the source 
code with test cases. The intent is to show that the AI system conforms to the behav-
iors specified by the human experts. In the case of knowledge discovery or data min-
ing, the program may have been designed to discover new relationships unknown to 
human experts. Human experts must validate these new relationships before they are 
used in safety-critical software products [Abd16] [Par15].

Many of the real-time testing issues discussed in Section 21.9 apply in dynamic 
testing of AI systems. Even if automatically generated simulated test cases are used, 
it is not possible to test every combination of events the software will encounter in 
the wild. It is often desirable to build in mechanisms to allow the users to specify 
when they are not happy with the decisions made by the program and collect informa-
tion on the program state for future corrective action by developers.

21.10.2 Model-Based Testing
Model-based testing (MBT) is a black-box testing technique that uses information 
contained in the requirements model (in particular the user stories) as the basis for 
the generation of test cases [DAC03]. In many cases, the model-based testing tech-
nique uses formalism like UML state diagrams, an element of the behavioral model 
(Chapter 8), as the basis for the design of test cases.6 The MBT technique requires 
five steps:

 1. Analyze an existing behavioral model for the software, or create one. 
Recall that a behavioral model indicates how software will respond to exter-
nal events or stimuli. To create the model, you should perform the steps 
discussed in Chapter 8: (1) evaluate all use cases to fully understand the 
sequence of interaction within the system, (2) identify events that drive the 
interaction sequence and understand how these events relate to specific 
objects, (3) create a sequence for each use case, (4) build a UML state 
diagram for the system (e.g., see Figure 8.8), and (5) review the behavioral 
model to verify accuracy and consistency.

 2. Traverse the behavioral model and specify the inputs that will force the 
software to make the transition from state to state. The inputs will trigger 
events that will cause the transition to occur.

 3. Review the behavioral model, and note the expected outputs as the 
software makes the transition from state to state. Recall that each state 
transition is triggered by an event and that as a consequence of the transition 

6 Model-based testing can also be used when software requirements are represented with 
decision tables, grammars, or Markov chains [DAC03].
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some function is invoked and outputs are created. For each set of inputs  
(test cases) you specified in step 2, specify the expected outputs as they are 
characterized in the behavioral model.

 4. Execute the test cases. Test cases can be executed manually, or a test script 
can be created for use by an automated testing tool.

 5. Compare actual and expected results and take corrective action as 
required.

MBT helps to uncover errors in software behavior, and as a consequence, it is 
extremely useful when testing event-driven applications such as context-aware 
MobileApps.

 21.11 te st i ng Vi rt ua L en V i ro n M e n t s

It is virtually impossible for a software developer to foresee how the customer will 
actually use a program. Instructions for use may be misinterpreted; strange combina-
tions of input actions may be used; feedback that seemed clear to the tester may be 
unintelligible to a user in the field. User experience designers are very aware of the 
importance of getting feedback from actual users early in the prototyping process to 
avoid creating software that users dislike.

Acceptance tests are a series of specific tests conducted by the customer in an 
attempt to uncover product errors before accepting the software from the developer. 
Conducted by the end user rather than software engineers, acceptance testing can 
range from an informal “test drive” to a planned and systematically executed series 
of scripted tests.

When a software product is built for one customer, it is reasonable for that person to 
conduct a series to validate all requirements. If software is a virtual simulation or game 
developed as a product to be used by many customers, it is impractical to allow each 
user to perform formal acceptance tests. Most software product builders use a process 
called alpha and beta testing to uncover errors that only end users seem able to find.

The alpha test is conducted at the developer’s site by a representative group of end 
users. The software is used in a natural setting with the developer “looking over the 
shoulder” of the users and recording errors and usage problems. Alpha tests are con-
ducted in a controlled environment.

The beta test is conducted at one or more end-user sites. Unlike alpha testing, the 
developer generally is not present. Therefore, the beta test is a “live” application of 
the software in an environment that cannot be controlled by the developer. The cus-
tomer records all problems (real or imagined) that are encountered during beta testing 
and reports these at regular intervals. As a result of problems reported during beta 
tests, the developer makes modifications and then prepares for release of the software 
product to the entire customer base.

21.11.1 Usability Testing
Usability testing evaluates the degree to which users can interact effectively with 
the app and the degree to which the app guides users’ actions, provides meaningful 
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feedback, and enforces a consistent interaction approach. Rather than focusing 
intently on the semantics of some interactive objective, usability reviews and tests 
are designed to determine the degree to which the app interface makes the user’s 
life easy.7

Developers contribute to the design of usability tests, but in general the tests are 
conducted by end users. Usability testing can occur at a variety of different levels of 
abstraction: (1) the usability of a specific interface mechanism (e.g., a form) can be 
assessed, (2) the usability of a complete virtual interface (encompassing interface 
mechanisms, data objects, and related functions) can be evaluated, or (3) the usability 
of the complete virtual-world application can be considered.

The first step in usability testing is to identify a set of usability categories and 
establish testing objectives for each category. The following test categories and 
objectives (written in the form of a question) illustrate this approach:8

Interactivity. Are interaction mechanisms (e.g., pull-down menus, buttons, 
widgets, inputs) easy to understand and use?

Layout. Are navigation mechanisms, content, and functions placed in a manner 
that allows the user to find them quickly?

Readability. Is text well written and understandable?9 Are graphic representa-
tions easy to understand?

Aesthetics. Do layout, color, typeface, and related characteristics lead to ease of 
use? Do users “feel comfortable” with the look and feel of the app?

Display characteristics. Does the app make optimal use of screen size and 
resolution?

Time sensitivity. Can important features, functions, and content be used or 
acquired in a timely manner?

Feedback. Do users receive meaningful feedback to their actions? Is the user’s 
work interruptible and recoverable when a system message is displayed?

Personalization. Does the app tailor itself to the specific needs of different user 
categories or individual users?

Help. Is it easy for users to access help and other support options?
Accessibility. Is the app accessible to people who have disabilities?
Trustworthiness. Are users able to control how personal information is shared? 

Does the app make use of personal information without user permission?

A series of tests is designed within each of these categories. In some cases, the “test” 
may be a visual review of the app screen displays. In other cases interface semantics 
tests may be executed again, but in this instance usability concerns are paramount.

7 The term user-friendliness has been used in this context. The problem, of course, is that 
one user’s perception of a “friendly” interface may be radically different from another’s.

8 For additional information on usability, see Chapter 12.
9 The FOG Readability Index and others may be used to provide a quantitative assessment of 

readability.
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As an example, we consider usability assessment for interaction and interface 
mechanisms. The following is a list of interface features that might be reviewed and 
tested for usability: animations, buttons, color, control, graphics, labels, menus, mes-
sages, navigation, selection mechanisms, text, and HUDs10 (heads-up user displays). 
As each feature is assessed, it is graded on a qualitative scale by the users who are 
doing the testing. Figure 21.3 shows a possible set of assessment “grades” that can 
be selected by users. These grades are applied to each feature individually, to a com-
plete app screen display, or to the app as a whole.

21.11.2 Accessibility Testing
Accessibility testing is the process of verifying the degree to which all people can use 
a computer system regardless of any user’s special need. The special needs most 
commonly considered for computer system accessibility are: visual, hearing, movement, 
and cognitive impairments [Zan18]. Many of these special needs evolve as people get 
older. As a profession, virtual environment development has not done a good job of 
providing access systems with rich graphical interfaces that rely heavily on touch 
interactions [Dia14]. The problems merely shift with a switch to voice-activated 

10 Mobile apps and games frequently provide graphical displays containing user status, system 
messages, navigation date, and menu choices as part of the device screen display or HUD.

Figure 21.3
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personal assistants like Alexa® or Siri®. Just imagine trying to operate your smart-
phone without using all these senses: sight, hearing, touch, or speech.

We discussed guidelines11 for designing accessible software products in Chapter 13. 
An effective design strategy should ensure that all important interactions with the user 
be presented using more than one information channel. A few examples of the areas 
of focus for accessibility testing follow [Zan18] [Dia14]:

∙ Ensure that all nontext screen objects are also represented by a text-based 
description.

∙ Verify that color is not used exclusively to convey information to the user.
∙ Demonstrate that high contrast and magnification options are available for 

elderly or visually challenged users.
∙ Ensure that speech input alternatives have been implemented to accommodate 

users that may not be able to manipulate a keyboard, keypad, or mouse.
∙ Demonstrate that blinking, scrolling, or auto content updating is avoided to 

accommodate users with reading difficulties.

It is likely that mobile, cloud-based software will come to dominate many things 
that users need to accomplish on a day-to-day basis (e.g., banking, tax preparation, 
restaurant reservations, trip planning) and as a consequence, the need for accessible 
software products will only grow. Along with expert review and automated tools to 
assess accessibility, a thorough accessibility testing strategy will help to ensure that 
every user, no matter their challenges, will be accommodated.

21.11.3 Playability Testing
Playability is the degree to which a game or simulation is fun to play and usable 
by the user/player and was originally conceived as part of the development of video 
games. Game playability is affected by the quality of the game: usability, storyline, 
strategy, mechanics, realism, graphics, and sound. With the advent of virtual/ 
augmented reality simulations whose intention is to provide entertainment or learning 
opportunities (e.g., such as simulated troubleshooting), it makes sense to use play-
ability testing as part of the usability testing for a virtual environment created by 
MobileApp [Vel16].

Expert review can be used as part of the playability testing, but unless expert users 
are your target user group you may not get the feedback you need to have your 
MobileApp succeed in the marketplace. Expert review should be supplemented by 
playability tests conducted by representative end users, as you might do for a beta or 
acceptance test. In a typical play test, the user might be given general instructions on 
using the app and the developers would then step back and observe players use of the 
game without interruption. The players may be asked to complete a survey on their 
experience once they are done with the play test [Hus15].

The developers might record the play session or simply take notes on what they 
observe. The developers are looking for places in the play session where the player does 

11 Here is an example of a software accessibility checklist used by the United States Depart-
ment of Justice: https://www.justice.gov/crt/software-accessibility-checklist.
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not know what to do next (this is usually marked by a sudden halt in the player’s actions). 
Developers should note where the player is in the app work flow when this event hap-
pens. When the play test has ended, the developers might discuss why the player got 
stuck and how the player got herself unstuck (it she did). This suggests that playability 
testing might be helpful in assessing the accessibility of a virtual environment as well.

 21.12 te st i ng do c u M e n tat i o n a n d he L p fac i L i t i e s

The term usability testing conjures up images of large numbers of test cases prepared 
to exercise computer programs and the data that they manipulate. But errors in help 
facilities or online program documentation can be as devastating to the acceptance of 
the program as errors in data or source code. Nothing is more frustrating than follow-
ing a user guide or help facility exactly and getting results or behaviors that do not 
coincide with those predicted by the documentation. It is for this reason that docu-
mentation testing should be an important part of every software test plan.

Documentation testing can be approached in two phases. The first phase, technical 
review (Chapter 16), examines the document for editorial clarity. The second phase, 
live test, uses the documentation in conjunction with the actual program.

Surprisingly, a live test for documentation can be approached using techniques that 
are analogous to many of the black-box testing methods discussed earlier. Graph-based 
testing can be used to describe the use of the program; equivalence partitioning 
and boundary value analysis can be used to define various classes of input and asso-
ciated interactions. MBT can be used to ensure that documented behavior and actual 
behavior coincide. Program usage is then tracked through the documentation.

Documentation Testing
The following questions should be an-
swered during documentation and/or 

help facility testing:

∙ Does the documentation accurately describe 
how to accomplish each mode of use?

∙ Is the description of each interaction sequence 
accurate?

∙ Are examples accurate?
∙ Are terminology, menu descriptions, and system 

responses consistent with the actual program?
∙ Is it relatively easy to locate guidance within 

the documentation?
∙ Can troubleshooting be accomplished easily 

with the documentation?
∙ Are the document’s table of contents and 

index robust, accurate, and complete?

∙ Is the design of the document (layout, typefac-
es, indentation, graphics) conducive to under-
standing and quick assimilation of information?

∙ Are all software error messages displayed 
for the user described in more detail in the 
document? Are actions to be taken as a 
consequence of an error message clearly 
delineated?

∙ If hypertext links are used, are they accurate 
and complete?

∙ If hypertext is used, is the navigation design 
appropriate for the information required?

The only viable way to answer these questions 
is to have an independent third party (e.g., 
selected users) test the documentation in the 
context of program usage. All discrepancies are 
noted, and areas of document ambiguity or 
weakness are defined for potential rewrite.

info
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 21.13 su M M a ry

The goal of MobileApp testing is to exercise each of the many dimensions of software 
quality for mobile applications with the intent of finding errors or uncovering issues 
that may lead to quality failures. Testing focuses on the quality elements such as content, 
function, structure, usability, use of context, navigability, performance, power manage-
ment, compatibility, interoperability, capacity, and security. It incorporates reviews and 
usability assessments that occur as the MobileApp is designed, and tests that are con-
ducted once the MobileApp has been implemented and deployed on an actual device.

The MobileApp testing strategy exercises each quality dimension by initially exam-
ining “units” of content, functionality, or navigation. Once individual units have been 
validated, the focus shifts to tests that exercise the MobileApp as a whole. To accom-
plish this, many tests are derived from the user’s perspective and are driven by infor-
mation contained in use cases. A MobileApp test plan is developed and identifies 
testing steps, work products (e.g., test cases), and mechanisms for the evaluation of 
test results. The testing process encompasses several different types of testing.

Content testing (and reviews) focus on various categories of content. The intent is 
to examine errors that affect the presentation of the content to the end user. The 
content needs to be examined for performance issues imposed by the mobile device 
constraints. Interface testing exercises the interaction mechanisms that define the user 
experience provided by the MobileApp. The intent is to uncover errors that result 
when the MobileApp does not take device, user, or location context into account.

Navigation testing is based on use cases, derived as part of the modeling activity. 
The test cases are designed to exercise each usage scenario against the navigation 
design within the architectural framework used to deploy the MobileApp. Component 
testing exercises content and functional units within the MobileApp.

Performance testing encompasses a series of tests that are designed to assess 
MobileApp response time and reliability as demands on server-side resource capacity 
increase.

Security testing incorporates a series of tests designed to exploit vulnerabilities in 
the MobileApp or its environment. The intent is to find security holes in either the 
device operating environment or the Web services being accessed.

Finally, MobileApp testing should address performance issues such as power usage, 
processing speed, memory limitations, ability to recover from failures, and connectiv-
ity issues.

Navigation testing applies use cases, derived as part of the modeling activity, in 
the design of test cases that exercise each usage scenario against the navigation design. 
Navigation mechanisms are tested to ensure that any errors impeding completion of 
a use case are identified and corrected. Component testing exercises content and 
functional units within the MobileApp.

pro b L e M s a n d po i n t s to po n d e r

21.1. Are there any situations in which MobileApp testing on actual devices can be disregarded?

21.2. Is it fair to say that the overall mobility testing strategy begins with user-visible elements 
and moves toward technology elements? Are there exceptions to this strategy?
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21.3. Describe the steps associated with user experience testing for an app.

21.4. What is the objective of security testing? Who performs this testing activity?

21.5. Assume that you are developing a MobileApp to access an online pharmacy 
(YourCornerPharmacy.com) that caters to senior citizens. The pharmacy provides typical func-
tions but also maintains a database for each customer so that it can provide drug information 
and warn of potential drug interactions. Discuss any special usability or accessibility tests for 
this MobileApp.

21.6. Assume that you have implemented a Web service that provides a drug interaction–
checking function for YourCornerPharmacy.com (see Problem 21.5). Discuss the types of 
component-level tests that would have to be conducted on the mobile device to ensure that the 
MobileApp accesses this function properly.

21.7. Is it possible to test every configuration that a MobileApp is likely to encounter in the 
production environment? If it is not, how do you select a meaningful set of configuration tests?

21.8. Describe a security test that might need to be conducted for the YourCornerPharmacy 
MobileApp (Problem 21.5). Who should perform this test?

21.9. What is the difference between testing that is associated with interface mechanisms and 
testing that addresses interface semantics?

21.10. What is the difference between testing for navigation syntax and navigation semantics?

Design element: Quick Look icon magnifying glass: © Roger Pressman
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C H A P T E R
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What is it? When you build computer software, 
change happens. And because it happens, 
you need to manage it effectively. Software 
configuration management (SCM), also called 
change management, is a set of activities de-
signed to manage change.

Who does it? Everyone involved in the soft-
ware process is involved with change man-
agement to some extent, but specialized 
support positions are sometimes created to 
manage the SCM process.

Why is it important? If you don’t control 
change, it controls you. And that’s never good. 
It’s very easy for a stream of uncontrolled 
changes to turn a well-run software project 
into chaos. As a consequence, software qual-
ity suffers and delivery is delayed. 

What are the steps? Because many work 
products are produced when software is built, 
each must be uniquely identified. Once this is 
accomplished, mechanisms for version and 
change control can be established.

What is the work product? A software 
configuration management plan defines the 
project strategy for change management. 
Changes result in updated software products 
that must be retested and documented, with-
out breaking the project schedule or the pro-
duction versions of the software products.

How do I ensure that I’ve done it right? When 
every work product can be accounted for, 
traced, controlled, tracked, and analyzed; when 
everyone who needs to know about a change 
has been informed—you’ve done it right.
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k e y 
c o n c e p t s

Change is inevitable when computer software is built and can lead to confusion 
when you and other members of a software team are working on a project. Confu
sion arises when changes are not analyzed before they are made, recorded before 
they are implemented, reported to those with a need to know, or controlled in a 
manner that will improve quality and reduce error. Babich [Bab86] suggests an 
approach that will minimize confusion, improve productivity, and reduce the num
ber of mistakes when he writes: “Configuration management is the art of identi
fying, organizing, and controlling modifications to the software being built by a 
programming team. The goal is to maximize productivity by minimizing mistakes.”
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Software configuration management (SCM) is an umbrella activity that is applied 
throughout the software process. Typical SCM work flow is shown in Figure 22.1. 
Because change can occur at any time, SCM activities are developed to (1) identify 
change, (2) control change, (3) ensure that change is being properly implemented, and 
(4) report changes to others who may have an interest.

It is important to make a clear distinction between software support and software 
configuration management. Support (Chapter 27) is a set of software engineering 
activities that occur after software has been delivered to the customer and put into 
operation. Software configuration management is a set of tracking and control activ
ities that are initiated when a software engineering project begins and terminates only 
when the software is taken out of operation.

A primary goal of software engineering is to improve the ease with which changes 
can be accommodated and reduce the amount of effort expended when changes must be 
made. In this chapter, we discuss the specific activities that enable you to manage change.

 22.1 so f t wa r e co n f i g u r at i o n Ma nag e M e n t

The output of the software process is information that may be divided into three broad 
categories: (1) computer programs (both source level and executable forms), (2) work 
products that describe the computer programs (targeted at various stakeholders), and 
(3) data or content (contained within the program or external to it). In Web design or 
game development, managing changes to the multimedia content items can be more 
demanding than managing the changes to the software or documentation. The items 
that comprise all information produced as part of the software process are collectively 
called a software configuration.

As software engineering work progresses, a hierarchy of software configuration items 
(SCIs)—a named element of information that can be as small as a single UML diagram 
or as large as the complete design document—is created. If each SCI simply led to other 
SCIs, little confusion would result. Unfortunately, another variable enters the process—
change. Change may occur at any time, for any reason. In fact, the first law of system 
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engineering [Ber80] states: “No matter where you are in the system life cycle, the 
system will change, and the desire to change it will persist throughout the life cycle.”

What is the origin of these changes? The answer to this question is as varied as 
the changes themselves. However, there are four fundamental sources of change:

∙ New business or market conditions dictate changes in product requirements or 
business rules.

∙ New stakeholder needs demand modification of data produced by information 
systems, functionality delivered by products, or services delivered by a 
computerbased system.

∙ Reorganization or business growth or downsizing causes changes in project 
priorities or software engineering team structure.

∙ Budgetary or scheduling constraints cause a redefinition of the system or product.

Software configuration management is a set of activities that have been developed 
to manage change throughout the life cycle of computer software. SCM can be viewed 
as a software quality assurance activity that is applied throughout the software process. 
In the sections that follow, we describe major SCM tasks and important concepts that 
help us to manage change.

22.1.1 An SCM Scenario
This section is extracted from [Dar01].1

A typical configuration management (CM) operational scenario involves several stake
holders: a project manager who is in charge of a software group, a configuration manager 
who is in charge of the CM procedures and policies, the software engineers who are 
responsible for developing and maintaining the software product, and the customer who 
uses the product. In the scenario, assume that the product is a small one involving about 
15,000 lines of code being developed by an agile team with four developers. (Note that 
other scenarios of smaller or larger teams are possible, but, in essence, there are generic 
issues that each of these projects face concerning CM.)

At the operational level, the scenario involves various roles and tasks. For the project 
manager or team leader, the goal is to ensure that the product is developed within a 
certain time frame. Hence, the manager monitors the progress of development and 
recognizes and reacts to problems. This is done by generating and analyzing reports 
about the status of the software system and by performing reviews on the system.

The goals of the configuration manager (who on a small team may be the project 
manager) are to ensure that procedures and policies for creating, changing, and testing 
of code are followed, as well as to make information about the project accessible. To 
implement techniques for maintaining control over code changes, this manager introduces 
mechanisms for making official requests for changes, for evaluating proposed changes 
with the development team, and ensuring the changes are acceptable to the product 
owner. Also, the manager collects statistics about components in the software system, 
such as information determining which components in the system are problematic.

1 Special permission to reproduce “Spectrum of Functionality in CM Systems” by Susan Dart 
[Dar01], © 2001 by Carnegie Mellon University is granted by the Software Engineering Institute.
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For the software engineers, the goal is to work effectively. There must be a mech
anism to ensure that simultaneous changes to the same component are properly 
tracked, managed, and executed. This means engineers do not unnecessarily interfere 
with each other in the creation and testing of code and in the production of support
ing work products. But, at the same time, they try to communicate and coordinate 
efficiently. Specifically, engineers use tools that help build a consistent software prod
uct. They communicate and coordinate by notifying one another about tasks required 
and tasks completed. Changes are propagated across each other’s work by merging 
files. Mechanisms exist to ensure that, for components that undergo simultaneous 
changes, there is some way of resolving conflicts and merging changes. A history is 
kept of the evolution of all components of the system along with a log with reasons 
for changes and a record of what actually changed. The engineers have their own 
workspace for creating, changing, testing, and integrating code. At a certain point, the 
code is made into a baseline from which further development continues and from 
which variants for other target machines are made.

The customer uses the product. Because the product is under CM control, the 
customer follows formal procedures for requesting changes and for indicating bugs in 
the product.

Ideally, a CM system used in this scenario should support all these roles and tasks; 
that is, the roles determine the functionality required of a CM system. The project 
manager sees CM as an auditing mechanism; the configuration manager sees it as a 
controlling, tracking, and policymaking mechanism; the software engineer sees it as 
a changing, building, and access control mechanism; and the customer sees it as a 
quality assurance mechanism.

22.1.2 Elements of a Configuration Management System
In her comprehensive white paper on software configuration management, Susan Dart 
[Dar01] identifies four important elements that should exist when a configuration 
management system is developed:

∙ Component elements. A set of tools coupled within a file management sys
tem (e.g., a database) that enables access to and management of each software 
configuration item.

∙ Process elements. A collection of procedures and tasks that define an effec
tive approach to change management (and related activities) for all constituen
cies involved in the management, engineering, and use of computer software.

∙ Construction elements. A set of tools that automate the construction of soft
ware by ensuring that the proper set of validated components (i.e., the correct 
version) have been assembled.

∙ Human elements. A set of tools and process features (encompassing other 
CM elements) used by the software team to implement effective SCM.

These elements (to be discussed in more detail in later sections) are not mutually 
exclusive. For example, component elements work in conjunction with construction 
elements as the software process evolves. Process elements guide many human 
activities that are related to SCM and might therefore be considered human elements 
as well.
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22.1.3 Baselines
Change is a fact of life in software development. Customers want to modify require
ments. Developers want to modify the technical approach. Managers want to modify 
the project strategy. Why all this modification? The answer is really quite simple. As 
time passes, all constituencies know more (about what they need, which approach 
would be best, and how to get it done and still make money). Most software changes 
are justified, so there’s no point in complaining about them. Rather, be certain that 
you have mechanisms in place to handle them.

A baseline is a software configuration management concept that helps you to con
trol change without seriously impeding justifiable change. The IEEE [IEE17] defines 
a baseline as:

A specification or product that has been formally reviewed and agreed upon, that there
after serves as the basis for further development, and that can be changed only through 
formal change control procedures.

Before a software configuration item becomes a baseline, change may be made quickly 
and informally. However, once a baseline is established, changes can be made, but a 
specific, formal procedure must be applied to evaluate and verify each change.

In the context of software engineering, a baseline is a milestone in the development 
of software. A baseline is marked by the delivery of one or more software configura
tion items that have been approved as a consequence of a technical review (Chapter 16). 
For example, the elements of a design model have been documented and reviewed. 
Errors are found and corrected. Once all parts of the model have been reviewed, cor
rected, and then approved, the design model becomes a baseline. Further changes to 
the program architecture (documented in the design model) can be made only after 
each has been evaluated and approved. Although baselines can be defined at any level 
of detail, the most common software baselines are shown in Figure 22.2.

The progression of events that lead to a baseline is also illustrated in Figure 22.2. 
Software engineering tasks produce one or more SCIs. After SCIs are reviewed and 
approved, they are placed in a project database (also called a project library or soft-
ware repository and discussed in Section 22.5). Be sure that the project database is 
maintained in a centralized, controlled location. When a member of a software engi
neering team wants to make a modification to a baselined SCI, it is copied from the 
project database into the engineer’s private workspace. However, this extracted SCI 
can be modified only if SCM controls (discussed later in this chapter) are followed. 
The arrows in Figure 22.2 illustrate the modification path for a baselined SCI.

22.1.4 Software Configuration Items
We have already defined a software configuration item as information that is created 
as part of the software engineering process. In the extreme, an SCI could be consid
ered to be a single section of a large specification or one test case in a large suite of 
tests. More realistically, an SCI is all or part of a work product (e.g., a document, an 
entire suite of test cases, a named program component, a multimedia content asset, 
or a software tool).

In reality, SCIs are organized to form configuration objects that may be cata
loged in the project database with a single name. A configuration object has a 
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name, attributes, and is “connected” to other objects by relationships. Referring to 
Figure 22.3, the configuration objects, DesignSpecification, DataModel, Compo-
nentN, SourceCode, and TestSpecification are each defined separately. However, 
each of the objects is related to the others as shown by the arrows. A curved arrow 
indicates a compositional relation. That is, DataModel and ComponentN are part 
of the object DesignSpecification. A doubleheaded straight arrow indicates an 
interrelationship. If a change were made to the SourceCode object, the interrela
tionships enable you to determine what other objects (and SCIs) might be affected.2

22.1.5 Management of Dependencies and Changes
We introduced the concept of traceability and the use of traceability matrices in Sec
tion 7.2.6. The traceability matrix is one way to document dependencies among 
requirements, architectural decisions (Section 10.5), and defect causes (Section 17.6). 
These dependencies need to be considered when determining the impact of a proposed 
change and guiding the selection test cases that should be used for regression testing 
(Section 20.3). de Sousa and Redmiles write that viewing dependency management 
as impact management3 helps developers to focus on how changes made affect their 
work [Sou08].

Project database

BASELINES:
System Specification
Software Requirements
Design Specification
Source Code
Test Plans/Procedures/Data
Operational System

Stored

SCIs

Extracted

SCIs

Approved

SCIs

Modified

SCIs

SCIs
Software

engineering
tasks

Technical
reviews

SCM
controls

Figure 22.2 Baselined SCIs and the project database

2 These relationships are defined within the database. The structure of the database (reposi
tory) is discussed in greater detail in Section 22.2.

3 Impact management is discussed further in Section 22.5.2.



CHAPTER 22 SOFTWARE CONFIGURATION MANAGEMENT  443

DesignSpecifications

data design
architectural design
module design
interface design

TestSpecifications

test plan
test procedure
test cases

ComponentN

interface description
algorithm description
PDL

SourceCode

DataModel

Figure 22.3
Configuration 
objects

Impact analysis focuses on organizational behavior as well as individual actions. 
Impact management involves two complementary aspects: (1) ensuring that software 
developers employ strategies to minimize the impact of their colleagues’ actions on 
their own work, and (2) encouraging software developers to use practices that min
imize the impact of their own work on that of their colleagues. It is important to 
note that when a developer tries to minimize the impact of her work on others, she 
is also reducing the work others need to do to minimize the impact of her work on 
theirs [Sou08].

It is important to maintain software work products to ensure that developers are 
aware of the dependencies among the SCIs. Developers must establish discipline when 
checking items in and out of the SCM repository and when making approved changes, 
as discussed in Section 22.2.

 22.2 th e scM re p o s i to ry

The SCM repository is the set of mechanisms and data structures that allow a software 
team to manage change in an effective manner. It provides the obvious functions of 
a modern database management system by ensuring data integrity, sharing, and inte
gration. In addition, the SCM repository provides a hub for the integration of software 
tools, is central to the flow of the software process, and can enforce uniform structure 
and format for software engineering work products.

To achieve these capabilities, the repository is defined in terms of a metamodel. 
The meta-model determines how information is stored in the repository, how data 
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can be accessed by tools and viewed by software engineers, how well data security 
and integrity can be maintained, and how easily the existing model can be extended 
to accommodate new needs.

22.2.1 General Features and Content
The features and content of the repository are best understood by looking at it from two 
perspectives: what is to be stored in the repository and what specific services are pro
vided by the repository. A detailed breakdown of types of representations, documents, 
and other work products that are stored in the repository is presented in Figure 22.4.

A robust repository provides two different classes of services: (1) the same types 
of services that might be expected from any sophisticated database management sys
tem and (2) services that are specific to the software engineering environment.

A repository that serves a software engineering team should also (1) integrate with 
or directly support process management functions, (2) support specific rules that gov
ern the SCM function and the data maintained within the repository, (3) provide an 
interface to other software engineering tools, and (4) accommodate storage of sophis
ticated data objects (e.g., text, graphics, video, audio).

22.2.2 SCM Features
To support SCM, the repository must be capable of maintaining SCIs related to many 
different versions of the software. More important, it must provide the mechanisms 
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for assembling these SCIs into a versionspecific configuration. The repository tool 
set needs to provide support for the following features.

Versioning. As a project progresses, many versions (Section 22.5.2) of individual 
work products will be created. The repository must be able to save all these versions 
to enable effective management of product releases and to permit developers to go 
back to previous versions during testing and debugging.

The repository must be able to control a wide variety of object types, including 
text, graphics, bit maps, complex documents, and unique objects such as screen and 
report definitions, object files, test data, and results. A mature repository tracks ver
sions of objects with arbitrary levels of granularity; for example, a single data defini
tion or a cluster of modules can be tracked.

Dependency Tracking and Change Management. The repository manages a wide 
variety of relationships among the data elements stored in it. These include relation
ships between enterprise entities and processes, among the parts of an application 
design, between design components and the enterprise information architecture, 
between design elements and deliverables, and so on. Some of these relationships are 
merely associations, and some are dependencies or mandatory relationships.

The ability to keep track of all these relationships is crucial to the integrity of the 
information stored in the repository and to the generation of deliverables based on it, 
and it is one of the most important contributions of the repository concept to the 
improvement of the software development process. For example, if a UML class 
diagram is modified, the repository can detect whether related classes, interface 
descriptions, and code components also require modification and can bring affected 
SCIs to the developer’s attention.

Requirements Tracing. This special function depends on link management and 
provides the ability to track all the design and construction components and deliver
ables that result from a specific requirements specification (forward tracing). In addi
tion, it provides the ability to identify which requirement generated any given work 
product (backward tracing).

Configuration Management. A configuration management facility keeps track of a 
series of configurations representing specific project milestones or production releases.

Audit Trails. An audit trail establishes additional information about when, why, 
and by whom changes are made. Information about the source of changes can be 
entered as attributes of specific objects in the repository. A repository trigger mech
anism is helpful for prompting the developer or the tool that is being used to initi
ate entry of audit information (such as the reason for a change) whenever a design 
element is modified.

 22.3 Ve r s i o n co n t ro L syst e M s

Version control combines procedures and tools to manage different versions of con
figuration objects that are created during the software process. A version control 
system implements or is directly integrated with four major capabilities: (1) a project 
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database (repository) that stores all relevant configuration objects, (2) a version man-
agement capability that stores all versions of a configuration object (or enables any 
version to be constructed using differences from past versions), (3) a make facility 
that enables you to collect all relevant configuration objects and construct a specific 
version of the software. In addition, version control and change control systems often 
implement (4) an issues tracking (also called bug tracking) capability that enables the 
team to record and track the status of all outstanding issues associated with each 
configuration object.

A number of version control systems establish a change set—a collection of all 
changes (to some baseline configuration) that are required to create a specific version 
of the software. Dart [Dar91] notes that a change set “captures all changes to all files 
in the configuration along with the reason for changes and details of who made the 
changes and when.”

A number of named change sets can be identified for an application or system. 
This enables you to construct a version of the software by specifying the change 
sets (by name) that must be applied to the baseline configuration. To accomplish 
this, a system modeling approach is applied. The system model contains: (1) a tem-
plate that includes a component hierarchy and a “build order” for the components 
that describes how the system must be constructed, (2) construction rules, and 
(3) verification rules.4

A number of different automated approaches to version control have been proposed 
over the years.5 The primary difference in approaches is the sophistication of the 
attributes that are used to construct specific versions and variants of a system and the 
mechanics of the process for construction.

 22.4 co n t i n u o u s in t e g r at i o n

Best practices for SCM include: (1) keeping the number of code variants small, 
(2)  test early and often, (3) integrate early and often, and (4) tool use to automate 
testing, building, and code integration. Continuous integration (CI) is important to 
agile developers following the DevOps workflow (Section 3.5.3). CI also adds value 
to SCM by ensuring that each change is promptly integrated into the project source 
code, compiled, and tested automatically. CI offers development teams several concrete 
advantages [Mol12]:

Accelerated feedback. Notifying developers immediately when integration fails 
allows fixes to be made while the number of performed changes is small.

Increased quality. Building and integrating software whenever necessary pro
vides confidence into the quality of the developed product.

4 It is also possible to query the system model to assess how a change in one component will 
impact other components.

5 Github (https://github.com/), Perforce (https://www.perforce.com/), and Apache Subversion 
also known as SVN (http://subversion.apache.org/) are popular version control systems.
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6 Puppet (https://puppet.com/), Jenkins (https://jenkins.io/), and Hudson (http://hudsonci.org/) 
are examples of CI tools. TravisCI (https://travisci.org/) is a CI tool designed for sync 
projects residing on Github.

Reduced risk. Integrating components early avoids risking a long integration 
phase because design failures are discovered and fixed early.

Improved reporting. Providing additional information (e.g., code analysis met
rics) allows for more accurate configuration status accounting.

CI is becoming a key technology as software organizations begin their shift to more 
agile software development processes. CI is best done using specialized tools.6 CI 
allows project managers, quality assurance managers, and software engineers to 
improve software quality by reducing the likelihood of defects escaping outside the 
development team. Early defect capture always reduces the development costs by 
allowing cheaper fixes earlier in the software project time line.

 22.5 th e ch a ng e Ma nag e M e n t pro c e s s

The software change management process defines a series of tasks that have four 
primary objectives: (1) to identify all items that collectively define the software con
figuration, (2) to manage changes to one or more of these items, (3) to facilitate the 
construction of different versions of an application, and (4) to ensure that software 
quality is maintained as the configuration evolves over time.

A process that achieves these objectives need not be bureaucratic and ponderous, 
but it must be characterized in a manner that enables a software team to develop 
answers to a set of complex questions:

∙ How does a software team identify the discrete elements of a software con
figuration?

∙ How does an organization manage the many existing versions of a program 
(and its documentation) in a manner that will enable change to be accommo
dated efficiently?

∙ How does an organization control changes before and after software is 
released to a customer?

∙ How does an organization assess the impact of change and manage the impact 
effectively?

∙ Who has responsibility for approving and ranking requested changes?
∙ How can we ensure that changes have been made properly?
∙ What mechanism is used to apprise others of changes that are made?

These questions lead to the definition of five SCM tasks—identification, version 
control, change control, configuration auditing, and reporting—illustrated in 
Figure 22.5.



448 PART THREE QUALITY AND SECURITY

Reporting

Configuration auditing

Version control

Change control

Identification

SCIs

Software
Vm.n

Figure 22.5
Layers of the 
SCM process

Referring to the figure, SCM tasks can be viewed as concentric layers. SCIs flow 
outward through these layers throughout their useful life, ultimately becoming part of 
the software configuration of one or more versions of an application or system. As 
an SCI moves through a layer, the actions implied by each SCM task may or may not 
be applicable. For example, when a new SCI is created, it must be identified. However, 
if no changes are requested for the SCI, the change control layer does not apply. The 
SCI is assigned to a specific version of the software (version control mechanisms 
come into play). A record of the SCI (its name, creation date, version designation, 
etc.) is maintained for configuration auditing purposes and reported to those with a 
need to know. In the sections that follow, we examine each of these SCM process 
layers in more detail.

22.5.1 Change Control
For a large software project, uncontrolled change rapidly leads to chaos. For such 
projects, change control combines human procedures and automated tools to provide 
a mechanism for the control of change. The change control process is illustrated 
schematically in Figure 22.6. A change request is submitted and evaluated to assess 
technical merit, potential side effects, overall impact on other configuration objects 
and system functions, and the projected cost of the change. The results of the evalu
ation are presented as a change report, which is used by a change control authority 
(CCA)—a person or group that makes a final decision on the status and priority of 
the change. An engineering change order (ECO) is generated for each approved 
change. The ECO describes the change to be made, the constraints that must be 
respected, and the criteria for review and audit.
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The object(s) to be changed can be placed in a directory that is controlled solely 
by the software engineer making the change. A version control system (see the CVS 
sidebar) updates the original file once the change has been made. As an alternative, 
the object(s) to be changed can be “checked out” of the project database (reposi
tory), the change is made, and appropriate SQA activities are applied. The object(s) 
is (are) then “checked in” to the database, and appropriate version control mecha
nisms (Section 22.3) are used to create the next version of the software.

These version control mechanisms, integrated within the change control process, 
implement two important elements of change management—access control and syn
chronization control. Access control governs which software engineers have the 
authority to access and modify a particular configuration object. Synchronization 
control helps to ensure that parallel changes, performed by two different people, don’t 
overwrite one another.

You may feel uncomfortable with the level of bureaucracy implied by the change 
control process description shown in Figure 22.6. This feeling is not uncommon. 
Without proper safeguards, change control can retard progress and create unnecessary 
red tape. Most software developers who have change control mechanisms (unfortu
nately, many have none) have created a number of layers of control to help avoid the 
problems alluded to here.

Prior to an SCI becoming a baseline, only informal change control need be applied. 
The developer of the configuration object (SCI) in question may make whatever 
changes are justified by project and technical requirements (as long as changes do not 
affect broader system requirements that lie outside the developer’s scope of work). 
Once the object has undergone technical review and has been approved, a baseline 
can be created.7 Once an SCI becomes a baseline, project level change control is 
implemented. Now, to make a change, the developer must gain approval from the 
project manager (if the change is “local”) or from the CCA if the change affects other 
SCIs. In some cases, the developer dispenses with the formal generation of change 
requests, change reports, and ECOs. However, assessment of each change is conducted 
and all changes are tracked and reviewed.

When the software product is released to customers, formal change control is 
instituted. The formal change control procedure has been outlined in Figure 22.6.

The change control authority plays an active role in the second and third layers of 
control. Depending on the size and character of a software project, the CCA may be 
composed of one person—the project manager—or a number of people (e.g., repre
sentatives from software, hardware, database engineering, support, marketing). The 
role of the CCA is to take a global view, that is, to assess the impact of change beyond 
the SCI in question. How will the change affect hardware? How will the change affect 
performance? How will the change modify customers’ perception of the product? How 
will the change affect product quality and reliability? These and many other questions 
are addressed by the CCA.

7 A baseline can be created for other reasons as well. For example, when “daily builds” are 
created, all components checked in by a given time become the baseline for the next day’s 
work.
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SCM Issues

The scene: Doug Miller’s office 
as the SafeHome software proj-
ect begins.

The players: Doug Miller, manager of the 
SafeHome software engineering team, and 
Vinod Raman, Jamie Lazar, and other members 
of the product software engineering team.

The conversation:
Doug: I know it’s early, but we’ve got to talk 
about change management.

Vinod (laughing): Hardly. Marketing 
called this morning with a few “second 
thoughts.” Nothing major, but it’s just the  
beginning.

Jamie: We’ve been pretty informal about 
change management on past projects.

Doug: I know, but this is bigger and more  
visible, and as I recall . . .

Vinod (nodding): We got killed by uncon-
trolled changes on the home lighting control 
project . . . remember the delays that . . .

Doug (frowning): A nightmare that I’d prefer 
not to relive.

Jamie: So what do we do?

Doug: As I see it, three things. First we have 
to develop—or borrow—a change control  
process.

Jamie: You mean how people request 
changes?

Vinod: Yeah, but also how we evaluate the 
change, decide when to do it (if that’s what we 
decide), and how we keep records of what’s 
affected by the change.

Doug: Second, we’ve got to get a really  
good SCM tool for change and version  
control.

Jamie: We can build a database for all of our 
work products.

Vinod: They’re called SCIs in this context, 
and most good tools provide some support  
for that.

Doug: That’s a good start, now we have to . . .

Jamie: Uh, Doug, you said there were three 
things . . .

Doug (smiling): Third—we’ve all got to  
commit to follow the change management  
process and use the tools—no matter what, 
okay?

safehoMe

22.5.2 Impact Management
A web of software work product interdependencies must be considered every time a 
change is made. Impact management encompasses the work required to properly 
understand these interdependencies and control their effects on other SCIs (and the 
people who are responsible for them).

Impact management is accomplished with three actions [Sou08]. First, an impact 
network identifies the members of a software team (and other stakeholders) who might 
effect or be affected by changes that are made to the software. A clear definition of 
the software architecture (Chapter 10) assists greatly in the creation of an impact 
network. Next, forward impact management assesses the impact of your own changes 
on the members of the impact network and then informs members of the impact of 
those changes. Finally, backward impact management examines changes that are made 
by other team members and their impact on your work and incorporates mechanisms 
to mitigate the impact.
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22.5.3 Configuration Audit
Identification, version control, and change control help you to maintain order in what 
would otherwise be a chaotic and fluid situation. However, even the most successful 
control mechanisms track a change only until an ECO is generated. How can a soft
ware team ensure that the change has been properly implemented? The answer is 
twofold: (1) technical reviews and (2) the software configuration audit.

The technical review (Chapter 16) focuses on the technical correctness of the con
figuration object that has been modified. The reviewers assess the SCI to determine 
consistency with other SCIs, omissions, or potential side effects. A technical review 
should be conducted for all but the most trivial changes.

A software configuration audit complements the technical review by assessing a 
configuration object for characteristics that are generally not considered during review. 
The audit asks and answers the following questions:

 1. Has the change specified in the ECO been made? Have any additional modifi
cations been incorporated?

 2. Has a technical review been conducted to assess technical correctness?
 3. Has the software process been followed, and have software engineering stan

dards been properly applied?
 4. Has the change been “highlighted” in the SCI? Have the change date and 

change author been specified? Do the attributes of the configuration object 
reflect the change?

 5. Have SCM procedures for noting the change, recording it, and reporting it 
been followed?

 6. Have all related SCIs been properly updated?

In some cases, the audit questions are asked as part of a technical review. However, 
when SCM is a formal activity, the configuration audit is conducted separately by the 
quality assurance group. Such formal configuration audits also ensure that the correct 
SCIs (by version) have been incorporated into a specific build and that all documen
tation is up to date and consistent with the version that has been built.

22.5.4 Status Reporting
Configuration status reporting (sometimes called status accounting) is an SCM task 
that answers the following questions: (1) What happened? (2) Who did it? (3) When 
did it happen? (4) What else will be affected?

The flow of information for configuration status reporting (CSR) is illustrated in 
Figure 22.6. At the very least, develop a “need to know” list for every configuration 
object and keep it up to date. When a change is made, be sure that everyone on the 
list is notified. Each time an SCI is assigned new or updated identification, a CSR 
entry is made. Each time a change is approved by the CCA (i.e., an ECO is issued), 
a CSR entry is made. Each time a configuration audit is conducted, the results are 
reported as part of the CSR task. Output from CSR may be placed in an online data
base or website, so that software developers or support staff can access change infor
mation by keyword category. In addition, a CSR report is generated on a regular basis 
and is intended to keep management and practitioners apprised of important changes.



CHAPTER 22 SOFTWARE CONFIGURATION MANAGEMENT  453

 22.6 Mo b i L i t y a n d ag i L e ch a ng e Ma nag e M e n t

Earlier in this book, we discussed the special nature of WebApps and MobileApps and 
the specialized methods8 that are required to build them. Game developers face similar 
challenges, as do all agile development teams. Among the many characteristics that dif
ferentiate these applications from traditional software is the ubiquitous nature of change.

Mobile developers and game developers often use an iterative, incremental process 
model that applies many principles derived from agile software development 
(Chapter  4). Using this approach, an engineering team often develops an increment 
in a very short time period using a customerdriven approach. Subsequent increments 
add additional content and functionality, and each is likely to implement changes that 
lead to enhanced content, better usability, improved aesthetics, better navigation, 
enhanced performance, and stronger security. Therefore, in the agile world of app and 
game development, change is viewed somewhat differently.

If you’re a member of a software team that builds apps or games, you must embrace 
change. And yet, a typical agile team eschews all things that appear to be process
heavy, bureaucratic, and formal. Software configuration management is often viewed 
(albeit incorrectly) to have these characteristics. This seeming contradiction is reme
died not by rejecting SCM principles, practices, and tools, but rather by molding them 
to meet the special needs of mobile projects.

22.6.1 e-Change Control
The work flow associated with change control for conventional software (Section 22.5.1) 
is generally too ponderous for WebApp and mobile software development. It is 
unlikely that the change request, change report, and engineering change order sequence 
can be achieved in an agile manner that is acceptable for many game and app devel
opment projects. How then do we manage a continuous stream of changes requested 
for content and functionality?

To implement effective change management within the “code and go” philosophy 
that continues to dominate much of game and mobile development, the conventional 
change control process can be modified. Each change should be categorized into one 
of four classes:

Class 1. A content or function change that corrects an error or enhances local 
content or functionality.

Class 2. A content or function change that has an impact on other content 
objects or functional components.

Class 3. A content or function change that has a broad impact across an app 
(e.g., major extension of functionality, significant enhancement or reduction in con
tent, major required changes in navigation).

Class 4. A major design change (e.g., a change in interface design or navigation 
approach) that will be immediately noticeable to one or more categories of user.

Once the requested change has been categorized, it can be processed according to the 
algorithm shown in Figure 22.7 for WebApps but is equally applicable for apps and games.

8 See [Pre08] for a comprehensive discussion of Web engineering methods.
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Class 1 change Class 4 change
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Figure 22.7 Managing changes for WebApps
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Referring to the figure, class 1 and 2 changes are treated informally and are handled 
in an agile manner. For a class 1 change, you would evaluate the impact of the change, 
but no external review or documentation is required. As the change is made, standard 
checkin and checkout procedures are enforced by configuration repository tools. For 
class 2 changes, you should review the impact of the change on related objects (or 
ask other developers responsible for those objects to do so). If the change can be made 
without requiring significant changes to other objects, modification occurs without 
additional review or documentation. If substantive changes are required, further 
evaluation and planning are necessary.

Class 3 and 4 changes are also treated in an agile manner, but some descriptive 
documentation and more formal review procedures are required. A change description—
describing the change and providing a brief assessment of the impact of the change—is 
developed for class 3 changes. The description is distributed to all members of the team 
who review it to better assess its impact. A change description is also developed for 
class 4 changes, but in this case all stakeholders conduct the review.

22.6.2 Content Management
Content management is related to configuration management in the sense that a con
tent management system (CMS) establishes a process (supported by appropriate tools) 
that acquires existing content (from a broad array of app and/or game configuration 
objects), structures it in a way that enables it to be presented to an end user, and then 
provides it to the clientside environment for display.

The most common use of a content management system occurs when a dynamic 
application is built. Apps and games create screen displays “on the fly.” That is, 
the user typically performs an action that the software responds to by changing the 
information displayed on the screen. The user action may cause the app to query 
a serverside database; it then formats the information accordingly and presents it 
to the user.

For example, a music store (e.g., Apple iTunes) provides hundreds of thousands of 
tracks for sale. When a user requests a music track, a database is queried and a vari
ety of information about the artist, the CD (e.g., its cover image or graphics), the 
musical content, and sample audio are all downloaded and configured into a standard 
content template. The resultant page is built on the server side and passed to the cli
ent side for examination by the end user. A generic representation for WebApps is 
shown in Figure 22.8.

22.6.3 Integration and Publishing
Content management systems are useful for composing Web services to create  
contextaware MobileApps and updating gamelevel scenes at run time, as well as 
building dynamic Web pages. In the most general sense, a CMS “configures” content 
for the end user by invoking three integrated subsystems: a collection subsystem, a 
management subsystem, and a publishing subsystem [Boi04].

The Collection Subsystem. Content is derived from data and information that must 
be created or acquired by a content developer. The collection subsystem encompasses 
all actions required to create and/or acquire content, and the technical functions that 
are necessary to (1) convert content into a form that can be represented by a markup 
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language (e.g., HTML, XML), and (2) organize content into screens that can be 
displayed efficiently on the client side.

Content creation and acquisition (often called authoring or level design for 
games) commonly occurs in parallel with other development activities and is often 
conducted by nontechnical content developers. This activity combines elements of 
creativity and research and is supported by tools that enable the content author to 
characterize content in a manner that can be standardized for use within the app 
or game.

Once content exists, it must be converted to conform to the requirements of a CMS. 
This implies stripping raw content of any unnecessary information (e.g., redundant 
graphical representations), formatting the content to conform to the requirements of 
the CMS, and mapping the results into an information structure that will enable it to 
be managed and published.

The Management Subsystem. Once content exists, it must be stored in a repository, 
cataloged for subsequent acquisition and use, and labeled to define (1) current status 
(e.g., is the content object complete or in development?), (2) the appropriate version 
of the content object, and (3) related content objects. Configuration management is 
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performed within this subsystem. Therefore, the management subsystem implements 
a repository that encompasses the following elements:

∙ Content database. The information structure that has been established to 
store all content objects.

∙ Database capabilities. Functions that enable the CMS to search for specific 
content objects (or categories of objects), store and retrieve objects, and 
manage the file structure that has been established for the content.

∙ Configuration management functions. The functional elements and associ
ated workflow that support content object identification, version control, 
change management, change auditing, and reporting.

In addition to these elements, the management subsystem implements an adminis
tration function that encompasses the metadata and rules that control the overall 
structure of the content and the manner in which it is supported.

The Publishing Subsystem. Content must be extracted from the repository, con
verted to a form that is amenable to publication and formatted so that it can be 
transmitted to clientside screen displays. The publishing subsystem accomplishes 
these tasks using a series of templates. Each template is a function that builds a 
publication using one of three different components [Boi04]:

∙ Static elements. Text, graphics, media, and scripts that require no further 
processing are transmitted directly to the client side.

∙ Publication services. Function calls to specific retrieval and formatting 
services that personalize content (using predefined rules), perform data 
conversion, and build appropriate navigation links.

∙ External services. Access to external corporate information infrastructure 
such as enterprise data or “backroom” applications.

A content management system that encompasses each of these subsystems is 
applicable for major Web and mobile projects. However, the basic philosophy and 
functionality associated with a CMS are applicable to all dynamic applications.

22.6.4 Version Control
As apps and games evolve through a series of increments, a number of different ver
sions may exist at the same time. One version (the current operational app) is available 
via the Internet for end users; another version (the next app increment) may be in the 
final stages of testing prior to deployment; a third version is in development and 
represents a major update in content, interface aesthetics, and functionality. Configu
ration objects must be clearly defined so that each can be associated with the appro
priate version. Without some type of control, developers and content creators may end 
up overwriting each other’s changes.

It’s likely that you’ve experienced a similar situation. To avoid it, a version control 
process is required.
 1. A central repository for the app or game project should be established. 

The repository will hold current versions of all configuration objects (content, 
functional components, and others).
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 2. Each developer creates his own working folder. The folder contains those 
objects that are being created or changed at any given time.

 3. The clocks on all developer workstations should be synchronized. This is 
done to avoid overwriting conflicts when two developers make updates that 
are very close to one another in time.

 4. As new configuration objects are developed or existing objects are 
changed, they are imported into the central repository. The version control 
tool will manage all checkin and checkout functions from the working fold
ers of each developer. The tool should also provide automatic email updates 
to all interested parties when changes to the repository are made.

 5. As objects are imported or exported from the repository, an automatic, 
time-stamped log message is made. This provides useful information for 
auditing and can become part of an effective reporting scheme.

The version control tool maintains different versions of the app and can revert to 
an older version if required.

22.6.5 Auditing and Reporting
In the interest of agility, the auditing and reporting functions are deemphasized during 
the development of games or apps.9 However, they are not eliminated altogether. All 
objects that are checked into or out of the repository are recorded in a log that can 
be reviewed at any point in time. A complete log report can be created so that all 
members of the team have a chronology of changes over a defined period of time. In 
addition, an automated email notification (addressed to those developers and stake
holders who have interest) can be sent every time an object is checked in or out of 
the repository.

 22.7 su M M a ry

Software configuration management is an umbrella activity that is applied throughout 
the software process. SCM identifies, controls, audits, and reports modifications that 
invariably occur while software is being developed and after it has been released to 
a customer. All work products created as part of software engineering become part 
of a software configuration. The configuration is organized in a manner that enables 
orderly control of change.

The software configuration is composed of a set of interrelated objects, also called 
software configuration items, that are produced as a result of some software engineer
ing activity. In addition to software engineering work products, the development envi
ronment that is used to create software can also be placed under configuration control. 
All SCIs are stored within a repository that implements a set of mechanisms and data 

9 This is beginning to change. There is an increasing emphasis on SCM as one element of 
application security [Fug14]. By providing a mechanism for tracking and reporting every 
change made to every application object, a change management tool can provide valuable 
protection against malicious changes.
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structures to ensure data integrity, provide integration support for other software tools, 
support information sharing among all members of the software team, and implement 
functions in support of version and change control.

Once a configuration object has been developed and reviewed, it becomes a base-
line. Changes to a baselined object result in the creation of a new version of that 
object. The evolution of a program can be tracked by examining the revision history 
of all configuration objects. Version control is the set of procedures and tools for 
managing the use of these objects.

Change control is a procedural activity that ensures quality and consistency as 
changes are made to a configuration object. The change control process begins with 
a change request, leads to a decision to make or reject the request for change, and 
culminates with a controlled update of the SCI that is to be changed.

The configuration audit is an SQA activity that helps to ensure that quality is 
maintained as changes are made. Status reporting provides information about each 
change to those with a need to know.

Configuration management for apps or games is similar in most respects to SCM 
for conventional software. However, each of the core SCM tasks should be streamlined 
to make it as lean as possible, and special provisions for content management must 
be implemented.

Pro b l e m s a n d Po i n t s to Po n d e r

22.1. Why is the first law of system engineering true? Provide specific examples for each of 
the four fundamental reasons for change.

22.2. What are the four elements that exist when an effective SCM system is implemented? 
Discuss each briefly.

22.3. Assume that you’re the manager of a small project. What baselines would you define for 
the project, and how would you control them?

22.4. Design a project database (repository) system that would enable a software engineer to 
store, cross-reference, trace, update, change, and so forth all important software configuration 
items. How would the database handle different versions of the same program? Would source 
code be handled differently than documentation? How will two developers be precluded from 
making different changes to the same SCI at the same time?

22.5. Research an existing SCM tool, and describe how it implements control for versions, 
variants, and configuration objects in general.

22.6. Research an existing SCM tool, and describe how it implements the mechanics of version 
control. Alternatively, read two or three papers on SCM and describe the different data struc-
tures and referencing mechanisms that are used for version control.

22.7. Develop a checklist for use during configuration audits.

22.8. What is the difference between an SCM audit and a technical review? Can their function 
be folded into one review? What are the pros and cons?

22.9. Briefly describe the differences between SCM for conventional software and SCM for 
WebApps or MobileApps.

22.10. Describe the value of continuous integration tools to agile software developers.

Design element: Quick Look icon magnifying glass: © Roger Pressman
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C H A P T E R

23 Software Metrics  
and Analytics

What is it? Software process and project met-
rics are quantitative measures that enable you 
to gain insight into the efficacy of the software 
process and the projects that are conducted 
using the process as a framework. Product 
metrics help software engineers gain insight 
into the design and construction of the soft-
ware they build. 

Who does it? Software metrics are analyzed 
and assessed by software managers. Soft-
ware engineers use product metrics to help 
them build higher-quality software.

Why is it important? If you don’t measure, 
judgment can only be based on subjective 
evaluation. You need objective criteria to help 
guide the design of data, architecture, inter-
faces, and components. If you measure, trends 
(either good or bad) can be spotted, better 

estimates can be made, and true improvement 
can be accomplished over time. 

What are the steps? Derive the process, 
project, and product measures and metrics 
that you intend to use. Collect the metrics 
and then analyze them against historical 
data. Use the analysis results to gain insight 
into the process, project, and product. 

What is the work product? A set of software 
metrics that provides insight into the process 
and understanding of the project.

How do I ensure that I’ve done it right?  
Define only a few metrics, and then use them 
to gain insight into the quality of a software 
process, project, and product. Apply a consis-
tent, yet simple measurement scheme that is 
never to be used to assess, reward, or punish 
individual performance.
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k e y 
c o n c e p t s

A key element of any engineering process is measurement. Measurement can be 
applied to the software process with the intent of improving it on a continuous 
basis. Measurement can be used throughout a software project to assist in estima-
tion, quality control, productivity assessment, and project control. You can use 
measures to better understand the attributes of the models that you create and to 
assess the quality of the engineered products or systems that you build.
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Measurement can be used by software engineers to help assess the quality of work 
products and to assist in tactical decision making as a project proceeds. But unlike 
other engineering disciplines, software engineering is not grounded in the basic quan-
titative laws of physics. Direct measures, such as voltage, mass, velocity, or tempera-
ture, are uncommon in the software world. Because software measures and metrics 
are often indirect, they are open to debate.

Within the context of the software process and the projects that are conducted using 
the process, a software team is concerned primarily with productivity and quality 
metrics—measures of software development “output” as a function of effort and time 
applied and measures of the “fitness for use” of the work products that are produced. 
For planning and estimating purposes, our interest is historical. What was software 
development productivity on past projects? What was the quality of the software that 
was produced? How can past productivity and quality data be extrapolated to the 
present? How can it help us plan and estimate more accurately?

Measurement is a management and technical tool. If conducted properly, it provides 
you with insight. And as a result, it assists the project manager and the software team 
in making decisions that will lead to a successful project.

In this chapter, we present measures that can be used to assess the quality of the 
product as it is being engineered. We also present measures that can be used to help 
manage software projects. These measures provide you with a real-time indication of 
the effectiveness of your software processes (analysis, design, testing) and the overall 
quality of the software as it is being built.

 23.1 so f t wa r e Me a s u r e M e n t

Data science1 is concerned with measurement, machine learning, and prediction of 
future events based on these measures. Measurement assigns numbers or symbols to 
attributes of entities in the real word. To accomplish this, a measurement model 
encompassing a consistent set of rules is required. Although the theory of measure-
ment (e.g., [Kyb84]) and its application to computer software (e.g., [Zus97]) are top-
ics that are beyond the scope of this book, it is worthwhile to establish a 
fundamental framework and a set of basic principles that guide the definition of 
metrics for software development.

23.1.1 Measures, Metrics, and Indicators
Although the terms measure, measurement, and metrics are often used interchange-
ably, it is important to note the subtle differences between them. When a single data 
point has been collected (e.g., the number of errors uncovered within a single software 
component), a measure has been established. Measurement occurs as the result of the 
collection of one or more data points (e.g., a number of component reviews and unit 
tests are investigated to collect measures of the number of errors for each). A software 

1 Appendix 2 in the book contains an introduction to data science geared toward software 
engineers.
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metric relates the individual measures in some way (e.g., the average number of errors 
found per review or the average number of errors found per unit test).

A software engineer collects measures and develops metrics so that indicators will 
be obtained. An indicator is a metric or combination of metrics that provides insight 
into the software process, a software project, or the product itself.

23.1.2 Attributes of Effective Software Metrics
Hundreds of metrics have been proposed for computer software, but not all provide 
practical support to the software engineer. Some demand measurement that is too 
complex; others are so esoteric that few real-world professionals have any hope of 
understanding them, and others violate the basic intuitive notions of what high-quality 
software really is. Experience indicates that a metric will be used only if it is intuitive 
and easy to compute. If dozens of “counts” have to be made, and complex computa-
tions are required, it is unlikely that the metric will be widely adopted.

Ejiogu [Eji91] defines a set of attributes that should be encompassed by effective 
software metrics. It should be relatively easy to learn how to derive the metric, and 
its computation should not demand inordinate effort or time. The metric should sat-
isfy the engineer’s intuitive notions about the product attribute under consideration 
(e.g., a metric that measures module cohesion should increase in value as the level 
of cohesion increases). The metric should always yield results that are unambiguous. 
The mathematical computation of the metric should use measures that do not lead to 
bizarre combinations of units. For example, multiplying people on the project teams 
by programming language variables in the program results in a suspicious mix of 
units that are not intuitively persuasive. Metrics should be based on the requirements 
model, the design model, or the structure of the program itself. They should not be 
dependent on the vagaries of programming language syntax or semantics. Finally,  
the metric should provide you with information that can lead to a higher-quality 
end product.

 23.2 so f t wa r e ana Ly t i c s

There is some confusion about the differences between software metrics and software 
analytics. Software metrics are used to gauge the quality or performance of a product 
or process. Key performance indicators (KPIs) are metrics that are used to track 
performance and trigger remedial actions when their values fall in a predetermined 
range. But how do you know that metrics are meaningful in the first place?

Software analytics is the systematic computational analysis of software engineering 
data or statistics to provide managers and software engineers with meaningful insights 
and empower their teams to make better decisions [Bus12]. It is important that 
the insights provide timely, actionable advice to developers. For example, knowing 
the number of defects in a software product today is not as important as knowing the 
number of defects is 5 percent higher than last month. Analytics can help developers 
predict the number of defects to expect, where to test for them, and how much time 
it will take to fix them. This allows managers and developers to create incremental 
schedules that use these predictions to determine expected completion times. The use 
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of automated tools capable of processing large, dynamic data sets of engineering 
metrics and measures [Men13] is required to provide real-time insight into large 
project and product data sets.

Buse and Zimmermann [Bus12] suggest that analytics can help developers make 
decisions regarding:

∙ Targeted testing. To help focus regression testing and integration testing 
resources

∙ Targeted refactoring. To help make strategic decisions on how to avoid large 
technical debt costs

∙ Release planning. To help ensure that market needs as well as technical fea-
tures in software product are taken into account

∙ Understanding customers. To help developers get actionable information on 
product use by customers in the field during product engineering

∙ Judging stability. To help managers and developers monitor the state of the 
evolving prototype and anticipate future maintenance needs

∙ Targeting inspection. To help teams determine the value of individual 
inspection activities, their frequency, and their scope

The statistical techniques (data mining, machine learning, statistical modeling) 
required to do software analytic work is beyond the scope of this book. Some of these 
techniques are discussed briefly in Appendix 2. We will focus on the use of software 
metrics in the remainder of this chapter.

 23.3 pro d u c t Me t r i c s

Over the past four decades, many researchers have attempted to develop a single 
metric that provides a comprehensive measure of software complexity. Fenton [Fen94] 
characterizes this research as a search for “the impossible holy grail.” Although doz-
ens of complexity measures have been proposed [Zus90], each takes a somewhat 
different view of what complexity is and what attributes of a system lead to complex-
ity. By analogy, consider a metric for evaluating an attractive car. Some observers 
might emphasize body design; others might consider mechanical characteristics; still 
others might tout cost, or performance, or the use of alternative fuels, or the ability 
to recycle when the car is junked. Because any one of these characteristics may be at 
odds with others, it is difficult to derive a single value for “attractiveness.” The same 
problem occurs with computer software.

Yet there is a need to measure and control software complexity. And if a single 
value of this quality metric is difficult to derive, it should be possible to develop 
measures of different internal program attributes (e.g., effective modularity, functional 
independence, and other attributes discussed in Chapter 9). These measures and the 
metrics derived from them can be used as independent indicators of the quality of 
requirements and design models. But here again, problems arise. Fenton [Fen94] notes 
this when he states: “The danger of attempting to find measures which characterize 
so many different attributes is that inevitably the measures have to satisfy conflicting 
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aims. This is counter to the representational theory of measurement.” Although 
Fenton’s statement is correct, many people argue that product measurement conducted 
during the early stages of the software process provides software engineers with a 
consistent and objective mechanism for assessing quality.2

2 Although criticism of specific metrics is common in the literature, many critiques focus on 
esoteric issues and miss the primary objective of metrics in the real world: to help software 
engineers establish a systematic and objective way to gain insight into their work and to 
improve product quality as a result.

Debating Product Metrics

The scene: Vinod’s cubicle.

The players: Vinod, Jamie, and Ed, members 
of the SafeHome software engineering team 
who are continuing work of component-level 
design and test-case design.

The conversation:
Vinod: Doug [Doug Miller, software engineer-
ing manager] told me that we should all use 
product metrics, but he was kind of vague. He 
also said that he wouldn’t push the matter . . . 
that using them was up to us.

Jamie: That’s good, ’cause there’s no way I 
have time to start measuring stuff. We’re fight-
ing to maintain the schedule as it is.

Ed: I agree with Jamie. We’re up against it, 
here . . . no time.

Vinod: Yeah, I know, but there’s probably 
some merit to using them.

Jamie: I’m not arguing that, Vinod, it’s a time 
thing . . . and I for one don’t have any to spare.

Vinod: But what if measuring saves you time?

Ed: Wrong, it takes time and like Jamie said . . .

Vinod: No, wait . . . what if it saves us is time?

Jamie: How?

Vinod: Rework . . . that’s how. If a measure we 
use helps us to avoid one major or even mod-
erate problem, and that saves us from having 
to rework a part of the system, we save time. 
No?

Ed: It’s possible, I suppose, but can you guar-
antee that some product metric will help us 
find a problem?

Vinod: Can you guarantee that it won’t?

Jamie: So what are you proposing?

Vinod: I think we should select a few design 
metrics, probably class-oriented, and use them 
as part of our review process for every compo-
nent we develop.

Ed: I’m not real familiar with class-oriented 
metrics.

Vinod: I’ll spend some time checking them out 
and make a recommendation . . . okay with 
you guys?

 (Ed and Jamie nod without much enthusiasm.)

safeHoMe

23.3.1 Metrics for the Requirements Model
Technical work in software engineering begins with the creation of the requirements 
model. It is at this stage that requirements are derived and a foundation for design is 
established. Therefore, product metrics that provide insight into the quality of the 
analysis model are desirable.

Although relatively few analysis and specification metrics have appeared in the 
literature, it is possible to adapt metrics (e.g., use case points or function points) 
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that are often used for project estimation (Section 25.6) and apply them in this 
context. These estimation metrics examine the requirements model with the intent 
of predicting the “size” of the resultant system. Size is sometimes (but not always) 
an indicator of design complexity and is almost always an indicator of increased 
coding, integration, and testing effort. By measuring characteristics of the require-
ments model, it is possible to gain quantitative insight into its specificity and 
completeness.

Conventional Software. Davis and his colleagues [Dav93] propose a list of charac-
teristics that can be used to assess the quality of the requirements model and the 
corresponding requirements specification: specificity (lack of ambiguity), complete-
ness, correctness, understandability, verifiability, internal and external consistency, 
achievability, concision, traceability, modifiability, precision, and reusability. In addi-
tion, the authors note that high-quality specifications are electronically stored; execut-
able or at least interpretable; annotated by relative importance; and stable, versioned, 
organized, cross-referenced, and specified at the right level of detail.

Although many of these characteristics appear to be qualitative in nature, each can 
be represented using one or more metrics [Dav93]. For example, we assume that there 
are nr requirements in a specification, such that

nr = nf + nnf

where nf is the number of functional requirements and nnf is the number of nonfunc-
tional (e.g., performance) requirements.

To determine the specificity (lack of ambiguity) of requirements, Davis and col-
leagues suggest a metric that is based on the consistency of the reviewers’ interpreta-
tion of each requirement:

Q1 =
nui

nr

where nui is the number of requirements for which all reviewers had identical inter-
pretations. The closer the value of Q to 1, the lower is the ambiguity of the specifica-
tion. Other characteristics are computed in a similar manner.

Mobile Software. The objective of all mobile projects is to deliver a combination 
of content and functionality to the end user. Measures and metrics used for traditional 
software engineering projects are difficult to translate directly to MobileApps. Yet, it 
is possible to develop measures that can be determined during the requirements gath-
ering activities that can serve as the basis for creating MobileApp metrics. Among 
the measures that can be collected are the following:

Number of static screen displays. These pages represent low relative com-
plexity and generally require less effort to construct than dynamic pages. This 
measure provides an indication of the overall size of the application and the 
effort required to develop it.
Number of dynamic screen displays. These pages represent higher relative 
complexity and require more effort to construct than static pages. This mea-
sure provides an indication of the overall size of the application and the effort 
required to develop it.
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Number of persistent data objects. As the number of persistent data 
objects (e.g., a database or data file) grows, the complexity of the MobileApp 
also grows and the effort to implement it increases proportionally.
Number of external systems interfaced. As the requirement for interfacing 
grows, system complexity and development effort also increase.
Number of static content objects. These objects represent low relative 
complexity and generally require less effort to construct than dynamic pages.
Number of dynamic content objects. These objects represent higher rela-
tive complexity and require more effort to construct than static pages.
Number of executable functions. As the number of executable functions (e.g., 
a script or applet) increases, modeling and construction effort also increase.

For example with these measures, you can define a metric that reflects the degree of 
end-user customization that is required for the MobileApp and correlate it to the effort 
expended on the project and/or the errors uncovered as reviews and testing are 
conducted. To accomplish this, you define

Nsp = number of static screen displays
Ndp = number of dynamic screen displays

Then,

Customization index, C =
Ndp

Ndp + Nsp

The value of C ranges from 0 to 1. As C grows larger, the level of app customization 
becomes a significant technical issue.

Similar metrics can be computed and correlated with project measures such as 
effort expended, errors and defects uncovered, and models or documentation pages 
produced. If the values of these metrics are stored in a database with project measures 
(after a number of projects have been completed), the relationships between the app 
requirement measures and project measures will provide indicators that can aid in 
project assessment tasks.

23.3.2 Design Metrics for Conventional Software
It is inconceivable that the design of a new aircraft, a new computer chip, or a new 
office building would be conducted without defining design measures, determining 
metrics for various aspects of design quality, and using them as indicators to guide 
the manner in which the design evolves. And yet, the design of complex software-
based systems often proceeds with virtually no measurement. The irony of this is that 
design metrics for software are available, but the vast majority of software engineers 
continue to be unaware of their existence.

Architectural design metrics focus on characteristics of the program architecture 
(Chapter 10) with an emphasis on the architectural structure and the effectiveness of 
modules or components within the architecture. These metrics are “black box” in the 
sense that they do not require any knowledge of the inner workings of a particular 
software component. Metrics can provide insight into structural data and system com-
plexity associated with architectural design.
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Card and Glass [Car90] define three software design complexity measures: struc-
tural complexity, data complexity, and system complexity.

For hierarchical architectures (e.g., call-and-return architectures), structural com-
plexity of a module i is defined in the following manner:

S(i) = f 2out(i)

where fout(i) is the fan-out3 of module i.
Data complexity provides an indication of the complexity in the internal interface 

for a module i and is defined as

D(i) =
v(i)

fout(i) + 1

where v(i) is the number of input and output variables that are passed to and from 
module i.

Finally, system complexity is defined as the sum of structural and data complexity, 
specified as

C(i) = S(i) + D(i)

As each of these complexity values increases, the overall architectural complexity of 
the system also increases. This leads to a greater likelihood that integration and test-
ing effort will also increase.

Fenton [Fen91] suggests a number of simple morphology (i.e., shape) metrics that 
enable different program architectures to be compared using a set of straightforward 
dimensions. Referring to the call-and-return architecture in Figure 23.1, the following 
metrics can be defined:

Size = n + a

where n is the number of nodes and a is the number of arcs. For the architecture 
shown in Figure 23.1,

Size = 17 + 18 = 35
Depth =  longest path from the root (top) node to a leaf node. For the architecture 

shown in Figure 23.1, depth = 4.
Width =  maximum number of nodes at any one level of the architecture. For 

the architecture shown in Figure 23.1, width = 6.

The arc-to-node ratio, r = a/n, measures the connectivity density of the architecture 
and may provide a simple indication of the coupling of the architecture. For the 
architecture shown in Figure 23.1, r = 18/17 = 1.06.

The U.S. Air Force Systems Command [USA87] has developed a number of soft-
ware quality indicators that are based on measurable design characteristics of a com-
puter program. Using concepts similar to those proposed in IEEE Std. 982.1-2005 
[IEE05], the Air Force uses information obtained from data and architectural design 

3 Fan-out is defined as the number of modules immediately subordinate to module I, that is, 
the number of modules that are directly invoked by module i.
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to derive a design structure quality index (DSQI) that ranges from 0 to 1 (see: [USA87] 
and [Cha89] for details).

23.3.3 Design Metrics for Object-Oriented Software
There is much about object-oriented design that is subjective—an experienced designer 
“knows” how to characterize an OO system so that it will effectively implement cus-
tomer requirements. But, as an OO design model grows in size and complexity, a 
more objective view of the characteristics of the design can benefit both the experi-
enced designer (who gains additional insight) and the novice (who obtains an indica-
tion of quality that would otherwise be unavailable).

In a detailed treatment of software metrics for OO systems, Whitmire [Whi97] 
describes nine distinct and measurable characteristics of an OO design. Size is 
defined by taking a static count of OO entities such as classes or operations, cou-
pled with the depth of an inheritance tree. Complexity is defined in terms of struc-
tural characteristics by examining how classes of an OO design are interrelated to 
one another. Coupling is measured by counting physical connections between ele-
ments of the OO design (e.g., the number of collaborations between classes or the 
number of messages passed between objects). Sufficiency is “the degree to which 
an abstraction [class] possesses the features required of it . . .” [Whi97]. Complete-
ness determines whether a class delivers the set of properties that fully reflect the 
needs of the problem domain. Cohesion is determined be examining whether all 
operations work together to achieve a single, well-defined purpose. Primitiveness 
is the degree to which an operation is atomic—that is, the operation cannot be 
constructed out of a sequence of other operations contained within a class. Similar-
ity determines the degree to which two or more classes are similar in terms of their 
structure, function, behavior, or purpose. Volatility measures the likelihood that a 
change will occur.
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In reality, product metrics for OO systems can be applied not only to the design 
model, but also to the requirements model. In the remainder of this section, we discuss 
metrics that provide an indication of quality at the OO class level and the operation 
level. In addition, metrics applicable for project management and testing are also 
explored.

Chidamber and Kemerer (CK) have proposed one of the most widely referenced 
sets of OO software metrics [Chi94].4 Often referred to as the CK metrics suite, the 
authors have proposed six class-based design metrics for OO systems.5

Weighted Methods per Class (WMC). Assume that n methods of complexity c1, 
c2, . . . , cn are defined for a class C. The specific complexity metric that is chosen 
(e.g., cyclomatic complexity) should be normalized so that nominal complexity for a 
method takes on a value of 1.0.

WMC = Σci

for i = 1 to n. The number of methods and their complexity are reasonable indicators 
of the amount of effort required to implement and test a class. In addition, the larger 
the number of methods, the more complex is the inheritance tree (all subclasses inherit 
the methods of their parents). Finally, as the number of methods grows for a given 
class, it is likely to become more and more application specific, thereby limiting 
potential reuse. For all of these reasons, WMC should be kept as low as is reasonable.

Depth of the Inheritance Tree (DIT). This metric is “the maximum length from 
the node to the root of the tree” [Chi94]. Referring to Figure 23.2, the value of DIT 
for the class hierarchy shown is 4. As DIT grows, it is likely that lower-level classes 
will inherit many methods. This leads to potential difficulties when attempting to 
predict the behavior of a class. A deep class hierarchy (DIT is large) also leads to 
greater design complexity. On the positive side, large DIT values imply that many 
methods may be reused.

Number of Children (NOC). The subclasses that are immediately subordinate to a 
class in the class hierarchy are termed its children. Referring to Figure 23.2, class C2 
has three children—subclasses C21, C22, and C23. As the number of children grows, 
reuse increases, but also, as NOC increases, the abstraction represented by the parent 
class can be diluted if some of the children are not appropriate members of the parent 
class. As NOC increases, the amount of testing (required to exercise each child in its 
operational context) will also increase.

Coupling Between Object Classes (CBO). The CRC model (Chapter 8) may be used 
to determine the value for CBO. In essence, CBO is the number of collaborations 
listed for a class on its CRC index card.6 As CBO increases, it is likely that the 

4 An alternative suite of OO metrics has been proposed by Harrison, Counsell, and Nithi 
[Har98b]. Interested readers are urged to examine their work.

5 Chidamber and Kemerer use the term methods rather than operations. Their usage of the 
term is reflected in this section.

6 If CRC index cards are developed manually, completeness and consistency must be assessed 
before CBO can be determined reliably.
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reusability of a class will decrease. High values of CBO also complicate modifications 
and the testing that ensues when modifications are made. In general, the CBO values 
for each class should be kept as low as is reasonable. This is consistent with the 
general guideline to reduce coupling in conventional software.

Response for a Class (RFC). The response set of a class is “a set of methods that 
can potentially be executed in response to a message received by an object of that 
class” [Chi94]. RFC is the number of methods in the response set. As RFC increases, 
the effort required for testing also increases because the test sequence (Chapter 20) 
grows. It also follows that, as RFC increases, the overall design complexity of the 
class increases.

Lack of Cohesion in Methods (LCOM). Each method within a class C accesses 
one or more attributes (also called instance variables). LCOM is the number of meth-
ods that access one or more of the same attributes.7 If no methods access the same 
attributes, then LCOM = 0. To illustrate the case where LCOM ≠ 0, consider a class 
with six methods. Four of the methods have one or more attributes in common (i.e., 
they access common attributes). Therefore, LCOM = 4. If LCOM is high, methods 
may be coupled to one another via attributes. This increases the complexity of the 
class design. Although there are cases in which a high value for LCOM is justifiable, 
it is desirable to keep cohesion high, that is, keep LCOM low.8

C11

C2

C21 C22

C1

C

C23

C211

Figure 23.2
A class 
hierarchy

7 The formal definition is a bit more complex. See [Chi94] for details.
8 The LCOM metric provides useful insight in some situations, but it can be misleading in 

others. For example, keeping coupling encapsulated within a class increases the cohesion 
of the system as a whole. Therefore, in at least one important sense, higher LCOM actually 
suggests that a class may have higher cohesion, not lower.
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23.3.4 User Interface Design Metrics
Although there is significant literature on the design of human-computer interfaces 
(Chapter 12), relatively little information has been published on metrics that would 
provide insight into the quality and usability of the interface. Although UI metrics 
may be useful in some cases, the final arbiter should be user input based on GUI 
prototypes. Nielsen and Levy [Nie94] report that “one has a reasonably large chance 
of success if one chooses between interface [designs] based solely on users’ opinions. 
Users’ average task performance and their subjective satisfaction with a GUI are 
highly correlated.”

In the paragraphs that follow, we present a representative sampling of design met-
rics that may have application for websites, browser-based applications, and mobile 
applications. Many of these metrics are applicable to all user interfaces. It is important 
to note, however, that many of these metrics have not as yet been validated and should 
be used judiciously.

Applying CK Metrics

The scene: Vinod’s cubicle.

The players: Vinod, Jamie, Shakira, and Ed, 
members of the SafeHome software engineer-
ing team who are continuing to work on 
component-level design and test-case design.

The conversation:
Vinod: Did you guys get a chance to read 
the description of the CK metrics suite I sent 
you on Wednesday and make those 
measurements?

Shakira: Wasn’t too complicated. I went back 
to my UML class and sequence diagrams, like 
you suggested, and got rough counts for DIT, 
RFC, and LCOM. I couldn’t find the CRC model, 
so I didn’t count CBO.

Jamie (smiling): You couldn’t find the CRC 
model because I had it.

Shakira: That’s what I love about this team, 
superb communication.

Vinod: I did my counts . . . did you guys 
develop numbers for the CK metrics?

 (Jamie and Ed nod in the affirmative.)

Jamie: Since I had the CRC cards, I took a 
look at CBO, and it looked pretty uniform 

across most of the classes. There was one 
exception, which I noted.

Ed: There are a few classes where RFC is 
pretty high, compared with the averages . . . 
maybe we should take a look at simplifying 
them.

Jamie: Maybe yes, maybe no. I’m still 
concerned about time, and I don’t want to fix 
stuff that isn’t really broken.

Vinod: I agree with that. Maybe we should 
look for classes that have bad numbers in at 
least two or more of the CK metrics. Kind of 
two strikes and you’re modified.

Shakira (looking over Ed’s list of classes 
with high RFC): Look, see this class. It’s 
got a high LCOM as well as a high RFC. 
Two strikes?

Vinod: Yeah I think so . . . it’ll be difficult to 
implement because of complexity and difficult 
to test for the same reason. Probably worth 
designing two separate classes to achieve the 
same behavior.

Jamie: You think modifying it’ll save us time?

Vinod: Over the long haul, yes.

safeHoMe
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Interface Metrics. For WebApps, the following interface measures can be considered:

Suggested Metric Description

Layout appropriateness The relative position of entities within the interface

Layout complexity Number of distinct regions9 defined for an interface

Layout region complexity Average number of distinct links per region

Recognition complexity Average number of distinct items the user must look at before 
making a navigation or data input decision

Recognition time Average time (in seconds) that it takes a user to select the 
appropriate action for a given task

Typing effort Average number of keystrokes required for a specific function

Mouse pick effort Average number of mouse picks per function

Selection complexity Average number of links that can be selected per page

Content acquisition time Average number of words of text per Web page

Memory load Average number of distinct data items that the user must 
remember to achieve a specific objective

Aesthetic (Graphic Design) Metrics. By its nature, aesthetic design relies on quali-
tative judgment and is not generally amenable to measurement and metrics. However, 
Ivory and her colleagues [Ivo01] propose a set of measures that may be useful in 
assessing the impact of aesthetic design:

Suggested Metric Description

Word count Total number of words that appear on a page

Body text percentage Percentage of words that are body versus display text 
(e.g., headers)

Emphasized body text percentage Portion of body text that is emphasized (e.g., bold, capitalized)

Text positioning count Changes in text position from flush left

Text cluster count Text areas highlighted with color, bordered regions, rules, 
or lists

Link count Total links on a page

Page size Total bytes for the page as well as elements, graphics, and 
style sheets

Graphic percentage Percentage of page bytes that are for graphics

Graphics count Total graphics on a page (not including graphics specified in 
scripts, applets, and objects)

Color count Total colors employed

Font count Total fonts employed (i.e., face + size + bold + italic)

9 A distinct region is an area within the layout display that accomplishes some specific set of 
related functions (e.g., a menu bar, a static graphical display, a content area, an animated 
display).
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Content Metrics. Metrics in this category focus on content complexity and on 
clusters of content objects that are organized into pages [Men01].

Suggested Metric Description

Page wait Average time required for a page to download at different 
connection speeds

Page complexity Average number of different types of media used on page, 
not including text

Graphic complexity Average number of graphics media per page

Audio complexity Average number of audio media per page

Video complexity Average number of video media per page

Animation complexity Average number of animations per page

Scanned image complexity Average number of scanned images per page

Navigation Metrics. Metrics in this category address the complexity of the naviga-
tional flow [Men01]. In general, they are applicable only for static Web applications, 
which don’t include dynamically generated links and pages.

Suggested Metric Description

Page-linking complexity Number of links per page

Connectivity Total number of internal links, not including dynamically 
generated links

Connectivity density Connectivity divided by page count

Using a subset of the metrics suggested, it may be possible to derive empirical 
relations that allow a WebApp development team to assess technical quality and pre-
dict effort based on projected estimates of complexity. Further work remains to be 
accomplished in this area.

23.3.5 Metrics for Source Code
Halstead’s theory of “software science” [Hal77] proposed the first analytical “laws” 
for computer software.10 Halstead assigned quantitative laws to the development of 
computer software, using a set of primitive measures that may be derived after code 
is generated or estimated once design is complete. The measures are:

n1 = number of distinct operators that appear in a program
n2 = number of distinct operands that appear in a program
N1 = total number of operator occurrences
N2 = total number of operand occurrences

10 It should be noted that Halstead’s “laws” have generated substantial controversy, and many 
believe that the underlying theory has flaws. However, experimental verification for selected 
programming languages has been performed (e.g., [Fel89]).
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Halstead uses these primitive measures to develop expressions for the overall program 
length, potential minimum volume for an algorithm, the actual volume (number of bits 
required to specify a program), the program level (a measure of software complexity), 
the language level (a constant for a given language), and other features such as develop-
ment effort, development time, and even the projected number of faults in the software.

Halstead shows that length N can be estimated as

N = n1 log2 n1 + n2 log2 n2

and program volume may be defined as

V = N log2 (n1 + n2)

It should be noted that V will vary with programming language and represents the 
volume of information (in bits) required to specify a program.

Theoretically, a minimum volume must exist for a particular algorithm. Halstead 
defines a volume ratio L as the ratio of volume of the most compact form of a program 
to the volume of the actual program. In actuality, L must always be less than 1. In 
terms of primitive measures, the volume ratio may be expressed as

L =
2
n1

×
n2

N2

Halstead’s work is amenable to experimental verification, and a large body of research 
has been conducted to investigate software science. A discussion of this work is beyond 
the scope of this book. For further information, see [Zus90], [Fen91], and [Zus97].

 23.4 Me t r i c s f o r te st i ng

Testing metrics fall into two broad categories: (1) metrics that attempt to predict the 
likely number of tests required at various testing levels, and (2) metrics that focus on 
test coverage for a given component. The majority of metrics proposed for testing 
focus on the process of testing, not the technical characteristics of the tests themselves. 
In general, testers must rely on analysis, design, and code metrics to guide them in 
the design and execution of test cases.

Architectural design metrics provide information on the ease or difficulty associated 
with integration testing and the need for specialized testing software (e.g., stubs and 
drivers). Cyclomatic complexity (a component-level design metric) lies at the core of 
basis path testing, a test-case design method presented in Chapter 19. In addition, cyc-
lomatic complexity can be used to target modules as candidates for extensive unit testing. 
Modules with high cyclomatic complexity are more likely to be error prone than modules 
whose cyclomatic complexity is lower. For this reason, you should expend above-average 
effort to uncover errors in such modules before they are integrated in a system.

Testing effort can be estimated using metrics derived from Halstead measures 
(Section 23.3.5). Using the definitions for program volume V and program level PL, 
Halstead effort e can be computed as

 PL =
1

(n1∕2)(N2∕n2)

 e =
V

PL
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The percentage of overall testing effort to be allocated to a module k can be estimated 
using the following relationship:

Percentage of testing effort (k) =
e(k)

Σ e(i)

where e(k) is computed for module k and the summation in the denominator is the 
sum of Halstead effort across all modules of the system.

OO testing can be quite complex. Metrics can assist you in targeting testing 
resources at threads, scenarios, and packages of classes that are “suspect” based on 
measured characteristics. The OO design metrics noted in Section 23.3.3 provide an 
indication of design quality. They also provide a general indication of the amount of 
testing effort required to exercise an OO system.

Binder [Bin94b] suggests a broad array of design metrics that have a direct influ-
ence on the “testability” of an OO system. The metrics consider aspects of encapsu-
lation and inheritance.

Lack of cohesion in methods (LCOM).11 The higher the value of LCOM, 
the more states must be tested to ensure that methods do not generate side 
effects.
Percent public and protected (PAP). Public attributes are inherited from 
other classes and therefore are visible to those classes. Protected attributes are 
accessible to methods in subclasses. This metric indicates the percentage of 
class attributes that are public or protected. High values for PAP increase the 
likelihood of side effects among classes because public and protected attri-
butes lead to high potential for coupling.12 Tests must be designed to ensure 
that such side effects are uncovered.
Public access to data members (PAD). This metric indicates the number 
of classes (or methods) that can access another class’s attributes, a violation 
of encapsulation. High values for PAD lead to the potential for side effects 
among classes. Tests must be designed to ensure that such side effects are 
uncovered.
Number of root classes (NOR). This metric is a count of the distinct class 
hierarchies that are described in the design model. Test suites for each root 
class and the corresponding class hierarchy must be developed. As NOR 
increases, testing effort also increases.
Fan-in (FIN). When used in the OO context, fan-in in the inheritance hier-
archy is an indication of multiple inheritance. FIN > 1 indicates that a class 
inherits its attributes and operations from more than one root class. FIN > 1 
should be avoided when possible.
Number of children (NOC) and depth of the inheritance tree (DIT).13  
As we mentioned in Chapter 18, superclass methods will have to be retested 
for each subclass.

11 See Section 23.3.3 for a description of LCOM.
12 Some people promote designs with none of the attributes being public or private, that is, 

PAP = 0. This implies that all attributes must be accessed in other classes via methods.
13 See Section 23.3.3 for a description of NOC and DIT.
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 23.5 Me t r i c s f o r Ma i n t e na nc e

All the software metrics introduced in this chapter can be used for the development 
of new software and the maintenance of existing software. However, metrics designed 
explicitly for maintenance activities have been proposed.

IEEE Std. 982.1-2005 [IEE05] suggests a software maturity index (SMI) that pro-
vides an indication of the stability of a software product (based on changes that occur 
for each release of the product). The following information is determined:

MT = number of modules in the current release
Fc = number of modules in the current release that have been changed
Fa = number of modules in the current release that have been added
Fd =  number of modules from the preceding release that were deleted in the 

current release
The software maturity index is computed in the following manner:

SMI =
MT − (Fa + Fc + Fd)

MT

As SMI approaches 1.0, the product begins to stabilize. SMI may also be used as a 
metric for planning software maintenance activities. The mean time to produce a 
release of a software product can be correlated with SMI, and empirical models for 
maintenance effort can be developed.

 23.6 pro c e s s a n d pro j e c t Me t r i c s

Process metrics are collected across all projects and over long periods of time. Their 
intent is to provide a set of process indicators that lead to long-term software process 
improvement (Chapter 28). Project metrics enable a software project manager to 
(1) assess the status of an ongoing project, (2) track potential risks, (3) uncover prob-
lem areas before they go “critical,” (4) adjust work flow or tasks, and (5) evaluate the 
project team’s ability to control quality of software work products.

Measures that are collected by a project team and converted into metrics for use 
during a project can also be transmitted to those with responsibility for software 
process improvement. For this reason, many of the same metrics are used in both 
the process and project domains.

Unlike software process metrics that are used for strategic purposes, software proj-
ect measures are tactical. That is, project metrics and the indicators derived from them 
are used by a project manager and a software team to adapt project work flow and 
technical activities.

The only rational way to improve any process is to measure specific attributes of 
the process, develop a set of meaningful metrics based on these attributes, and then 
use the metrics to provide indicators that will lead to a strategy for improvement 
(Chapter 28). But before we discuss software metrics and their impact on software 
process improvement, it is important to note that process is only one of a number of 
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“controllable factors in improving software quality and organizational performance” 
[Pau94].

Referring to Figure 23.3, process sits at the center of a triangle connecting three 
factors that have a profound influence on software quality and organizational perfor-
mance. The skill and motivation of people have been shown [Boe81] to be the most 
influential factors in quality and performance. The complexity of the product can have 
a substantial impact on quality and team performance. The technology (i.e., the soft-
ware engineering methods and tools) that populates the process also has an impact.

In addition, the process triangle exists within a circle of environmental conditions 
that include the development environment (e.g., integrated software tools), business 
conditions (e.g., deadlines, business rules), and customer characteristics (e.g., ease of 
communication and collaboration).

You can only measure the efficacy of a software process indirectly. That is, you 
derive a set of metrics based on the outcomes that can be derived from the process. 
Outcomes include measures of errors uncovered before release of the software, defects 
delivered to and reported by end users, work products delivered (productivity), human 
effort expended, calendar time used, schedule conformance, and other measures. You 
can also derive process metrics by measuring the characteristics of specific software 
engineering tasks. For example, you might measure the effort and time spent perform-
ing the umbrella activities and the generic software engineering activities described 
in Chapter 1.

The first application of project metrics on most software projects occurs during 
estimation. Metrics collected from past projects are used as a basis from which 
effort and time estimates are made for current software work. As a project proceeds,  

Figure 23.3
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measures of effort and calendar time expended are compared to original estimates 
(and the project schedule). The project manager uses these data to monitor and control 
progress.

As technical work commences, other project metrics begin to have significance. 
Production rates represented in terms of models created, review hours, function 
points, and delivered source lines are measured. In addition, errors uncovered during 
each software engineering task are tracked. As the software evolves from require-
ments into design, technical metrics are collected to assess design quality and to 
provide indicators that will influence the approach taken to code generation and 
testing.

The intent of project metrics is twofold. First, these metrics are used to minimize 
the development schedule by making the adjustments necessary to avoid delays and 
mitigate potential problems and risks. Second, project metrics are used to assess prod-
uct quality on an ongoing basis and, when necessary, modify the technical approach 
to improve quality.

As quality improves, defects are minimized, and as the defect count goes down, 
the amount of rework required during the project is also reduced. This leads to a 
reduction in overall project cost.

Software process metrics can provide significant benefits as an organization works 
to improve its overall level of process maturity. However, like all metrics, these can 
be misused, creating more problems than they solve. Grady [Gra92] suggests a “soft-
ware metrics etiquette” that is appropriate for both managers and practitioners as they 
institute a process metrics program:

∙ Use common sense and organizational sensitivity when interpreting metrics 
data.

∙ Provide regular feedback to the individuals and teams who collect measures 
and metrics.

∙ Don’t use metrics to appraise individuals.
∙ Work with practitioners and teams to set clear goals and metrics that will be 

used to achieve them.
∙ Never use metrics to threaten individuals or teams.
∙ Metrics data that indicate a problem area should not be considered “negative.” 

These data are merely an indicator for process improvement.
∙ Don’t obsess on a single metric to the exclusion of other important metrics.

As an organization becomes more comfortable with the collection and use of process 
metrics, the derivation of simple indicators gives way to a more rigorous approach 
called statistical software process improvement (SSPI). In essence, SSPI uses software 
failure analysis to collect information about all errors and defects14 encountered as an 
application, system, or product is developed and used.

14 In this book, an error is defined as some flaw in a software engineering work product that 
is uncovered before the software is delivered to the end user. A defect is a flaw that is 
uncovered after delivery to the end user. It should be noted that others do not make this 
distinction.
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 23.7 so f t wa r e Me a s u r e M e n t

Measurements in the physical world can be categorized in two ways: direct measures 
(e.g., the length of a bolt) and indirect measures (e.g., the “quality” of bolts produced, 
measured by counting rejects). Software metrics can be categorized similarly.

Direct measures of the software process include cost and effort applied. Direct 
measures of the product include lines of code (LOC) produced, execution speed, 
memory size, and defects reported over some set period of time. Indirect measures of 
the product include functionality, quality, complexity, efficiency, reliability, maintain-
ability, and many other “–abilities” that are discussed in Chapter 15.

Establishing a Metrics Approach

The scene: Doug Miller’s office 
as the SafeHome software 

project is about to begin.

The players: Doug Miller, manager of the 
SafeHome software engineering team, and 
Vinod Raman and Jamie Lazar, members of 
the product software engineering team.

The conversation:
Doug: Before we start work on this project, I’d 
like you guys to define and collect a set of simple 
metrics. To start, you’ll have to define your goals.

Vinod (frowning): We’ve never done that 
before, and . . .

Jamie (interrupting): And based on the time 
line management has been talking about, we’ll 
never have the time. What good are metrics 
anyway?

Doug (raising his hand to stop the on-
slaught): Slow down and take a breath, guys. 
The fact that we’ve never done it before is all 
the more reason to start now, and the metrics 
work I’m talking about shouldn’t take much 
time at all . . . in fact, it just might save us time.

Vinod: How?

Doug: Look, we’re going to be doing a lot 
more in-house software engineering as our 
products get more intelligent, become context 
aware, mobile, all that . . . and we need to 
understand the process we use to build 
software . . . and improve it so we can build 

software better. The only way to do that is to 
measure.

Jamie: But we’re under time pressure, Doug. 
I’m not in favor of more paper pushing . . . we 
need the time to do our work, not collect data.

Doug (calmly): Jamie, an engineer’s work in-
volves collecting data, evaluating it, and using 
the results to improve the product and the 
process. Am I wrong?

Jamie: No, but . . .

Doug: What if we hold the number of 
measures we collect to no more than five 
or six and focus on quality?

Vinod: No one can argue against high 
quality . . .

Jamie: True . . . but, I don’t know. I still think 
this isn’t necessary.

Doug: I’m going to ask you to humor me on 
this one. How much do you guys know about 
software metrics?

Jamie (looking at Vinod): Not much.

Doug: Here are some Web refs . . . spend a 
few hours getting up to speed.

Jamie (smiling): I thought you said this 
wouldn’t take any time.

Doug: Time you spend learning is never 
wasted . . . go do it, and then we’ll establish 
some goals, ask a few questions, and define 
the metrics we need to collect.

safeHoMe
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The cost and effort required to build software, the number of lines of code pro-
duced, and other direct measures are relatively easy to collect, as long as specific 
conventions for measurement are established in advance. However, the quality and 
functionality of software or its efficiency or maintainability are more difficult to assess 
and can be measured only indirectly.

We have partitioned the software metrics domain into process, project, and product 
metrics and noted that product metrics that are private to an individual are often 
combined to develop project metrics that are public to a software team. Project met-
rics are then consolidated to create process metrics that are public to the software 
organization as a whole. But how does an organization combine metrics that come 
from different individuals or projects?

To illustrate, consider a simple example. Individuals on two different project teams 
record and categorize all errors that they find during the software process. Individual 
measures are then combined to develop team measures. Team A found 342 errors 
during the software process prior to release. Team B found 184 errors. All other things 
being equal, which team is more effective in uncovering errors throughout the pro-
cess? Because you do not know the size or complexity of the projects, you cannot 
answer this question. However, if the measures are normalized, it is possible to create 
software metrics that enable comparison to broader organizational averages.

Size-oriented software metrics are derived by normalizing quality and/or productiv-
ity measures by considering the size of the software that has been produced. If a 
software organization maintains simple records, a table of size-oriented measures, 
such as the one shown in Figure 23.4, can be created. The table lists each software 
development project that has been completed over the past few years and correspond-
ing measures for that project. Referring to the table entry (Figure 23.4) for project 
alpha: 12,100 lines of code were developed with 24 person-months of effort at a cost 
of $168,000. It should be noted that the effort and cost recorded in the table represent 
all software engineering activities (analysis, design, code, and test), not just coding. 
Further information for project alpha indicates that 365 pages of documentation were 
developed, 134 errors were recorded before the software was released, and 29 defects 
were encountered after release to the customer within the first year of operation. Three 
people worked on the development of software for project alpha.

To develop metrics that can be assimilated with similar metrics from other projects, 
you can choose lines of code as a normalization value. From the rudimentary data 

Figure 23.4 Size-oriented metrics
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contained in the table, a set of simple size-oriented metrics can be developed for each 
project:

∙ Errors per KLOC (thousand lines of code)
∙ Defects per KLOC
∙ $ per KLOC
∙ Pages of documentation per KLOC

In addition, other interesting metrics can be computed:

∙ Errors per person-month
∙ KLOC per person-month
∙ $ per page of documentation

Size-oriented metrics are not universally accepted as the best way to measure the 
software process. Most of the controversy swirls around the use of lines of code as a 
key measure. Proponents of the LOC measure claim that LOC is an “artifact” of all 
software development projects that can be easily counted, that many existing software 
estimation models use LOC or KLOC as a key input, and that a large body of litera-
ture and data predicated on LOC already exists. On the other hand, opponents argue 
that LOC measures are programming language dependent, that when productivity is 
considered, they penalize well-designed but shorter programs; that they cannot easily 
accommodate nonprocedural languages; and that their use in estimation requires a 
level of detail that may be difficult to achieve (i.e., the planner must estimate the LOC 
to be produced long before analysis and design have been completed).

Similar arguments, pro and con, can be made for function-oriented metrics such 
as function points (FP) or use case points (both are discussed in Chapter 25). Function-
oriented software metrics use a measure of the functionality delivered by the applica-
tion as a normalization value. Computation of a function-oriented metric is based on 
characteristics of the software’s information domain and complexity.

The function point, like the LOC measure, is controversial. Proponents claim that 
FP is programming language–independent, making it ideal for applications using con-
ventional and nonprocedural languages, and that it is based on data that are more 
likely to be known early in the evolution of a project, making FP more attractive as 
an estimation approach. Opponents claim that the method requires some “sleight of 
hand” in that computation is based on subjective rather than objective data, that counts 
of the information domain (and other dimensions) can be difficult to collect after the 
fact, and that FP has no direct physical meaning—it’s just a number.

Function points and LOC-based metrics have been found to be relatively accurate 
predictors of software development effort and cost. However, to use LOC and FP for 
estimation (Chapter 25), an historical baseline of information must be established. It 
is this historical data that over time will let you judge the value of a particular metric 
on future projects.

Size-oriented measures (e.g., LOC) and function-oriented measures are often used 
to derive productivity metrics. This invariably leads to a debate about the use of such 
data. Should the LOC/person-month (or FP/person-month) of one group be compared 
to similar data from another? Should managers appraise the performance of individuals 
by using these metrics? The answer to these questions is an emphatic no! The reason 
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for this response is that many factors influence productivity, making for “apples and 
oranges” comparisons that can be easily misinterpreted.

Within the context of process and project metrics, you should be concerned primar-
ily with productivity and quality—measures of software development “output” as a 
function of effort and time applied and measures of the “fitness for use” of the work 
products that are produced.

For process improvement and project planning purposes, your interest is historical. 
What was software development productivity on past projects? What was the quality 
of the software that was produced? How can past productivity and quality data be 
extrapolated to the present? How can it help us improve the process and plan new 
projects more accurately?

 23.8 Me t r i c s f o r so f t wa r e Qua L i t y

The quality of a system, application, or product is only as good as the requirements 
that describe the problem, the design that models the solution, the code that leads to 
an executable program, and the tests that exercise the software to uncover errors. 
Software is a complex entity. Therefore, errors are to be expected as work products 
are developed. Process metrics are intended to improve the software process so that 
errors are uncovered in the most effective manner.

You can use measurement to assess the quality of the requirements and design 
models, the source code, and the test cases that have been created as the software is 
engineered. To accomplish this real-time assessment, you apply product metrics to 
evaluate the quality of software engineering work products in objective rather than 
subjective ways.

A project manager must also evaluate quality as the project progresses. Private 
metrics collected by individual software engineers are combined to provide project-
level results. Although many quality measures can be collected, the primary thrust at 
the project level is to measure errors and defects. Metrics derived from these measures 
provide an indication of the effectiveness of individual and group software quality 
assurance and control activities.

Metrics such as work product errors per function point, errors uncovered per review 
hour, and errors uncovered per testing hour provide insight into the efficacy of each 
of the activities implied by the metric. Error data can also be used to compute the 
defect removal efficiency (DRE) for each process framework activity. DRE is dis-
cussed later in this section.

Although there are many measures of software quality, correctness, maintainability, 
integrity, and usability provide useful indicators for the project team. Gilb [Gil88] 
suggests definitions and measures for each.

Correctness. Correctness is the degree to which the software performs its 
required function. Defects (lack of correctness) are those problems reported 
by a user of the program after the program has been released for general use. 
For quality assessment purposes, defects are counted over a standard period 
of time, typically one year. The most common measure for correctness is 
defects per KLOC, where a defect is defined as a verified lack of 
conformance to requirements.



CHAPTER 23 SOFTWARE METRICS AND ANALYTICS  483

Maintainability. Maintainability is the ease with which a program can be 
corrected if an error is encountered, adapted if its environment changes, or 
enhanced if the customer desires a change in requirements. There is no way 
to measure maintainability directly; therefore, we must use indirect mea-
sures. A simple time-oriented metric is mean time to change (MTTC), the 
time it takes to analyze the change request, design an appropriate modifica-
tion, implement the change, test it, and distribute the change to all users.
Integrity. This attribute measures a system’s ability to withstand attacks 
(both accidental and intentional) to its security. To measure integrity, two 
additional attributes must be defined: threat and security. Threat is the prob-
ability (which can be estimated or derived from empirical evidence) that an 
attack of a specific type will occur within a given time. Security is the prob-
ability (which can be estimated or derived from empirical evidence) that the 
attack of a specific type will be repelled. The integrity of a system can then 
be defined as:

Integrity = Σ[1 − (threat × (1 − security))]

For example, if threat (the probability that an attack will occur) is 0.25 and 
security (the likelihood of repelling an attack) is 0.95, the integrity of the 
system is 0.99 (very high). If, on the other hand, the threat probability is 
0.50 and the likelihood of repelling an attack is only 0.25, the integrity of 
the system is 0.63 (unacceptably low).
Usability. Usability is an attempt to quantify ease of use and can be 
measured in terms of the characteristics presented in Chapter 12.

These four factors are only a sampling of those that have been proposed as measures 
for software quality.

A quality metric that provides benefit at both the project and process level is defect 
removal efficiency (DRE). In essence, DRE is a measure of the filtering ability of 
quality assurance and control actions as they are applied throughout all process frame-
work activities.

When considered for a project as a whole, DRE is defined in the following manner:

DRE =
E

E + D

where E is the number of errors found before delivery of the software to the end user 
and D is the number of defects found after delivery.

The ideal value for DRE is 1. That is, no defects are found in the software. Real-
istically, D will be greater than 0, but the value of DRE can still approach 1. As E 
increases (for a given value of D), the overall value of DRE begins to approach 1. In 
fact, as E increases, it is likely that the final value of D will decrease (errors are 
filtered out before they become defects). If used as a metric that provides an indicator 
of the filtering ability of quality control and assurance activities, DRE encourages a 
software project team to institute techniques for finding as many errors as possible 
before delivery.

DRE can also be used within the project to assess a team’s ability to find errors 
before they are passed to the next framework activity or software engineering task. 
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For example, requirements analysis produces a requirements model that can be 
reviewed to find and correct errors. Those errors that are not found during the review 
of the requirements model are passed on to design (where they may or may not be 
found). When used in this context, we redefine DRE as

DREi =
Ei

Ei + Ei+1

where Ei is the number of errors found during software engineering action i and Ei+1 
is the number of errors found during software engineering action i + 1 that are trace-
able to errors that were not discovered in software engineering action i.

A quality objective for a software team (or an individual software engineer) is to 
achieve a DREi that approaches 1. That is, errors should be filtered out before they 
are passed on to the next activity or action. If DRE is low as you move through 
analysis and design, spend some time improving the way you conduct formal techni-
cal reviews.

A Metrics-Based Quality Approach

The scene: Doug Miller’s office 
2 days after initial meeting on 

software metrics.

The players: Doug Miller, manager of the 
SafeHome software engineering team, and 
Vinod Raman and Jamie Lazar, members of the 
product software engineering team.

The conversation:
Doug: Did you both have a chance to learn a 
little about process and project metrics?

Vinod and Jamie: (Both nod.)

Doug: It’s always a good idea to establish 
goals when you adopt any metrics. What are 
yours?

Vinod: Our metrics should focus on quality. 
In fact, our overall goal is to keep the number 
of errors we pass on from one software 
engineering activity to the next to an  
absolute minimum.

Doug: And be very sure you keep the number 
of defects released with the product to as 
close to zero as possible.

Vinod (nodding): Of course.

Jamie: I like DRE as a metric, and I think we 
can use it for the entire project, but also as we 
move from one framework activity to the next. 
It’ll encourage us to find errors at each step.

Vinod: I’d also like to collect the number of 
hours we spend on reviews.

Jamie: And the overall effort we spend on 
each software engineering task.

Doug: You can compute a review-to-
development ratio . . . might be interesting.

Jamie: I’d like to track some use case data  
as well. Like the amount of effort required to 
develop a use case, the amount of effort 
required to build software to implement a use 
case, and . . .

Doug (smiling): I thought we were going to 
keep this simple.

Vinod: We should, but once you get into this 
metrics stuff, there’s a lot of interesting things 
to look at.

Doug: I agree, but let’s walk before we run 
and stick to our goal. Limit data to be collected 
to five or six items, and we’re ready to go.

safeHoMe
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 23.9 esta b L i s H i ng so f t wa r e Me t r i c s pro g r a M s

The Software Engineering Institute has developed a comprehensive guidebook 
[Par96b] for establishing a “goal-driven” software metrics program. The guidebook 
suggests the following steps: (1) identify your business goals, (2) identify what you 
want to know or learn, (3) identify your subgoals, (4) identify the entities and attri-
butes related to your subgoals, (5) formalize your measurement goals, (6) identify 
quantifiable questions and the related indicators that you will use to help you achieve 
your measurement goals, (7) identify the data elements that you will collect to con-
struct the indicators, (8) identify the measures to be used, and make these definitions 
operational, (9) identify the actions that you will take to implement the measures, and 
(10) prepare a plan for implementing the measures. A detailed discussion of these 
steps is best left to the SEI’s guidebook. However, a brief overview of key points is 
illustrated by the following example.

Because software supports business functions, differentiates computer-based sys-
tems or products, or acts as a product in itself, goals defined for the business can 
almost always be traced downward to specific goals at the software engineering level. 
For example, consider the SafeHome product. Working as a team, software engineer-
ing and business managers develop a list of prioritized business goals:

 1. Improve our customers’ satisfaction with our products.
 2. Make our products easier to use.
 3. Reduce the time it takes us to get a new product to market.
 4. Make support for our products easier.
 5. Improve our overall profitability.

The software organization examines each business goal and asks: “What activities do 
we manage, execute, or support and what do we want to improve within these activ-
ities?” To answer these questions, the SEI recommends the creation of an “entity-
question list” in which all things (entities) within the software process that are managed 
or influenced by the software organization are noted. Examples of entities include 
development resources, work products, source code, test cases, change requests, soft-
ware engineering tasks, and schedules. For each entity listed, software people develop 
a set of questions that assess quantitative characteristics of the entity (e.g., size, cost, 
time to develop). The questions derived as a consequence of the creation of an entity-
question list lead to the derivation of a set of subgoals that relate directly to the enti-
ties created and the activities performed as part of the software process.

Consider the fourth goal: “Make support for our products easier.” The following 
list of questions might be derived for this goal [Par96b]:

∙ Do customer change requests contain the information we require to adequately 
evaluate the change and then implement it in a timely manner?

∙ How large is the change request backlog?
∙ Is our response time for fixing bugs acceptable based on customer need?
∙ Is our change control process (Chapter 22) followed?
∙ Are high-priority changes implemented in a timely manner?
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Based on these questions, the software organization can derive the following subgoal: 
Improve the performance of the change management process. The software process 
entities and attributes that are relevant to the subgoal are identified, and the measure-
ment goals associated with them are delineated.

The SEI [Par96b] provides detailed guidance for steps 6 through 10 of its goal-
driven measurement approach. In essence, you refine measurement goals into questions 
that are further refined into entities and attributes that are then refined into metrics.

The vast majority of software development organizations have fewer than 20 soft-
ware people. It is unreasonable, and in most cases unrealistic, to expect that such 
organizations will develop comprehensive software metrics programs. However, it is 
reasonable to suggest that software organizations15 of all sizes measure and then use 
the resultant metrics to help improve their local software process and the quality and 
timeliness of the products they produce.

A small organization can begin by focusing not on measurement but rather on 
results. The software group is polled to define a single objective that requires improve-
ment. For example, “reduce the time to evaluate and implement change requests.” A 
small organization might select the following set of easily collected measures:

∙ Time (hours or days) elapsed from the time a request is made until evaluation 
is complete, tqueue.

∙ Effort (person-hours) to perform the evaluation, Weval.
∙ Time (hours or days) elapsed from completion of evaluation to assignment of 

change order to personnel, teval.

∙ Effort (person-hours) required to make the change, Wchange.
∙ Time required (hours or days) to make the change, tchange.

∙ Errors uncovered during work to make change, Echange.
∙ Defects uncovered after change is released to the customer base, Dchange.

Once these measures have been collected for a number of change requests, it is 
possible to compute the total elapsed time from change request to implementation of 
the change and the percentage of elapsed time absorbed by initial queuing, evaluation 
and change assignment, and change implementation. Similarly, the percentage of effort 
required for evaluation and implementation can be determined. These metrics can be 
assessed in the context of quality data, Echange and Dchange. The percentages provide 
insight into where the change request process slows down and may lead to process 
improvement steps to reduce tqueue, Weval, teval, Wchange, and/or Echange. In addition, the 
defect removal efficiency can be computed as

DRE =
Echange

Echange + Dchange

DRE can be compared to elapsed time and total effort to determine the impact of 
quality assurance activities on the time and effort required to make a change.

The majority of software developers still do not measure, and sadly, most have 
little desire to begin. As we noted previously in this chapter, the problem is cultural. 

15 This discussion is equally relevant to software teams that have adopted an agile software 
development process (Chapter 3).
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Attempting to collect measures where none have been collected in the past often pre-
cipitates resistance. “Why do we need to do this?” asks a harried project manager. 
“I don’t see the point,” complains an overworked practitioner. Why is it so important 
to measure the process of software engineering and the product (software) that it pro-
duces? The answer is relatively obvious. If you do not measure, there is no real way 
of determining whether you are improving. And if you are not improving, you are lost.

 23.10 su M M a ry

Measurement enables managers and practitioners to improve the software process; 
assist in the planning, tracking, and control of software projects; and assess the qual-
ity of the product (software) that is produced. Measures of specific attributes of the 
process, project, and product are used to compute software metrics. These metrics can 
be analyzed to provide indicators that guide management and technical actions.

Process metrics enable an organization to take a strategic view by providing insight 
into the effectiveness of a software process. Project metrics are tactical. They enable a 
project manager to adapt project work flow and technical approach in a real-time manner.

Measurement results in cultural change. Data collection, metrics computation, and 
metrics analysis are the three steps that must be implemented to begin a metrics 
program. In general, a goal-driven approach helps an organization focus on the right 
metrics for its business.

Both size- and function-oriented metrics are used throughout the industry. Size-
oriented metrics use the line of code as a normalizing factor for other measures such 
as person-months or defects. Few product metrics have been proposed for direct use 
in software testing and maintenance. However, many other product metrics can be 
used to guide the testing process and as a mechanism for assessing the maintainability 
of a computer program.

Software metrics provide a quantitative way to assess the quality of internal prod-
uct attributes, thereby enabling you to assess quality before the product is built. 
Metrics provide the insight necessary to create effective requirements and design 
models, solid code, and thorough tests.

Software quality metrics, like productivity metrics, focus on the process, the proj-
ect, and the product. By developing and analyzing a metrics baseline for quality, an 
organization can correct those areas of the software process that are the cause of 
software defects.

To be useful in a real-world context, a software metric must be simple and comput-
able, persuasive, consistent, and objective. It should be programming language inde-
pendent and provide you with effective feedback.

pro b L e M s a n d po i n t s to po n d e r

23.1. Software for System X has 24 individual functional requirements and 14 nonfunctional 
requirements. What is the specificity of the requirements? The completeness?

23.2. A major information system has 1140 modules. There are 96 modules that perform con-
trol and coordination functions and 490 modules whose function depends on prior processing. 
The system processes approximately 220 data objects that each has an average of three attributes. 
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There are 140 unique database items and 90 different database segments. Finally, 600 modules 
have single entry and exit points. Compute the DSQI for this system.

23.3. A class X has 12 operations. Cyclomatic complexity has been computed for all operations 
in the OO system, and the average value of module complexity is 4. For class X, the complex-
ity for operations 1 to 12 is 5, 4, 3, 3, 6, 8, 2, 2, 5, 5, 4, 4, respectively. Compute the weighted 
methods per class.

23.4. A legacy system has 940 modules. The latest release required that 90 of these modules 
be changed. In addition, 40 new modules were added and 12 old modules were removed. 
Compute the software maturity index for the system.

23.5. Why should some software metrics be kept “private”? Provide examples of three metrics 
that should be private. Provide examples of three metrics that should be public.

23.6. Team A found 342 errors during the software engineering process prior to release. Team 
B found 184 errors. What additional measures would have to be made for projects A and B to 
determine which of the teams eliminated errors more efficiently? What metrics would you 
propose to help in making the determination? What historical data might be useful?

23.7. A Web engineering team has built an e-commerce WebApp that contains 145 individual 
pages. Of these pages, 65 are dynamic; that is, they are internally generated based on end-user 
input. What is the customization index for this application?

23.8. A WebApp and its support environment have not been fully fortified against attack. Web 
engineers estimate that the likelihood of repelling an attack is only 30 percent. The system does 
not contain sensitive or controversial information, so the threat probability is 25 percent. What 
is the integrity of the WebApp?

23.9. At the conclusion of a project, it has been determined that 30 errors were found during 
the modeling phase and 12 errors were found during the construction phase that were traceable 
to errors not discovered in the modeling phase. What is the DRE for these two phases?

23.10. A software team delivers a software increment to end users. The users uncover eight 
defects during the first month of use. Prior to delivery, the software team found 242 errors 
during formal technical reviews and all testing tasks. What is the overall DRE for the project 
after 1 month’s usage?

Design element: Quick Look icon magnifying glass: © Roger Pressman



489

P A R T

Four
Managing  

Software Projects

In this part of Software Engineering: A Practitioner’s Approach, you’ll 
learn the management techniques required to plan, organize, monitor, and 
control software projects. These questions are addressed in the chapters 
that follow:

∙ How must people, process, and problem be managed during a soft-
ware project?

∙ How can software metrics be used to manage a software project and 
the software process?

∙ How does a software team generate reliable estimates of effort, cost, 
and project duration?

∙ What techniques can be used to systematically assess the risks that 
can have an impact on project success?

∙ How does a software project manager select the set of software engi-
neering work tasks?

∙ How is a project schedule created?
∙ Why are maintenance and support so important for both software 

engineering managers and practitioners?
Once these questions are answered, you’ll be better prepared to manage 
software projects in a way that will lead to timely delivery of a high-
quality product constrained by the available resources.
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C H A P T E R

24 Project Management  
Concepts

What is it? Although many of us (in our darker 
moments) take Dilbert’s1 view of “manage-
ment,” it remains a very necessary activity 
when computer-based systems and products 
are built. Project management involves the 
planning, monitoring, and coordinating of peo-
ple, processes, and events that occur as soft-
ware evolves from a preliminary concept to 
full operational deployment.

Who does it? Everyone “manages” to some ex-
tent, but the scope of management activities 
varies among people involved in a software 
project. 

Why is it important? Building computer soft-
ware is a complex undertaking, particularly  
if it involves many people working over a 
relatively long time. That’s why software 
projects need to be managed.

What are the steps? Understand the four Ps—
people, product, process, and project. People 
must be organized to perform software work 
effectively. Product scope and requirements 

must be understood. A process that is appro-
priate for the people and the product should 
be selected. The project must be planned by 
estimating effort and calendar time to accom-
plish work tasks. This is true even for agile 
projects management.

What is the work product? A project plan is 
created and evolves as project activities com-
mence. The plan is a living document that de-
fines the process and tasks to be conducted, 
the people who will do the work, and the 
mechanisms for assessing risks, controlling 
change, and evaluating quality.

How do I ensure that I’ve done it 
right? You’re never completely sure that the 
project plan is right until the team has deliv-
ered a high-quality product on time and within 
budget. However, a team leader does it right 
when she encourages software people to 
work together as an effective team, focusing 
their attention on customer needs and prod-
uct quality.
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k e y 
c o n c e p t s

In the preface to his book on software project management, Meiler Page-Jones 
[Pag85] comments on software projects that are not going well, “I’ve watched 
in horror as  .  .  . managers futilely struggled through nightmarish projects, 
squirmed under impossible deadlines, or delivered systems that outraged their 
users and went on to devour huge chunks of maintenance time.”

1 Try searching for the term management on the Dilbert website: http://dilbert.com/.
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What Page-Jones describes are symptoms that result from an array of management 
and technical problems. However, if a postmortem were to be conducted for every 
project, it is very likely that a consistent theme would be encountered: project man-
agement was weak or nonexistent.

In this chapter and Chapters 25 through 27, we’ll present the key concepts that lead to 
effective software project management. This chapter considers basic software project man-
agement concepts and principles. Chapter 25 discusses the techniques that are used to 
estimate costs and create realistic (but flexible) schedules. Chapter 26 presents the manage-
ment activities that lead to effective risk monitoring, mitigation, and management. Chap-
ter 27 considers product support concerns and discusses the management issues that you’ll 
encounter when dealing with maintenance of deployed systems. Finally, Chapter 28 dis-
cusses techniques for studying and improving your team’s software engineering processes.

 24.1 th e Ma nag e M e n t sp e c t ru M

Effective software project management focuses on the four Ps: people, product, pro-
cess, and project. The order is not arbitrary. The manager who forgets that software 
engineering work is an intensely human endeavor will never have success in project 
management. A manager who fails to encourage comprehensive stakeholder commu-
nication early in the evolution of a product risks building an elegant solution for the 
wrong problem. The manager who pays little attention to the process runs the risk of 
inserting competent technical methods and tools into a vacuum. The manager who 
begins work without a solid plan jeopardizes the success of the project. The manager 
who is not ready to revise the plan when changes arise is doomed to fail.

24.1.1 The People
The cultivation of motivated, highly skilled software people has been discussed since 
the 1960s. In fact, the “people factor” is so important that the Software Engineering 
Institute has developed a People Capability Maturity Model (People-CMM), in rec-
ognition of the fact that “every organization needs to continually improve its ability 
to attract, develop, motivate, organize, and retain the workforce needed to accomplish 
its strategic business objectives” [Cur09].

The people capability maturity model defines the following key practice areas for 
software people: staffing, communication and coordination, work environment, per-
formance management, training, compensation, competency analysis and develop-
ment, career development, workgroup development, and team/culture development, 
and others. Organizations that achieve high levels of People-CMM maturity have a 
higher likelihood of implementing effective software project management practices.

24.1.2 The Product
Before a project can be planned, product objectives and scope should be established, 
alternative solutions should be considered, and technical and management constraints 
should be identified. Without this information, it is impossible to define reasonable 
(and accurate) estimates of the cost, an effective assessment of risk, a realistic 
breakdown of project tasks, or a manageable project schedule that provides a mean-
ingful indication of progress.
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As a software developer, you and other stakeholders must meet to define product 
objectives and scope. In many cases, this activity begins as part of the system engi-
neering or business process engineering and continues as the first step in software 
requirements engineering (Chapter 7). Objectives identify the overall goals for the 
product (from the stakeholders’ points of view) without considering how these goals 
will be achieved. These often take the form of user stories and formal use cases. Scope 
identifies the primary data, functions, and behaviors that characterize the product, and 
more important, attempts to bound these characteristics in a quantitative manner.

Once the product objectives and scope are understood, alternative solutions are 
considered. Although very little detail is discussed, the alternatives enable managers 
and practitioners to select a “best” approach, given the constraints imposed by deliv-
ery deadlines, budgetary restrictions, personnel availability, technical interfaces, and 
myriad other factors.

24.1.3 The Process
A software process (Chapters 2 through 4) provides the framework from which a 
comprehensive plan for software development can be established. A small number of 
framework activities are applicable to all software projects, regardless of their size or 
complexity. Even agile developers follow a change-friendly process (Chapter 3) to 
impose some discipline on their software engineering work. A number of task sets—
tasks, milestones, work products, and quality assurance points—enable the framework 
activities to be adapted to the characteristics of the software project and the require-
ments of the project team. Finally, umbrella activities—such as software quality assur-
ance, software configuration management, and measurement—overlay the process 
model. Umbrella activities are independent of any one framework activity and occur 
throughout the process.

24.1.4 The Project
We conduct planned and controlled software projects for one primary reason—it is 
the only known way to manage complexity. And yet, software teams still struggle. In 
a study of 250 large software projects between 1998 and 2004, Capers Jones [Jon04] 
found that “about 25 were deemed successful in that they achieved their schedule, 
cost, and quality objectives. About 50 had delays or overruns below 35 percent, while 
about 175 experienced major delays and overruns, or were terminated without 
completion.” Although the success rate for present-day software projects may have 
improved somewhat, our project failure rate remains much higher than it should be.2

To avoid project failure, a software project manager and the software engineers 
who build the product must avoid a set of common warning signs, understand the 
critical success factors that lead to good project management, and develop a 
commonsense approach for planning, monitoring, and controlling the project [Gha14]. 
Each of these issues is discussed in Section 24.5 and in the chapters that follow.

2 Given these statistics, it’s reasonable to ask how the impact of computers continues to grow 
exponentially. Part of the answer, we think, is that a substantial number of these “failed” proj-
ects are ill conceived in the first place. Customers lose interest quickly (because what they’ve 
requested wasn’t really as important as they first thought), and the projects are cancelled.
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 24.2 pe o p L e

People build computer software, and projects succeed because well-trained, motivated 
people get things done. All of us, from senior engineering vice presidents to the 
lowliest practitioner, often take people for granted. Managers argue that people are 
primary, but their actions sometimes belie their words. In this section, we examine 
the stakeholders who participate in the software process and the manner in which they 
are organized to perform effective software engineering.

24.2.1 The Stakeholders
The software process (and every software project) is populated by stakeholders who 
can be categorized into one of five constituencies:

 1. Senior managers (product owners) who define the business issues that often 
have a significant influence on the project.

 2. Project (technical) managers (Scrum masters or team leads) who must plan, 
motivate, organize, and coordinate the practitioners who do software work.

 3. Practitioners who deliver the technical skills that are necessary to engineer a 
product or application.

 4. Customers who specify the requirements for the software to be engineered 
and other stakeholders who have a peripheral interest in the outcome.

 5. End users who interact with the software once it is released for production use.

Every software project is populated by people who fall within this taxonomy.3 To 
be effective, the project team must be organized in a way that maximizes each person’s 
skills and abilities. And that’s the job of the team leader.

24.2.2 Team Leaders
Project management is a people-intensive activity, and for this reason, competent 
practitioners often make poor team leaders. They simply don’t have the right mix of 
people skills. And yet, as Edgemon states: “Unfortunately and all too frequently it 
seems, individuals just fall into a project manager role and become accidental project 
managers” [Edg95]. Shared leadership often helps teams perform better, but team 
leaders often monopolize decision-making authority and fail to provide team members 
with the levels of autonomy needed to complete their tasks [Hoe16].

James Kouzes has been writing about effective leadership in various technical areas 
for many years. He lists five practices found in exemplary technology leaders [Kou14]:

Model the way. Leaders must practice what they preach. They demonstrate 
commitment to the team and project through shared sacrifice (e.g., by being 
the last one to go home each night or taking the time to become an expert on 
the software application).
Inspire and shared vision. Leaders recognize that they cannot lead without 
followers. It is important to motivate team members to tie their personal 

3 When WebApps, MobileApps, or games are developed, other nontechnical people may be 
involved in content creation.
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aspirations to the team goals. This means involving stakeholders early in the 
goal-setting process.
Challenge the process. Leaders must take the initiative to look for innova-
tive ways to improve their own work and the work of their teams. Encourage 
team members to experiment and take risks by helping them generate fre-
quent small successes while learning from their failures.
Enable others to act. Foster the team’s collaborative abilities by building 
trust and facilitating relationships. Increase the team’s sense of competence 
through sharing decision making and goal setting.
Encourage the heart. Celebrate the accomplishments of individuals. Build 
community (team) spirit by celebrating shared goals and victories, both inside 
and outside the team.

Another way of looking at successful project leaders might be to suggest that they 
adopt a problem-solving management style. A software project manager should con-
centrate on understanding the problem to be solved, coordinate the flow of ideas from 
stakeholders, and let everyone on the team know (by words and, far more important, 
by actions) that quality begins with each one of them and that their input and contri-
butions are valued.

24.2.3 The Software Team
There are almost as many human organizational structures for software development 
as there are organizations that develop software. For better or worse, organizational 
structure cannot be easily modified. Concerns with the practical and political conse-
quences of organizational change are not within the software project manager’s scope 
of responsibility. However, the organization of the people directly involved in a new 
software project is within the project manager’s purview.

The “best” team structure depends on the management style of your organization, 
the number of people who will populate the team and their skill levels, and the over-
all problem difficulty. Mantei [Man81] describes seven project factors that should be 
considered when planning the structure of software engineering teams: (1) difficulty 
of the problem to be solved, (2) “size” of the resultant program(s) in lines of code or 
function points, (3) time that the team will stay together (team lifetime), (4) degree 
to which the problem can be modularized, (5) quality and reliability of the system to 
be built, (6) rigidity of the delivery date, and (7) degree of sociability (communication) 
required for the project.

Regardless of team organization, the objective for every project manager is to help 
create a team that exhibits cohesiveness. In their book Peopleware, DeMarco and 
Lister [DeM98] look for teams that “jell.” They write:

A jelled team is a group of people so strongly knit that the whole is greater than the 
sum of the parts  .  .  .

Once a team begins to jell, the probability of success goes way up. The team can 
become unstoppable, a juggernaut for success . . . They don’t need to be managed in the 
traditional way, and they certainly don’t need to be motivated. They’ve got momentum.

DeMarco and Lister contend that members of jelled teams are significantly more 
productive and more motivated than average. They share a common goal, a common 
culture, and in many cases, a “sense of eliteness” that makes them unique.
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But not all teams jell. In fact, many teams suffer from what Jackman [Jac98] calls 
“team toxicity.” She defines five factors that “foster a potentially toxic team environment”: 
(1) a frenzied work atmosphere, (2) high frustration that causes friction among team 
members, (3) a “fragmented or poorly coordinated” software process, (4) an unclear def-
inition of roles on the software team, and (5) “continuous and repeated exposure to failure.”

To avoid a frenzied work environment, the project manager should be certain that the 
team has access to all information required to do the job and that major goals and objec-
tives, once defined, should not be modified unless absolutely necessary. A software team 
can avoid frustration if it is given as much responsibility for decision making as possible. 
An inappropriate process (e.g., unnecessary or burdensome work tasks or poorly chosen 
work products) can be avoided by understanding the product to be built and the people 
doing the work and by allowing the team to select the process model. The team itself 
should establish its own mechanisms for accountability (technical reviews4 are an excel-
lent way to accomplish this) and define a series of corrective approaches when a mem-
ber of the team fails to perform. And finally, the key to avoiding an atmosphere of 
failure is to establish team-based techniques for feedback and problem solving.

Many software organizations advocate agile software development (Chapter 3) as 
an antidote to many of the problems that have plagued software project work. To 
review, the agile philosophy encourages customer satisfaction and early incremental 
delivery of software; small, highly motivated project teams; informal methods; mini-
mal software engineering work products; and overall development simplicity.

The small, highly motivated project team, also called an agile team, adopts many 
of the characteristics of successful software project teams discussed in the preceding 
section and avoids many of the toxins that create problems [Hoe16]. However, the 
agile philosophy stresses individual (team member) competency coupled with group 
collaboration as critical success factors for the team. Cockburn and Highsmith 
[Coc01a] note this when they write:

If the people on the project are good enough, they can use almost any process and 
accomplish their assignment. If they are not good enough, no process will repair their 
inadequacy—“people trump process” is one way to say this. However, lack of user and 
executive support can kill a project—“politics trump people.” Inadequate support can 
keep even good people from accomplishing the job  .  .  .

To make effective use of the competencies of each team member and to foster 
effective collaboration through a software project, agile teams are self-organizing.

Many agile process models (e.g., Scrum) give the agile team significant autonomy 
to make the project management and technical decisions required to get the job done. 
Planning is kept to a minimum, and the team is allowed to select its own approach 
(e.g., process, methods, tools), constrained only by business requirements and organi-
zational standards. As the project proceeds, the team self-organizes to focus individual 
competency in a way that is most beneficial to the project at a given point in time.

To accomplish this, an agile team might conduct daily team meetings to coordinate 
and synchronize the work that must be accomplished for that day. Based on informa-
tion obtained during these meetings, the team adapts its approach in a way that accom-
plishes an increment of work. As each day passes, continual self-organization and 
collaboration move the team toward a completed software increment.

4 Technical reviews are discussed in detail in Chapter 16.
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24.2.4 Coordination and Communication Issues
There are many reasons that software projects get into trouble. The scale of many 
development efforts is large, leading to complexity, confusion, and significant difficul-
ties in coordinating team members. Uncertainty is common, resulting in a continuing 
stream of changes that ratchets the project team. Interoperability has become a key 
characteristic of many systems. New software must communicate with existing soft-
ware and conform to predefined constraints imposed by the system or product.

These characteristics of modern software—scale, uncertainty, and interoperability—
are facts of life. To deal with them effectively, you must establish effective methods 
for coordinating the people who do the work. To accomplish this, mechanisms for 
formal and informal communication among team members and between multiple 
teams must be established. Formal communication is accomplished through “writing, 
structured meetings, and other relatively non-interactive and impersonal communica-
tion channels” [Kra95]. Informal communication is more personal. Members of a 
software team share ideas on an ad hoc basis, ask for help as problems arise, and 
interact with one another on a daily basis.

Team Structure

The scene: Doug Miller’s office 
prior to the initiation of the 

SafeHome software project.

The players: Doug Miller, manager of the 
SafeHome software engineering team, and 
Vinod Raman, Jamie Lazar, and other members 
of the product software engineering team.

The conversation:
Doug: Have you guys had a chance to look 
over the preliminary info on SafeHome that 
marketing has prepared?

Vinod (nodding and looking at his teammates):  
Yes. But we have a bunch of questions.

Doug: Let’s hold on that for a moment. I’d like 
to talk about how we are going to structure the 
team, who’s responsible for what . . .

Jamie: I’m really into the agile philosophy, 
Doug. I think we should be a self-organizing 
team.

Vinod: I agree. Given the tight time line and 
some of the uncertainty, and the fact that we’re 
all really competent [laughs], that seems like 
the right way to go.

Doug: That’s okay with me, but you guys 
know the drill.

Jamie (smiling and talking as if she was recit-
ing something): We make tactical decisions, 
about who does what and when, but it’s our 
responsibility to get product out the door on 
time.

Vinod: And with quality.

Doug: Exactly. But remember there are con-
straints. Marketing defines the software incre-
ments to be produced—in consultation with us, 
of course.

Jamie: And?

Doug: And, we’re going to use UML as our 
modeling approach.

Vinod: But keep extraneous documentation to 
an absolute minimum.

Doug: Who is the liaison with me?

Jamie: We decided that Vinod will be the tech 
lead—he’s got the most experience, so Vinod 
is your liaison, but feel free to talk to any of us.

Doug (laughing): Don’t worry, I will.

safehoMe
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 24.3 pro d u c t

A software project manager is confronted with a dilemma at the very beginning of a 
software project. Quantitative estimates and an organized plan are required, but solid 
information is unavailable. A detailed analysis of software requirements would provide 
information necessary for estimates, but analysis often takes weeks or even months 
to complete. Worse, requirements may be fluid, changing regularly as the project 
proceeds. Yet, a plan is needed now!

Like it or not, you must examine the product and the problem it is intended to 
solve at the very beginning of the project. At a minimum, the scope of the product 
must be established and bounded.

24.3.1 Software Scope
The first software project management activity is the determination of software scope. 
Scope is defined by answering the following questions:

Context. How does the software to be built fit into a larger system, product, 
or business context, and what constraints are imposed as a result of the context?
Information objectives. What customer-visible data objects are produced as 
output from the software? What data objects are required for input?
Function and performance. What function does the software perform to 
transform input data into output? Are any special performance characteristics 
to be addressed?

Software project scope must be unambiguous and understandable at the manage-
ment and technical levels. A statement of software scope must be bounded. That is, 
quantitative data (e.g., number of simultaneous users, size of mailing list, maximum 
allowable response time) are stated explicitly, constraints and/or limitations (e.g., prod-
uct cost restricts memory size) are noted, and mitigating factors (e.g., desired algo-
rithms are well understood and available in Java) are described. Even in the most fluid 
situations, the number of prototypes needs to be considered and the scope of the first 
prototype needs to be set.

24.3.2 Problem Decomposition
Problem decomposition, sometimes called partitioning or problem elaboration, is an 
activity that sits at the core of software requirements analysis (Chapters 7 and 8). 
During the scoping activity, no attempt is made to fully decompose the problem. 
Rather, decomposition is applied in two major areas: (1) the functionality and content 
(information) that must be delivered and (2) the process that will be used to deliver it. 
This can be accomplished using a list of functions or with use cases or for agile work, 
user stories.

Human beings tend to apply a divide-and-conquer strategy when they are con-
fronted with a complex problem. Stated simply, a complex problem is partitioned into 
smaller problems that are more manageable. This is the strategy that applies as proj-
ect planning begins. Software functions, described in the statement of scope, are 
evaluated and refined to provide more detail prior to the beginning of estimation 
(Chapter 25). Because both cost and schedule estimates are functionally oriented, 
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some degree of decomposition is often useful. Similarly, major content or data objects 
are decomposed into their constituent parts, providing a reasonable understanding of 
the information to be produced by the software.

 24.4 pro c e s s

The framework activities (Chapter 1) that characterize the software process are appli-
cable to all software projects. The problem is to select the process model that is appro-
priate for the software to be engineered by your project team. The recommended process 
model in Chapter 4 may be a good starting point for many project teams to consider.

Your team must decide which process model is most appropriate for (1) the cus-
tomers who have requested the product and the people who will do the work, (2) the 
characteristics of the product itself, and (3) the project environment in which the 
software team works. When a process model has been selected, the team then defines 
a preliminary project plan based on the set of process framework activities. Once the 
preliminary plan is established, process decomposition begins. That is, a complete 
plan, reflecting the work tasks required to populate the framework activities, must be 
created. We explore these activities briefly in the sections that follow and present a 
more detailed view in Chapter 25.

24.4.1 Melding the Product and the Process
Project planning begins with the melding of the product and the process. Each func-
tion to be engineered by your team must pass through the set of framework activities 
that have been defined for your software organization. The process framework estab-
lishes a skeleton for project planning. It is adapted by allocating a task set that is 
appropriate to the project. Assume that the organization has adopted the generic 
framework activities—communication, planning, modeling, construction, and 
deployment—discussed in Chapter 1.

The team members who work on a product function will apply each of the frame-
work activities to it. In essence, a matrix similar to the one shown in Figure 24.1 is 
created. Each major product function (the figure lists functions for the fitness app 
software discussed in Chapter 2) or user story is listed in the left-hand column. Frame-
work activities are listed in the top row. Software engineering work tasks (for each 
framework activity) would be entered in the following row.5 The job of the project 
manager (and other team members) is to estimate resource requirements for each 
matrix cell, start and end dates for the tasks associated with each cell, and work 
products to be produced as a consequence of each task. These activities are considered 
in Chapter 25.

24.4.2 Process Decomposition
A software team should have a significant degree of flexibility in choosing the soft-
ware process model that is best for the project and the software engineering tasks that 

5 It should be noted that work tasks must be adapted to the specific needs of the project based 
on a number of adaptation criteria.
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populate the process model once it is chosen. A relatively small project that is simi-
lar to past efforts might be best accomplished using a single sprint approach. If the 
deadline is so tight that full functionality cannot reasonably be delivered, an incremental 
strategy might be best. Similarly, projects with other characteristics (e.g.,  uncertain 
requirements, breakthrough technology, difficult customers, or potential for significant 
component reuse) will lead to the selection of other process models.6

Once the process model has been chosen, the process framework is adapted to it. 
In every case, the generic process framework discussed earlier can be used. It will 
work for linear models, for iterative and incremental models, for evolutionary models, 
and even for concurrent or component assembly models. The process framework is 
invariant and serves as the basis for all work performed by a software organization.

But actual work tasks do vary. Process decomposition commences when the proj-
ect manager asks, “How do we accomplish this framework activity?” For example, a 
small, relatively simple project might require the following work tasks for the com-
munication activity:
 1. Develop a list of clarification issues.
 2. Meet with stakeholders to address clarification issues.
 3. Jointly develop a statement of scope by listing the user stories.
 4. Review the statement of scope with all concerned, and determine the 

importance of each user story to the stakeholders.
 5. Modify the statement of scope as required.

Figure 24.1
Melding the 
problem and 
the process
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6 Recall that project characteristics also have a strong bearing on the structure of the software 
team (Section 24.2.3).
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These events might occur over a period of less than 48 hours. They represent a process 
decomposition that is appropriate for the small, relatively simple project.

Now, consider a more complex project, which has a broader scope and more 
significant business impact. Such a project might require the following work tasks for 
the communication:

 1. Review the customer request.
 2. Plan and schedule a formal, facilitated meeting with all stakeholders.
 3. Conduct research to specify the proposed solution and existing approaches.
 4. Prepare a “working document” and an agenda for the formal meeting.
 5. Conduct the meeting.
 6. Jointly develop mini-specs that reflect data, function, and behavioral features 

of the software. This is often done by developing use cases that describe the 
software from the user’s point of view.

 7. Review each mini-spec or use case for correctness, consistency, and lack of 
ambiguity.

 8. Assemble the mini-specs into a scoping document.
 9. Review the collection of use cases with all concerned, and determine their 

relative importance to all stakeholders.
 10. Modify the scoping document or use cases as required.

Both projects perform the framework activity that we call communication, but the 
first project team performs half as many software engineering work tasks as the 
second.

 24.5 pro j e c t

To manage a successful software project, you have to understand what can go wrong 
so that problems can be avoided. In an excellent paper on software projects, John Reel 
[Ree99] defines signs that indicate that an information systems project is in jeopardy. 
In some cases, software people don’t understand their customer’s needs. This leads to 
a project with a poorly defined scope. In other projects, changes are managed poorly. 
Sometimes the chosen technology changes or business needs shift and management 
sponsorship is lost. Management can set unrealistic deadlines or end users can be 
resistant to the new system. There are cases in which the project team simply does 
not have the requisite skills. And finally, there are developers who never seem to learn 
from their mistakes.

Jaded industry professionals often refer to the “90–90 rule” when discussing par-
ticularly difficult software projects: The first 90 percent of a system absorbs 90 per-
cent of the allotted effort and time. The last 10 percent takes another 90 percent of 
the allotted effort and time [Zah94]. The seeds that lead to the 90–90 rule are contained 
in the signs noted in the preceding paragraph.

But enough negativity! What are the characteristics of successful software projects? 
Ghazi [Gha14] and her colleagues note several characteristics that are present in 
successful software projects and also found in most well-designed process models.
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 1. Clear and well-understood requirements accepted by all stakeholders
 2. Active and continuous participation of users throughout the development process
 3. A project manager with required leadership skills who is able to share project 

vision with the team
 4. A project plan and schedule developed with stakeholder participation to 

achieve user goals
 5. Skilled and engaged team members
 6. Development team members with compatible personalities who enjoy working 

in a collaborative environment
 7. Realistic schedule and budget estimates which are monitored and maintained
 8. Customer needs that are understood and satisfied
 9. Team members who experience a high degree of job satisfaction
 10. A working product that reflects desired scope and quality

 24.6 th e W5hh pr i nc i p L e

In an excellent paper on software process and projects, Barry Boehm [Boe96] states: 
“[Y]ou need an organizing principle that scales down to provide simple [project] plans 
for simple projects.” Boehm suggests an approach that addresses project objectives, 
milestones and schedules, responsibilities, management and technical approaches, and 
required resources. He calls it the W5HH Principle, after a series of questions that 
lead to a definition of key project characteristics and the resultant project plan:

Why is the system being developed? All stakeholders should assess the validity 
of business reasons for the software work. Does the business purpose justify the 
expenditure of people, time, and money?

What will be done? The task set required for the project is defined.
When will it be done? The team establishes a project schedule by identifying 

when project tasks are to be conducted and when milestones are to be reached.
Who is responsible for a function? The role and responsibility of each member 

of the software team is defined.
Where are they located organizationally? Not all roles and responsibilities 

reside within software practitioners. The customer, users, and other stakeholders 
also have responsibilities.

How will the job be done technically and managerially? Once product scope 
is established, a management and technical strategy for the project must be defined.

How much of each resource is needed? The answer to this question is derived 
by developing estimates (Chapter 25) based on answers to earlier questions.

Boehm’s W5HH principle is applicable regardless of the size or complexity of a 
software project. The questions noted provide you and your team with an excellent 
planning outline.
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 24.7 cr i t i ca L pr ac t i c e s

The Airlie Council7 has developed a list of “critical software practices for  
performance-based management.” These practices are “consistently used by, and 
considered critical by, highly successful software projects and organizations whose 
‘bottom line’ performance is consistently much better than industry averages” [Air99]. 
These practices are still applicable to modern performance-based management of all 
software projects [All14].

Critical practices8 include: metric-based project management (Chapter 23), empir-
ical cost and schedule estimation (Chapter 25), earned value tracking (Chapter 25), 
defect tracking against quality targets (Chapters 19 through 21), and people-oriented 
management (Chapter 24). Each of these critical practices is addressed throughout 
Part Four of this book.

 24.8 su M M a ry

Software project management is an umbrella activity within software engineering. It 
begins before any technical activity is initiated and continues throughout the modeling, 
construction, and deployment of computer software.

Four Ps have a substantial influence on software project management—people, 
product, process, and project. People must be organized into effective teams, moti-
vated to do high-quality software work, and coordinated to achieve effective com-
munication. Product requirements must be communicated from customer to 
developer, partitioned (decomposed) into their constituent parts, and positioned for 
work by the software team. The process must be adapted to the people and the 
problem. A common process framework is selected, an appropriate software engi-
neering paradigm is applied, and a set of work tasks is chosen to get the job done. 
Finally, the project must be organized in a manner that enables the software team 
to succeed.

The pivotal element in all software projects is people. Software engineers can be 
organized in a number of different team structures that range from traditional control 
hierarchies to “open paradigm” teams. A variety of coordination and communication 
techniques can be applied to support the work of the team. In general, technical 
reviews and informal person-to-person communication have the most value for 
practitioners.

The project management activity encompasses measurement and metrics, estima-
tion and scheduling, risk analysis, tracking, and control. Each of these topics is 
considered in the chapters that follow.

7 The Airlie Council was comprised of a team of software engineering experts chartered by 
the U.S. Department of Defense to help develop guidelines for best practices in software 
project management and software engineering.

8 Only those critical practices associated with “project integrity” are noted here.
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Pro b l e m s a n d Po i n t s to Po n d e r

24.1. Based on information contained in this chapter and your own experience, develop 
“10 commandments” for empowering software engineers. That is, make a list of 10 guidelines 
that will lead to software people who work to their full potential.

24.2. The Software Engineering Institute’s People Capability Maturity Model (People-CMM) 
takes an organized look at “key practice areas” (KPAs) that cultivate good software people. 
Your instructor will assign you one KPA for analysis and summary.

24.3. Describe three real-life situations in which the customer and the end user are the same. 
Describe three situations in which they are different.

24.4. The decisions made by senior management can have a significant impact on the effective-
ness of a software engineering team. Provide five examples to illustrate that this is true.

24.5. You have been appointed a project manager within an information systems organization. 
Your job is to build an application that is quite similar to others your team has built, although 
this one is larger and more complex. Requirements have been thoroughly documented by the 
customer. What team structure would you choose and why? What software process model(s) 
would you choose and why?

24.6. You have been appointed a project manager for a small software products company. Your 
job is to build a breakthrough product that combines virtual reality hardware with state-of-the-
art software. Because competition for the home entertainment market is intense, there is 
significant pressure to get the job done. What team structure would you choose and why? What 
software process model(s) would you choose and why?

24.7. You have been appointed a project manager for a major software products company. Your 
job is to manage the development of the next-generation version of its widely used mobile 
fitness app. Because competition is intense, tight deadlines have been established and announced. 
What team structure would you choose and why? What software process model(s) would you 
choose and why?

24.8. You have been appointed a software project manager for a company that services the 
genetic engineering world. Your job is to manage the development of a new software product 
that will accelerate the pace of gene typing. The work is R&D oriented, but the goal is to 
produce a product within the next year. What team structure would you choose and why? What 
software process model(s) would you choose and why?

24.9. You have been asked to develop a small application that analyzes each course offered by 
a university and reports the average grade obtained in the course (for a given term). Write a 
statement of scope that bounds this problem.

24.10. What, in your opinion, is the most important aspect of people management for a software 
project?

Design element: Quick Look icon magnifying glass: © Roger Pressman
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C H A P T E R

25 Creating a Viable  
Software Plan

What is it? Software project planning encom-
passes five major activities—estimation, 
scheduling, risk analysis, quality management 
planning, and change management planning. 

Who does it? Software project managers and 
other members of the software team.

Why is it important? You need to assess the 
tasks to perform, and the time line for the work to 
be conducted. Many software engineering tasks 
must occur in parallel, and the result of work per-
formed during one task may have a profound 
effect on work to be conducted in another task. 
These interdependencies are very difficult to 
understand without creating a schedule. 

What are the steps? Software engineering ac-
tivities and tasks are refined to accommodate 

the functions and constraints imposed by 
project scope. The problem is decomposed, 
and estimation, risk analysis, and scheduling 
occur. 

What is the work product? An adaptable plan 
containing a simple table delineating the tasks 
to be performed, the functions to be imple-
mented, and the cost, effort, and time involved 
for each is generated. A project schedule is 
also created based on this information. 

How do I ensure that I’ve done it right?  
That’s hard, because you won’t really know 
until the project has been completed. How-
ever, if you use a systematic planning ap-
proach, you can feel confident that you’ve 
given it your best shot.
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k e y 
c o n c e p t s

Software project management begins with a set of activities that are collectively 
called project planning. Before the project can begin, the software team estimates 
the work to be done, the resources that will be required, and the time that will 
elapse from start to finish. Once these activities are accomplished, the software 
team should establish a project schedule that defines software engineering tasks 
and milestones, identifies who is responsible for conducting each task, and spec-
ifies the intertask dependencies that may have a strong bearing on progress.
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There was once a bright-eyed young engineer who was chosen to develop some 
code for an automated manufacturing application. The reason for his selection was 
simple. He was the only person in his group who knew the ins and outs of the 
manufacturing controller, but at the time he knew nothing about software engineering 
and even less about project scheduling and tracking.

His boss informed the young engineer that the project had to be completed in  
2 months. He considered his approach and began writing code. After 2 weeks, the 
boss called him into his office and asked how things were going.

“Really great,” said the young engineer with youthful enthusiasm. “This is much 
simpler than I thought. I’m probably close to 75 percent finished.”

The boss smiled and encouraged the young engineer to keep up the good work. 
They planned to meet again in a week’s time.

A week later the boss called the engineer into his office and asked, “Where are we?”
“Everything’s going well,” said the youngster, “but I’ve run into a few small snags. 

I’ll get them ironed out and be back on track soon.”
“How does the deadline look?” the boss asked.
“No problem,” said the engineer. “I’m close to 90 percent complete.”
If you’ve been working in the software world for more than a few years, you can 

finish the story. It’ll come as no surprise that the young engineer1 stayed 90 percent 
complete for the entire project duration and finished (with the help of others) only 
1 month late.

This story has been repeated hundreds of thousands of times by software developers 
during the past five decades. The big question is why.

 25.1 co m m e n t s o n est i m at i o n

Planning requires you to make an initial commitment, even though it’s likely that this 
“commitment” will be proven wrong. Whenever estimates are made, you have to look 
into the future and accept some degree of uncertainty as a matter of course.

Estimating is as much art as it is science, and it should not be conducted in a 
haphazard manner. Because estimation lays a foundation for all other project planning 
actions, and project planning provides the road map for successful software engineer-
ing, we would be ill-advised to embark without it.

Estimation of resources, cost, and schedule for software development requires expe-
rience, access to good historical information (e.g., process and product metrics), and 
the courage to commit to quantitative predictions when qualitative information is all 
that exists. Estimation carries inherent risk,2 and this risk leads to uncertainty. Project 
complexity, project size, and the degree of structural uncertainty all affect the reli-
ability of estimates.

Project complexity has a strong effect on the uncertainty inherent in planning. 
Complexity, however, is a relative measure that is affected by familiarity with past 
efforts. The first-time developer of a sophisticated e-commerce application might 

1 In case you were wondering, this story is autobiographical (RSP).
2 Systematic techniques for risk analysis are presented in Chapter 26.
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consider it to be exceedingly complex. However, a Web engineering team developing 
its tenth e-commerce WebApp would consider such work run of the mill. A number 
of quantitative software complexity measures have been proposed [Zus97], but they 
are rarely used in real-world projects. However, other, more subjective assessments of 
complexity (e.g., function point complexity adjustment factors described in 
Section 25.6) can be established early in the planning process.

Project size is another important factor that can affect the accuracy and efficacy 
of estimates. As size increases, the interdependency among various elements of the 
software grows rapidly.3 Problem decomposition, an important approach to estimating, 
becomes more difficult because the refinement of problem elements may still be 
formidable. To paraphrase Murphy’s law: “What can go wrong will go wrong”—and 
if there are more things that can fail, more things will fail.

The degree of structural uncertainty also has an effect on estimation risk. In this 
context, structure refers to the degree to which requirements have been solidified, the 
ease with which functions can be compartmentalized, and the hierarchical nature of 
the information that must be processed.

The availability of historical information has a strong influence on estimation risk. 
By looking back, you can emulate things that worked and improve areas where prob-
lems arose. When comprehensive software metrics (Chapter 23) are available for past 
projects, estimates can be made with greater assurance, schedules can be established 
to avoid past difficulties, and overall risk is reduced.

If project scope is poorly understood or project requirements are subject to change, 
uncertainty and estimation risk become dangerously high. As a planner, you and the 
customer should recognize that variability in software requirements means instability 
in cost and schedule.

However, you should not become obsessive about estimation. Modern software 
engineering approaches (e.g., evolutionary process models) take an iterative view of 
development. In such approaches, it is possible to revisit estimates (as more informa-
tion is known) and revise them when stakeholders make changes to requirements or 
schedules.

 25.2 th e pro j e c t pL a n n i ng pro c e s s

The objective of software project planning is to provide a framework that enables the 
manager to make reasonable estimates of resources, cost, and schedule. In addition, 
estimates should attempt to define best-case and worst-case scenarios so that project 
outcomes can be bounded. Although there is an inherent degree of uncertainty, the 
software team embarks on a plan that has been established as a consequence of a 
project planning task set. Therefore, the plan must be adapted and updated as the 
project proceeds. In the following sections, each of the activities associated with the 
software project planning task set is discussed.

3 Size often increases due to “scope creep” that occurs when problem requirements change. 
Increases in project size can have a geometric impact on project cost and schedule (Michael 
Mah, personal communication).
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 25.3 so f t wa r e sc o p e a n d fe a s i b i L i t y

Software scope describes the functions and features that are to be delivered to end 
users; the data that are input and output; the “content” that is presented to users as a 
consequence of using the software; and the performance, constraints, interfaces, and 
reliability that bound the system. Scope can be defined by developing a set of use 
cases4 that is developed with the end users.

Functions described in the use cases are evaluated and in some cases refined to 
provide more detail prior to the beginning of estimation. Because both cost and sched-
ule estimates are functionally oriented, some degree of decomposition is often useful. 
Performance considerations often constrain processing and response-time requirements.

Once scope has been identified (with the concurrence of the customer), it is rea-
sonable to ask: “Can we build software to meet this scope? Is the project feasible?” 
All too often, software engineers rush past these questions (or are pushed past them 
by impatient managers or other stakeholders), only to become mired in a project that 
is doomed from the onset. You must try to determine if the system can be created 
using available technology, dollars, time, and other resources. Project feasibility is 
important, but a consideration of business need is even more important. It does no 
good to build a high-tech system or product that no one wants.

 25.4 re s o u rc e s

Once scope is defined, you must estimate the resources required to build software that 
will implement the set of use cases that describe software features and functions. 
Figure 25.1 depicts the three major categories of software engineering resources—people, 

Task Set for Project Planning
1. Establish project scope.
2. Determine feasibility.

 3. Analyze risks (Chapter 26).
 4. Define required resources.

a. Determine required human resources.
b. Define reusable software resources.
c. Identify environmental resources.

 5. Estimate cost and effort.
a. Decompose the problem.
b. Develop two or more estimates using 

size, function points, process tasks, or 
use cases.

c. Reconcile the estimates.

 6. Develop an initial project schedule  
(Section 25.11).
a. Establish a meaningful task set.
b. Define a task network.
c. Use scheduling tools to develop a 

time-line chart.
d. Define schedule tracking mechanisms.

 7. Repeat steps 1 to 6 to create a detailed 
schedule for each prototype as the scope of 
each prototype is defined.

task set

4 Use cases have been discussed in detail throughout Part Two of this book. A use case is a 
scenario-based description of the user’s interaction with the software from the user’s point 
of view.
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reusable software components, and the development environment (hardware and software 
tools). Each resource is specified with four characteristics: description of the resource, a 
statement of availability, time when the resource will be required, and duration of time 
that the resource will be applied. The last two characteristics can be viewed as a time 
window. Availability of the resource for a specified window must be established at the 
earliest practical time.

25.4.1 Human Resources
The planner begins by evaluating software scope and selecting the skills required 
to complete development. Both organizational position (e.g., manager, senior soft-
ware engineer) and specialty (e.g., telecommunications, database, e-commerce) are 
specified. For relatively small projects (a few person-months), a single individual 
may perform all software engineering tasks, consulting with specialists as required. 
For larger projects, the software team may be geographically dispersed across a 
number of different locations. Hence, the location of each human resource is 
specified.

The number of people required for a software project can be determined only after 
an estimate of development effort (e.g., person-months) is made. Techniques for esti-
mating effort are discussed later in this chapter.

Figure 25.1
Project 
resources
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25.4.2 Reusable Software Resources
Component-based software engineering (CBSE)5 emphasizes reusability—that is, the 
creation and reuse of software building blocks. Such building blocks, often called 
components, must be cataloged for easy reference, standardized for easy application, 
and validated for easy integration.

Ironically, reusable software components are often neglected during planning, only 
to become a paramount concern during the development phase of the software process. 
It is better to specify software resource requirements early. In this way technical 
evaluation of the alternatives can be conducted and timely acquisition can occur. It is 
also important to consider whether it would be less costly to buy an existing software 
product (assuming it satisfies all stakeholder needs) than building a custom software 
product from scratch.

25.4.3 Environmental Resources
The environment that supports a software project, often called the software engineer-
ing environment (SEE), incorporates hardware and software. Hardware provides a 
platform that supports the tools (software) required to produce the work products that 
are an outcome of good software engineering practice.6 Because most software orga-
nizations have multiple constituencies that require access to the SEE, you must pre-
scribe the time window required for hardware and software and verify that these 
resources will be available.

When a computer-based system (incorporating specialized hardware and software) 
is to be engineered, the software team may require access to hardware elements being 
developed by other engineering teams. For example, software for a robotic device used 
within a manufacturing cell may require a specific robot (e.g., a robotic welder) as 
part of the validation test step; a software project for advanced page layout may need 
a high-speed digital printing system at some point during development. Each hardware 
element must be specified as part of planning.

 25.5 data ana Ly t i c s a n d so f t wa r e pro j e c t 
est i m at i o n

Software cost and effort estimation will never be an exact science. Too many 
variables—human, technical, environmental, political—can affect the ultimate cost of 
software and effort applied to develop it. However, software project estimation can be 
transformed from a black art to a series of systematic steps that provide estimates 
with acceptable risk. To achieve reliable cost and effort estimates, a number of options 
arise:

 1. Delay estimation until late in the project (obviously, we can achieve 100 percent 
accurate estimates after the project is complete!).

5 CBSE was considered briefly in Chapter 11.
6 Other hardware—the target environment—is the computer on which the software will 

execute when it has been released to the end user.
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 2. Base estimates on similar projects that have already been completed.
 3. Use relatively simple decomposition techniques to generate project cost and 

effort estimates.
 4. Use one or more empirical models for software cost and effort estimation.

Unfortunately, the first option, however attractive, is not practical. Cost estimates must 
be provided up front. However, you should recognize that the longer you wait, the 
more you know, and the more you know, the less likely you are to make serious errors 
in your estimates.

The second option can work reasonably well, if the current project is quite 
similar to past efforts and other project influences (e.g., the customer, business 
conditions, the software engineering environment, deadlines) are roughly equiva-
lent. Unfortunately, past experience has not always been a good indicator of future 
results.

The remaining options are viable approaches to software project estimation. Ideally, 
the techniques noted for each option should be applied in tandem; each used as a 
cross-check for the other. Decomposition techniques take a divide-and-conquer 
approach to software project estimation. By decomposing a project into major func-
tions and related software engineering activities, cost and effort estimation can be 
performed in a stepwise fashion.

An empirical estimation model for computer software uses formulas derived from 
existing project data to predict effort as a function of things like LOC or FP.7 Values 
for LOC or FP are estimated using the approach described in Sections 25.6.3 and 
25.6.4. But instead of using the tables described in those sections, the resultant values 
for LOC or FP are plugged into the estimation model [Whi15].

A typical empirical estimation model is derived using regression analysis on data 
collected from past software projects. The overall structure of such models takes the 
form [Mat94]

E = A + B × (ev)C (25.1)

where A, B, and C are empirically derived constants, E is effort in person-months, 
and ev is the estimation variable (either LOC or FP). In addition to the relationship 
noted in Equation (25.1), the majority of estimation models have some form of proj-
ect adjustment component that enables E to be adjusted by other project characteris-
tics (e.g., problem complexity, staff experience, development environment).

Empirical estimation models can be used to complement decomposition techniques 
and offer a potentially valuable estimation approach in their own right. A model is 
based on experience (historical data) and takes the form

d = f(vi)

where d is one of a number of estimated values (e.g., effort, cost, project duration) 
and vi are selected independent parameters (e.g., estimated lines of code). The empir-
ical data that support most software estimation models are derived from a limited 

7 An empirical model using use cases as the independent variable is suggested in Section 
25.6.6. However, relatively few have appeared in the literature to date.
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sample of projects.8 For this reason, no estimation model is appropriate for all classes 
of software and in all development environments.

Ideally, any estimation model should be calibrated to reflect local conditions. The 
model should be tested by applying data collected from completed projects, plugging 
the data into the model, and then comparing actual to predicted results. If agreement 
is poor, the model must be tuned and retested before it can be used.

Each of the software estimation methods is only as good as the historical data used 
to seed the estimate. If no historical data exist, the estimates rest on a very shaky 
foundation. Therefore, you should use the results obtained from such models judi-
ciously. In Chapter 23, we examined the characteristics of some of the software met-
rics or data analytics that provide the basis for historical estimation data. Software 
data analytics concepts are discussed briefly in Appendix 2 of this book.

 25.6 de c o m p o s i t i o n a n d est i m at i o n te c h n i Q u e s

Software project estimation is a form of problem solving, and in most cases, the problem 
to be solved (i.e., developing a cost and effort estimate for a software project) is too 
complex to be considered in one piece. For this reason, you should decompose the prob-
lem, recharacterizing it as a set of smaller (and hopefully, more manageable) problems.

In Chapter 24, the decomposition approach was discussed from two different points 
of view: decomposition of the problem and decomposition of the process. Estimation 
uses one or both forms of partitioning. But before an estimate can be made, you must 
understand the scope of the software to be built and generate an estimate of its “size.”

25.6.1 Software Sizing
The accuracy of a software project estimate is predicated on a number of things: (1) the 
degree to which you have properly estimated the size of the product to be built, (2) the 
ability to translate the size estimate into human effort, calendar time, and dollars (a func-
tion of the availability of reliable software metrics from past projects), (3) the degree to 
which the project plan reflects the abilities of the software team, and (4) the stability of 
product requirements and the environment that supports the software engineering effort.

Because a project estimate is only as good as the estimate of the size of the work 
to be accomplished, software sizing represents your first major challenge as a planner. 
In the context of project planning, size refers to a quantifiable outcome of the software 
project. If a direct approach is taken, size can be measured in lines of code (LOC). 
If an indirect approach is chosen, size is represented as function points (FP). Size can 
be estimated by considering the type of project and its application domain, the func-
tionality delivered (i.e., the number of function points), the number of components 
(or use cases) to be delivered, and the degree to which a set of existing components 
must be modified for the new system.

8 As an example, the COCOMO (Constructive Cost Model) was originally developed in 1981, 
with updated versions, COCOMO II and COCOMO III, released in later years. A presentation 
on the genesis of the COCOMO model can be downloaded from: http://www.psmsc.com/
UG2016/Presentations/p10-Clark-COCOMO%20III%20Presentation%20v1.pdf.
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25.6.2 Problem-Based Estimation
In Chapter 23, lines of code and function points were described as measures from 
which productivity metrics can be computed. LOC and FP data are used in two ways 
during software project estimation: (1) as estimation variables to “size” each element 
of the software and (2) as baseline metrics collected from past projects and used in 
conjunction with estimation variables to develop cost and effort projections.

LOC and FP estimation are distinct estimation techniques. Yet both have a number 
of characteristics in common. You begin with a bounded statement of software scope 
and from this statement attempt to decompose the statement of scope into problem 
functions that can each be estimated individually. LOC or FP (the estimation variable) 
is then estimated for each function. Alternatively, you may choose another component 
for sizing, such as classes or objects, changes, or business processes affected.

Baseline productivity metrics (e.g., LOC/pm or FP/pm)9 are then applied to the 
appropriate estimation variable, and cost or effort for the function is derived. Function 
estimates are combined to produce an overall estimate for the entire project. When 
collecting productivity metrics for projects, be sure to establish a taxonomy of project 
types. This will enable you to compute domain-specific averages, making estimation 
more accurate. Many modern applications reside on a network or are part of a client-
server architecture. Therefore, be sure that your estimates include the effort required 
to develop “infrastructure” software.

25.6.3 An Example of LOC-Based Estimation
As an example of an LOC estimation technique, we consider a software package to 
be developed for a computer-aided design application for mechanical components. The 
software is to execute on a notebook computer. A preliminary statement of software 
scope can be developed:

The mechanical CAD software will accept two- and three-dimensional geometric data 
from a designer. The designer will interact and control the CAD system through a user 
interface that will exhibit characteristics of good human/machine interface design. All 
geometric data and other supporting information will be maintained in a CAD database. 
Design analysis modules will be developed to produce the required output, which will 
be displayed on a variety of devices. The software will be designed to control and inter-
act with peripheral devices that include a touchpad, scanner, laser printer, and large-bed 
digital plotter.

This statement of scope is preliminary—it is not bounded. Every sentence would have 
to be expanded to provide concrete detail and quantitative bounding. For example, 
before estimation can begin, the planner must determine what “characteristics of good 
human/machine interface design” means or what the size and sophistication of the 
“CAD database” are to be.

For our purposes, assume that further refinement has occurred and that the major 
software functions listed in Figure 25.2 are identified. Following the decomposition 
technique for LOC, an estimation table (Figure 25.2) is developed. A range of LOC 
estimates is developed for each function. For example, the range of LOC estimates for 
the 3D geometric analysis function is optimistic, 4600 LOC; most likely, 6900 LOC; 

9 The acronym pm means person-month of effort.



CHAPTER 25 CREATING A VIABLE SOFTWARE PLAN  513

and pessimistic, 8600 LOC. Applying Equation (25.1), the expected value for the 3D 
geometric analysis function is 6800 LOC. Other estimates are derived in a similar 
fashion. By summing vertically in the estimated LOC column, an estimate of 33200 
lines of code is established for the CAD system.

A review of historical data indicates that the organizational average productivity 
for systems of this type is 620 LOC/pm. Based on a burdened labor rate of $8,000 per 
month, the cost per line of code is approximately $13. Based on the LOC estimate 
and the historical productivity data, the total estimated project cost is $431,000 and 
the estimated effort is 54 person-months.10 Do not succumb to the temptation to use 
this result as your project estimate. You should derive another result using a different 
approach.

Figure 25.2
Estimation 
table for the 
LOC methods

Function
User interface and control facilities (UICF)
Two-dimensional geometric analysis (2DGA)
Three-dimensional geometric analysis (3DGA)
Database management (DBM)
Computer graphics display facilities (GCDF)
Peripheral control function (PCF)
Design analysis modules (DAM)
Estimated lines of code

Estimated LOC 
2300
5300
6800
3350
4950
2100
8400

33200

10 Estimates are rounded to the nearest $1,000 and person-month. Further precision is unnec-
essary and unrealistic, given the limitations of estimation accuracy.

Estimating

The scene: Doug Miller’s office 
as project planning begins.

The players: Doug Miller, manager of the 
SafeHome software engineering team, and 
Vinod Raman, Jamie Lazar, and other members 
of the product software engineering team.

The conversation:
Doug: We need to develop an effort estimate 
for the project, and then we’ve got to define a 
micro schedule for the first increment and a 
macro schedule for the remaining increments.

Vinod (nodding): Okay, but we haven’t de-
fined any increments yet.

Doug: True, but that’s why we need to 
estimate.

Jamie (frowning): You want to know how long 
it’s going to take us?

Doug: Here’s what I need. First, we need to 
functionally decompose the SafeHome soft-
ware . . . at a high level . . . then we’ve got to 
estimate the number of lines of code that each 
function will take . . . then . . .

safehome



514 PART FOUR MANAGING SOFTWARE PROJECTS

25.6.4 An Example of FP-Based Estimation
Decomposition for FP-based estimation focuses on information domain values rather 
than software functions. Referring to Table 25.1, you would estimate inputs, outputs, 
inquiries, files, and external interfaces for the CAD software. To compute the count 
total needed in the FP equation:

FPestimated = count total × [0.65 + 0.01 × Σ(Fi)]

For the purposes of this estimate, the complexity weighting factor is assumed to 
be average. Table 25.1 presents the results of this estimate, and the FP count total 
is 320.

To compute a value for Σ(Fi) , each of the 14 complexity weighting factors listed 
in Table 25.2 is scored with a value between 0 (not important) and 5 (very important).

The sum of these ratings for the complexity factors Σ(Fi)  is 52. So the value of 
the adjustment factor is 1.17:

[0.65 + 0.01 × Σ(Fi)] = 1.17

Finally, the estimated number of FP is derived:

FPestimated = count total × [0.65 + 0.01 × Σ(Fi)] = 375

Jamie: Whoa! How are we supposed to do 
that?

Vinod: I’ve done it on past projects. You begin 
with use cases, determine the functionality re-
quired to implement each, then guesstimate 
the LOC count for each piece of the function. 
The best approach is to have everyone do it 
independently and then compare results.

Doug: Or you can do a functional decomposi-
tion for the entire project.

Jamie: But that’ll take forever and we’ve got 
to get started.

Vinod: No . . . it can be done in a few hours . . . 
this morning, in fact.

Doug: I agree . . . we can’t expect exactitude, 
just a ballpark idea of what the size of 
SafeHome will be.

Jamie: I think we should just estimate 
effort . . . that’s all.

Doug: We’ll do that too. Then use both 
estimates as a cross-check.

Vinod: Let’s go do it . . .

Table 25.1
Estimating 
information 
domain values

    Est.   FP 
Information domain value Opt. Likely Pess. count Weight count

Number of external inputs 20 24 30 24 4 96 (24 × 4 = 96)

Number of external outputs 12 14 22 14 5 70 (14 × 5 = 70)

Number of external inquiries 16 20 28 20 5 100 (20 × 5 = 100)

Number of internal logical files 4 4 5 4 10 40 (4 × 10 = 40)

Number of external interface files 2 2 3 2 7 14 (2 × 7 = 14)

Count total      320
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The organizational average productivity for systems of this type is 6.5 FP/pm. 
Based on a burdened labor rate of $8,000 per month, the cost per FP is approximately 
$1,230. Based on the FP estimate and the historical productivity data, the total esti-
mated project cost is $461,000 and the estimated effort is 58 person-months.

25.6.5 An Example of Process-Based Estimation
The most common technique for estimating a project is to base the estimate on the 
process that will be used. That is, the process is decomposed into a relatively small 
set of activities, actions, and tasks and the effort required to accomplish each is 
estimated.

Like the problem-based techniques, process-based estimation begins with a delinea-
tion of software functions obtained from the project scope. A series of framework 
activities must be performed for each function. Functions and related framework 
activities11 may be represented as part of a table similar to the one presented in 
Figure 25.3.

Once problem functions and process activities are melded, you estimate the effort 
(e.g., person-months) that will be required to accomplish each software process activ-
ity for each software function. These data constitute the central matrix of the table in 
Figure 25.3. Average labor rates (i.e., cost/unit effort) are then applied to the effort 
estimated for each process activity.

Complexity Factor Value

Backup and recovery 4

Data communications 2

Distributed processing 0

Performance critical 4

Existing operating environment 3

Online data entry 4

Input transaction over multiple screens 5

Master files updated online 3

Information domain values complex 5

Internal processing complex 5

Code designed for reuse 4

Conversion/installation in design 3

Multiple installations 5

Application designed for change 5

Table 25.2
Estimating 
information 
domain values

11 The framework activities chosen for this project differ somewhat from the generic activities 
discussed in Chapter 2. They are customer communication (CC), planning, risk analysis, 
engineering, and construction/release.
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To illustrate the use of process-based estimation, we again consider the CAD soft-
ware introduced in Section 25.6.3. The system configuration and all software functions 
remain unchanged and are indicated by project scope.

Referring to the completed process-based table shown in Figure 25.3, estimates of 
effort (in person-months) for each software engineering activity are provided for each 
CAD software function (abbreviated for brevity). The engineering and construction 
release activities are subdivided into the major software engineering tasks shown. 
Gross estimates of effort are provided for customer communication, planning, and risk 
analysis. These are noted in the total row at the bottom of the table. Horizontal and 
vertical totals provide an indication of estimated effort required for analysis, design, 
code, and test. It should be noted that approximately 53 percent of all effort is 
expended on front-end engineering tasks (requirements analysis and design), indicat-
ing the relative importance of this work.

Based on an average burdened labor rate of $8,000 per month, the total estimated 
project cost is $368,000 and the estimated effort is 46 person-months. If desired, labor 
rates could be associated with each framework activity or software engineering task 
and computed separately.
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Figure 25.3 Process-based estimation table
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25.6.6 An Example of Estimation Using Use Case Points
As we have noted throughout Part Two of this book, use cases provide a software 
team with insight into software scope and requirements. Once use cases have been 
developed, they can be used to estimate the projected “size” of a software project. 
Use cases do not address the complexity of the functions and features that  
are described, and they can describe complex behavior (e.g., interactions) that involve 
many functions and features. Even with these constraints, it is possible to compute 
use case points (UCPs) in a manner that is analogous to the computation of functions 
points (Section 25.6).

Cohn [Coh05] indicates that the computation of use case points must take the 
following characteristics into account:

∙ The number and complexity of the use cases in the system.
∙ The number and complexity of the actors on the system.
∙ Various nonfunctional requirements (such as portability, performance, 

maintainability) that are not written as use cases.
∙ The environment in which the project will be developed (e.g., the 

programming language, the software team’s motivation).

To begin, each use case is assessed to determine its relative complexity. A simple use 
case indicates a simple user interface, a single database, and three or fewer transac-
tions and five or fewer class implementations. An average use case indicates a more 
complex UI, two or three databases, and four to seven transactions with 5 to 10 classes. 
Finally, a complex use case implies a complex UI with multiple databases, using eight 
or more transactions and 11 or more classes. Each use case is assessed using these 
criteria and the count of each type is weighted by a factor of 5, 10, and 15, respec-
tively. A total unadjusted use case weight (UUCW) is the sum of all weighted counts 
[Nun11].

Next, each actor is assessed. Simple actors are automatons (another system, a 
machine or device) that communicate through an API. Average actors are automatons 
that communicate through a protocol or a data store, and complex actors are humans 
who communicate through a GUI or other human interface. Each actor is assessed 
using these criteria, and the count of each type is weighted by a factor of 1, 2, and 3, 
respectively. The total unadjusted actor weight (UAW) is the sum of all weighted 
counts.

These unadjusted values are modified by considering technical complexity factors 
(TCFs) and environment complexity factors (ECFs). Thirteen factors contribute to an 
assessment of the final TCF, and eight factors contribute to the computation of the 
final ECF [Coh05]. Once these values have been determined, the final UCP value is 
computed in the following manner:

UCP = (UUCW + UAW) × TCF × ECF (25.2)

The CAD software introduced in Section 25.6.3 is composed of three subsystem 
groups: user interface subsystem (includes UICF), engineering subsystem group 
(includes the 2DGA, 3DGA, and DAM subsystems), and infrastructure subsystem 
group (includes CGDF and PCF subsystems). Sixteen complex use cases describe the 
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user interface subsystem. The engineering subsystem group is described by 14 average 
use cases and 8 simple use cases. And the infrastructure subsystem is described with 
10 simple use cases. Therefore,

 UUCW = (16 use cases × 15) + [(14 use cases × 10)
 + (8 use cases × 5)] + (10 use cases × 5) = 470

Analysis of the use cases indicates that there are 8 simple actors, 12 average actors, 
and 4 complex actors. Therefore,

UAW = (8 actors × 1) + (12 actors × 2) + (4 actors × 3) = 44

After evaluation of the technology and the environment,

TCF = 1.04

ECF = 0.96

Using Equation (25.2),

UCP = (470 + 44) × 1.04 × 0.96 = 513

Using past project data as a guide, the development group has produced 85 LOC per 
UCP. Therefore, an estimate of the overall size of the CAD project is 43600 LOC. 
Similar computations can be made for applied effort or project duration.

Using 620 LOC/pm as the average productivity for systems of this type and a 
burdened labor rate of $8,000 per month, the cost per line of code is approximately $13. 
Based on the use case estimate and the historical productivity data, the total estimated 
project cost is $552,000 and the estimated effort is about 70 person-months.

25.6.7 Reconciling Estimates
Any estimation technique, no matter how sophisticated, must be checked by comput-
ing at least one other estimate using a different approach. If you have created two or 
three estimates independently, you now have two or three estimates for cost and effort 
that need to be compared and reconciled. If both sets of estimates show reasonable 
agreement, there is good reason to believe that the estimates are reliable. If, on the 
other hand, the results of these decomposition techniques show little agreement, fur-
ther investigation and analysis must be conducted.

When your estimates are far apart, you need to reevaluate the information used to 
make the estimates. Widely divergent estimates can often be traced to one of two 
causes: (1) the scope of the project is not adequately understood or has been misin-
terpreted by the planner, or (2) productivity data used for problem-based estimation 
techniques is inappropriate for the application or has been misapplied. You should 
determine the cause of divergence and then recompute these estimates.

The estimation techniques discussed in the preceding sections resulted in multiple 
estimates that should be reconciled to produce a single estimate of effort, project 
duration, or cost. The total estimated effort for the CAD software (Section 25.6.3) 
ranges from a low of 46 person-months (derived using a process-based estimation 
approach) to a high of 68 person-months (derived with use case estimation). The 
simple average of all four estimates is 56 person-months. But is this the best approach 
when the high and low estimates are 21 person-months apart?
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One approach may be to compute a weighted average, based on calling a high 
estimate a pessimistic estimate, a low estimate an optimistic estimate, and an in-
between value a most likely value. A three-point or expected value can then be com-
puted. The expected value for the estimation variable (size) S can be computed as a 
weighted average of the optimistic (sopt), most likely (sm), and pessimistic (spess) esti-
mates. For example,

S =
sopt + 4sm + spess

6
 (25.3)

gives heaviest credence to the “most likely” estimate and follows a beta probability 
distribution. We assume that there is a very small probability the actual size result 
will fall outside the optimistic or pessimistic values.

Once the expected value for the estimation variable has been determined, historical 
productivity data should be examined. Do our estimates seem correct? The only rea-
sonable answer to this question is, we can’t be sure. Even then, common sense and 
experience must prevail.

25.6.8 Estimation for Agile Development
Because the requirements for an agile project (Chapter 3) are defined by a set of user 
stories, it is possible to develop an estimation approach that is informal, reasonably 
disciplined, and meaningful within the context of project planning for each software 
increment. Estimation for agile projects uses a decomposition approach that encom-
passes the following steps:

 1. Each user story (the equivalent of a mini use case created at the very start 
of a project by end users or other stakeholders) is considered separately for 
estimation purposes.

 2. The user story is decomposed into the set of software engineering tasks that 
will be required to develop it.

 3a. Each task is estimated separately. Note: Estimation can be based on historical 
data, an empirical model, or “experience” (e.g., using a technique like 
planning poker, Section 7.2.3).

 3b. Alternatively, the “volume” of the user story can be estimated in LOC, FP, or 
some other volume-oriented measure (e.g., use case count).

 4a. Estimates for each task are summed to create an estimate for the user story.
 4b. Alternatively, the volume estimate for the user story is translated into effort 

using historical data.
 5. The effort estimates for all user stories that are to be implemented for a 

given software increment are summed to develop the effort estimate for the 
increment.

Because the project duration required for the development of a software increment is 
quite short (typically 3 to 6 weeks), this estimation approach serves two purposes: 
(1) to be certain that the number of scenarios to be included in the increment conforms 
to the available resources, and (2) to establish a basis for allocating effort as the incre-
ment is developed.
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 25.7 pro j e c t sc h e d u L i ng

Software project scheduling is an activity that distributes estimated effort across the 
planned project duration by allocating the effort to specific software engineering tasks. 
It is important to note, however, that the schedule evolves over time. During early 
stages of project planning, a macroscopic schedule is developed. This type of sched-
ule identifies all major process framework activities and the product functions to 
which they are applied. As the project gets under way, each entry on the macroscopic 
schedule is refined into a detailed schedule. Here, specific software actions and tasks 
(required to accomplish an activity) are identified and scheduled.

Although there are many reasons why software is delivered late, most can be traced 
to one or more of the following root causes:

∙ An unrealistic deadline established by someone outside the software team and 
forced on managers and practitioners on the group.

∙ Changing customer requirements that are not reflected in schedule changes.
∙ An honest underestimate of the amount of effort and/or the number of 

resources that will be required to do the job.
∙ Predictable and/or unpredictable risks that were not considered when the 

project commenced.
∙ Technical difficulties that could not have been foreseen in advance.
∙ Human difficulties that could not have been foreseen in advance.
∙ Miscommunication among project staff that results in delays.
∙ A failure by project management to recognize that the project is falling 

behind schedule and a lack of action to correct the problem.

Aggressive (read “unrealistic”) deadlines are an unpleasant fact in the software busi-
ness. Sometimes such deadlines are demanded for reasons that are legitimate, from 
the point of view of the person who sets the deadline. But common sense says that 
legitimacy must also be perceived by the people doing the work.

The estimation methods discussed in this chapter and the scheduling techniques 
described in this section are often implemented under the constraint of a defined 
deadline. If best estimates indicate that the deadline is unrealistic, a competent project 
manager should inform management and all stakeholders of her findings and suggest 
alternatives to mitigate the damage of missing the deadline.

The reality of a technical project (whether it involves building a virtual world for 
a video game or developing an operating system) is that hundreds of small tasks must 
occur to accomplish a larger goal. Some of these tasks lie outside the mainstream and 
may be completed without worry about the impact on the project completion date. 
Other tasks lie on the critical path. If these “critical” tasks fall behind schedule, the 
completion date of the entire project is put into jeopardy.

As a project manager, your objective is to define all project tasks, build a network 
that depicts their interdependencies, identify the tasks that are critical within the 
network, and then track their progress to ensure that delay is recognized “one day at 
a time.” To accomplish this, you must have a schedule that has been defined at a 
degree of resolution that allows progress to be monitored and the project to be 
controlled. The tasks required to achieve a project manager’s needs to build a schedule 
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and track progress should not be performed manually. There are many excellent sched-
uling tools. A good manager uses them.

25.7.1 Basic Principles
Scheduling for software engineering projects can be viewed from two rather different 
perspectives. In the first, an end date for release of a computer-based system has 
already (and irrevocably) been established. The software organization is constrained 
to distribute effort within the prescribed time frame. The second view of software 
scheduling assumes that rough chronological bounds have been discussed but that the 
end date is set by the software engineering organization. Effort is distributed to make 
best use of resources, and an end date is defined after careful analysis of the software. 
Unfortunately, the first situation is encountered far more frequently than the second.

Like all other areas of software engineering, a number of basic principles guide 
software project scheduling:

Compartmentalization. The project must be compartmentalized into a number 
of manageable activities and tasks. To accomplish compartmentalization, both the 
product and the process are decomposed.

Interdependency. The interdependency of each compartmentalized activity or 
task must be determined. Some tasks must occur in sequence, while others can 
occur in parallel. Some activities cannot commence until the work product produced 
by another is available. Other activities can occur independently.

Time allocation. Each task to be scheduled must be allocated some number of 
work units (e.g., person-days of effort). In addition, each task must be assigned a 
start date and a completion date that are a function of the interdependencies and 
whether work will be conducted on a full-time or part-time basis.

Effort validation. Every project has a defined number of people on the software 
team. As time allocation occurs, you must ensure that no more than the allocated 
number of people has been scheduled at any given time. For example, consider a 
project that has three assigned software engineers (e.g., three person-days are avail-
able per day of assigned effort).12 On a given day, seven concurrent tasks must be 
accomplished. Each task requires 0.50 person-days of effort. More effort has been 
allocated than there are people to do the work.

Defined responsibilities. Every task that is scheduled should be assigned to a 
specific team member.

Defined outcomes. Every task that is scheduled should have a defined outcome. For 
software projects, the outcome is normally a work product (e.g., the design of a compo-
nent) or a part of a work product. Work products are often combined in deliverables.

Defined milestones. Every task or group of tasks should be associated with a 
project milestone. A milestone is accomplished when one or more work products 
has been reviewed for quality (Chapter 15) and has been approved.

Each of these principles is applied as the project schedule evolves.

12 In reality, less than 3 person-days of effort are available because of unrelated meetings, 
sickness, vacation, and a variety of other reasons. For our purposes, however, we assume 
100 percent availability.
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25.7.2 The Relationship Between People and Effort
There is a common myth that is still believed by many managers who are responsible 
for software development work: “If we fall behind schedule, we can always add more 
programmers and catch up later in the project.” Unfortunately, adding people late in 
a project often has a disruptive effect on the project, causing schedules to slip even 
further. The people who are added must learn the system, and the people who teach 
them are the same people who were doing the work. While teaching, no work is done, 
and the project falls further behind.

In addition to the time it takes to learn the system, more people increase the num-
ber of communication paths and the complexity of communication throughout a proj-
ect. Although communication is absolutely essential to successful software development, 
every new communication path requires additional effort and therefore additional time. 
If you must add people to a late project, be sure that you’ve assigned them work that 
is highly compartmentalized.

Over the years, empirical data and theoretical analysis have demonstrated that proj-
ect schedules are elastic. That is, it is possible to compress a desired project comple-
tion date (by adding additional resources) to some extent. It is also possible to extend 
a completion date (by reducing the number of resources).

The Putnam-Norden-Rayleigh (PNR) curve13 provides an indication of the relation-
ship between effort applied and delivery time for a software project. A version of the 
curve, representing project effort as a function of delivery time, is shown in Figure 25.4. 
The curve indicates a minimum value to that indicates the least cost for delivery (i.e., 
the delivery time that will result in the least effort expended). As we move left of to 
(i.e., as we try to accelerate delivery), the curve rises nonlinearly.

As an example, we assume that a project team has estimated a level of effort Ed 
will be required to achieve a nominal delivery time td that is optimal in terms of 

13 Original research can be found in [Nor70] and [Put78].

Figure 25.4
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schedule and available resources. Although it is possible to accelerate delivery, the 
curve rises very sharply to the left of td. In fact, the PNR curve indicates the project 
delivery time cannot be compressed much beyond 0.75td. If we attempt further com-
pression, the project moves into “the impossible region” and risk of failure becomes 
very high. The PNR curve also indicates that the lowest cost delivery option to = 2td. 
The implication here is that delaying project delivery can reduce costs significantly. 
Of course, this must be weighed against the business cost associated with the delay.

The software equation [Put92] introduced is derived from the PNR curve and 
demonstrates the highly nonlinear relationship between chronological time to complete 
a project and human effort applied to the project. The number of delivered lines of 
code (source statements), L, is related to effort and development time by the equation:

L = P × E1/3t4/3 (25.4)

where E is development effort in person-months, P is a productivity parameter that 
reflects a variety of factors that leads to high-quality software engineering work (typ-
ical values for P range between 2000 and 12000), and t is the project duration in 
calendar months.

Rearranging this software equation, we can arrive at an expression for development 
effort E:

E =
L3

P3t4  (25.5)

where E is the effort expended (in person-years) over the entire life cycle for software 
development and maintenance and t is the development time in years. The equation 
for development effort can be related to development cost by the inclusion of a bur-
dened labor rate factor ($/person-year).

This leads to some interesting results. As a project deadline becomes tighter and 
tighter, you reach a point at which the work cannot be completed on schedule, regardless 
of the number of people doing the work. Face reality and define a new delivery date.

Consider also a complex, real-time software project estimated at 33000 LOC, 
12 person-years of effort. If eight people are assigned to the project team, the project 
can be completed in approximately 1.3 years. If, however, we extend the end date to 
1.75 years, the highly nonlinear nature of the model described in Equation (25.5) 
yields:

E =
L3

P3
 t4 ∼3.8 person-years

This implies that, by extending the end date by 6 months, we can reduce the number 
of people from eight to four! The validity of such results is open to debate, but the 
implication is clear: Benefit can be gained by using fewer people over a somewhat 
longer time span to accomplish the same objective.

 25.8 de f i n i ng a pro j e c t ta s k se t

Regardless of the process model that is chosen, the work that a software team performs 
is achieved through a set of tasks that enable you to define, develop, and ultimately 
support computer software. No single task set is appropriate for all projects. The set 
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of tasks that would be appropriate for a large, complex system would likely be per-
ceived as overkill for a small, relatively simple software product. Therefore, an effec-
tive software process should define a collection of task sets, each designed to meet 
the needs of different types of projects.

As we noted in Chapter 2, a task set is a collection of software engineering work 
tasks, milestones, work products, and quality assurance filters that must be accom-
plished to complete a particular project. The task set must provide enough discipline 
to achieve high software quality. But, at the same time, it must not burden the project 
team with unnecessary work.

To develop a project schedule, a task set must be distributed on the project time 
line. The task set will vary depending upon the project type and the degree of rigor 
with which the software team decides to do its work. Many factors influence the task 
set to be chosen. These include [Pre05]: size of the project, number of potential users, 
mission criticality, application longevity, stability of requirements, ease of customer/
developer communication, maturity of applicable technology, performance constraints, 
embedded and nonembedded characteristics, project staff, and reengineering factors. 
When taken in combination, these factors provide an indication of the degree of rigor 
with which the software process should be applied.

25.8.1 A Task Set Example
A concept development project is initiated when the potential for some new technol-
ogy must be explored. There is no certainty that the technology will be applicable, 
but a customer (e.g., marketing) believes that potential benefit exists. Concept devel-
opment projects are approached by applying the following task set:

 1.1 Concept scoping determines the overall scope of the project.
 1.2 Preliminary concept planning establishes the organization’s ability to under-

take the work implied by the project scope.
 1.3 Technology risk assessment evaluates the risk associated with the technology 

to be implemented as part of the project scope.
 1.4 Proof of concept demonstrates the viability of a new technology in the soft-

ware context.
 1.5 Concept implementation implements the concept representation in a manner 

that can be reviewed by a customer and is used for “marketing” purposes 
when a concept must be sold to other customers or management.

 1.6 Customer reaction to the concept solicits feedback on a new technology con-
cept and targets specific customer applications.

A quick scan of these tasks should yield few surprises. In fact, the software engi-
neering flow for concept development projects (and for all other types of projects as 
well) is little more than common sense.

25.8.2 Refinement of Major Tasks
The major tasks (i.e., software engineering actions) described in the preceding section 
may be used to define a macroscopic schedule for a project. However, the macroscopic 
schedule must be refined to create a detailed project schedule. Refinement begins by 
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taking each major task and decomposing it into a set of subtasks (with related work 
products and milestones).

As an example of task decomposition, consider Task 1.1, Concept Scoping. Task 
refinement can be accomplished using an outline format, but in this book, a process 
design language approach is used to illustrate the flow of the concept scoping activity:

Task definition: Task 1.1 Concept Scoping

1.1.1 Identify need, benefits and potential customers;
1.1.2  Define desired output/control and input events that drive the 

application;
Begin Task 1.1.2
1.1.2.1 TR: Review written description of need14

1.1.2.2 Derive a list of customer visible outputs/inputs
1.1.2.3  TR: Review outputs/inputs with customer and revise as 

required;
endtask Task 1.1.2

1.1.3 Define the functionality/behavior for each major function;
Begin Task 1.1.3
1.1.3.1 TR: Review output and input data objects derived in task 1.1.2;
1.1.3.2 Derive a model of functions/behaviors;
1.1.3.3  TR: Review functions/behaviors with customer and revise as 

required;
endtask Task 1.1.3

1.1.4 Isolate those elements of the technology to be implemented in software;
1.1.5 Research availability of existing software;
1.1.6 Define technical feasibility;
1.1.7 Make quick estimate of size;
1.1.8 Create a Scope Definition;
endtask definition: Task 1.1

The tasks and subtasks noted in the process design language refinement form the 
basis for a detailed schedule for the concept scoping activity.

 25.9 de f i n i ng a ta s k ne t wo r k

Individual tasks and subtasks have interdependencies based on their sequence. In 
addition, when more than one person is involved in a software engineering project, it 
is likely that development activities and tasks will be performed in parallel. When this 
occurs, concurrent tasks must be coordinated so that they will be complete when later 
tasks require their work product(s).

A task network, also called an activity network, is a graphic representation of the 
task flow for a project. The task network is a useful mechanism for depicting intertask 
dependencies and determining the critical path. It is sometimes used as the mechanism 
through which task sequence and dependencies are input to an automated project 
scheduling tool. In its simplest form (used when creating a macroscopic schedule), 
the task network depicts major software engineering tasks. Figure 25.5 shows a sche-
matic task network for a concept development project.

14 TR indicates that a technical review (Chapter 16) is to be conducted.
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The concurrent nature of software engineering activities leads to a number of 
important scheduling requirements. Because parallel tasks occur asynchronously, 
you should determine intertask dependencies to ensure continuous progress toward 
completion. In addition, you should be aware of those tasks that lie on the critical 
path. That is, tasks that must be completed on schedule if the project as a whole is 
to be completed on schedule. These issues are discussed in more detail later in this 
chapter.

It is important to note that the task network shown in Figure 25.5 is macroscopic. 
In a detailed task network (a precursor to a detailed schedule), each activity shown 
in the figure would be expanded. For example, Task 1.1 would be expanded to show 
all tasks detailed in the refinement of Tasks 1.1 shown in Section 25.8.2.

 25.10 sc h e d u L i ng

Scheduling of a software project does not differ greatly from scheduling of any mul-
titask engineering effort. Therefore, generalized project scheduling tools and tech-
niques can be applied with little modification for software projects [Fer14]. 
Interdependencies among tasks may be defined using a task network. Tasks, some-
times called the project work breakdown structure (WBS), are defined for the product 
as a whole or for individual functions.

Project scheduling tools allow you to (1) determine the critical path—the chain of 
tasks that determines the duration of the project, (2) establish “most likely” time 
estimates for individual tasks by applying statistical models, and (3) calculate “bound-
ary times” that define a time “window” for a particular task [Ker17].

25.10.1 Time-Line Charts
When creating a software project schedule, you begin with a set of tasks (the work 
breakdown structure). If automated tools are used, the work breakdown is input as a 

Figure 25.5 A task network for concept development
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task network or task outline. Effort, duration, and start date are then input for each 
task. In addition, tasks may be assigned to specific individuals.

As a consequence of this input, a time-line chart, also called a Gantt chart, is 
generated. A time-line chart can be developed for the entire project. Alternatively, 
separate charts can be developed for each project function or for each individual work-
ing on the project [Toc18].

Figure 25.6 illustrates the format of a time-line chart. It depicts a part of a software 
project schedule that emphasizes the concept scoping task for a word-processing 
(WP) software product. All project tasks (for concept scoping) are listed in the left-
hand column. The horizontal bars indicate the duration of each task. When multiple 
bars occur at the same time on the calendar, task concurrency is implied. The dia-
monds indicate milestones.

Once the information necessary for the generation of a time-line chart has been 
input, the majority of software project scheduling tools produce project tables—a 
tabular listing of all project tasks, their planned and actual start and end dates, and a 
variety of related information (Figure 25.7). Used in conjunction with the time-line 
chart, project tables enable you to track progress.

Figure 25.6 An example time-line chart

Week 1Work tasks
I.1.1 Identify needs and benefits

Meet with customers
Identify needs and project constraints
Establish product statement
Milestone: Product statement defined

I.1.2 Define desired output/control/input (OCI)
Scope keyboard functions
Scope voice input functions
Scope modes of interaction
Scope documents diagnosis
Scope other WP functions
Document OCI
FTR: Review OCI with customer
Revise OCI as required
Milestone: OCI defined

I.1.3 Define the function/behavior
Define keyboard functions
Define voice input functions
Describe modes of interaction
Describe spell/grammar check
Describe other WP functions
FTR: Review OCI with customer
Revise as required
Milestone: OCI definition complete

I.1.4 Isolation software elements
Milestone: OCI defined

I.1.5 Research availability of existing software
Research text editing components
Research voice input components
Research file management components
Research spell/grammar check components
Milestone: Reusable components identified

I.1.6 Define technical feasibility
Evaluate voice input
Evaluate grammar checking
Milestone: Technical feasibility assessed

I.1.7 Make quick estimate of size
I.1.8 Create a scope definition

Review scope document with customer
Revise document as required
Milestone: Scope document complete

Week 2 Week 3 Week 4 Week 5
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25.10.2 Tracking the Schedule
If it has been properly developed, the project schedule becomes a road map that 
defines the tasks and milestones to be tracked and controlled as the project proceeds. 
Tracking can be accomplished in a number of different ways:

∙ Conducting periodic project status meetings in which each team member 
reports progress and problems.

∙ Evaluating the results of all reviews conducted throughout the software 
engineering process.

∙ Determining whether formal project milestones (the diamonds shown in 
Figure 25.7) have been accomplished by the scheduled date.

∙ Comparing the actual start date to the planned start date for each project task 
listed in the resource table (Figure 25.8).

∙ Meeting informally with practitioners to obtain their subjective assessment of 
progress to date and problems on the horizon.

∙ Tracking the project velocity, which is a way of seeing how quickly the devel-
opment team is clearing the user story backlog (Section 3.5).

In reality, all these tracking techniques are used by experienced project managers.
A software project manager employs control to administer project resources, cope 

with problems, and direct project staff. If things are going well (i.e., the project is on 
schedule and within budget, reviews indicate that real progress is being made and 
milestones are being reached), control is light. But when problems occur, you must 
exercise control to reconcile them as quickly as possible. After a problem has been 
diagnosed, additional resources may be focused on the problem area: staff may be 
redeployed or the project schedule can be redefined.

When faced with severe deadline pressure, experienced project managers some-
times use a project scheduling and control technique called time-boxing [Jal04]. The 
time-boxing strategy recognizes that the complete product may not be deliverable by 
the predefined deadline.

Figure 25.7 An example project table

Planned
start

Actual
start

Planned
completep

Actual
completep

Assigned
personp

E�ort
allocated NotesWork tasks

I.1.1 Identify needs and benefits
Meet with customers
Identify needs and project constraints
Establish product statement
Milestone: Product statement defined

I.1.2 Define desired output/control/input (OCI)
Scope keyboard functions
Scope voice input functions
Scope modes of interaction
Scope documents diagnosis
Scope other WP functions
Document OCI
FTR: Review OCI with customer
Revise OCI as required
Milestone: OCI defined

I.1.3 Define the Function/behavior

Scoping will require
wk1, d1 wk1, d1 wk1, d2 wk1, d2 BLS 2 p-d more e�ort/time
wk1, d2 wk1, d2 wk1, d2 wk1, d2 JPP 1 p-d
wk1, d3 wk1, d3 wk1, d3 wk1, d3 BLS/ 1 p-d
wk1, d3 wk1, d3 wk1, d3 wk1, d3

wk1, d4 wk1, d4 wk2, d2 BLS 1.5 p-d
wk1, d3 wk1, d3 wk2, d2 JPP 2 p-d
wk2, d1 wk2, d3 MLL 1 p-d
wk2, d1 wk2, d2 BLS 1.5 pd
wk1, d4 wk1, d4 wk2, d3 JPP 2 p-d
wk2, d1 wk2, d3 MLL 3 p-d
wk2, d3 wk2, d3 all 3 p-d
wk2, d4 wk2, d4 all 3 p-d
wk2, d5 wk2, d5
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The tasks associated with each increment are then time-boxed. This means that the 
schedule for each task is adjusted by working backward from the delivery date for the 
increment. A “box” is put around each task. When a task hits the boundary of its time 
box (plus or minus 10 percent), work stops and the next task begins.

Time-boxing is often associated with agile incremental process models (Chapter 4), 
and a schedule is derived for each incremental delivery. These tasks become part of 
the increment schedule and are allocated over the increment development schedule. 
They can be input to scheduling software (e.g., Microsoft Project) and used for track-
ing and control.

The initial reaction to the time-boxing approach is often negative: “If the work isn’t 
finished, how can we proceed?” The answer lies in the way work is accomplished. 
By the time the time-box boundary is encountered, it is likely that 90 percent of the 
task has been completed.15 The remaining 10 percent, although important, can (1) be 
delayed until the next increment or (2) be completed later if required. Rather than 
becoming “stuck” on a task, the project proceeds toward the delivery date.

Tracking the Schedule

The scene: Doug Miller’s office 
prior to the initiation of the 

SafeHome software project.

The players: Doug Miller, manager of the 
SafeHome software engineering team, and 
Vinod Raman, Jamie Lazar, and other members 
of the product software engineering team.

The conversation:

Doug (glancing at a PowerPoint slide): The 
schedule for the first SafeHome increment 
seems reasonable, but we’re going to have 
trouble tracking progress.

Vinod (a concerned look on his face): Why? 
We have tasks scheduled on a daily basis, 
plenty of work products, and we’ve been sure 
that we’re not over allocating resources.

Doug: All good, but how do we know when 
the requirements model for the first increment 
is complete?

Jamie: Things are iterative, so that’s difficult.

Doug: I understand that, but . . . well, for in-
stance, take “analysis classes defined.” You 
indicated that as a milestone.

Vinod: We have.

Doug: Who makes that determination?

Jamie (aggravated): They’re done when 
they’re done.

Doug: That’s not good enough, Jamie. We 
have to schedule TRs [technical reviews, 
Chapter 16], and you haven’t done that. The 
successful completion of a review on the anal-
ysis model, for instance, is a reasonable mile-
stone. Understand?

Jamie (frowning): Okay, back to the drawing 
board.

Doug: It shouldn’t take more than an hour to 
make the corrections . . . everyone else can 
get started now.

safehome

15 A cynic might recall the saying: “The first 90 percent of the system takes 90 percent of the 
time; the remaining 10 percent of the system takes 90 percent of the time.”
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 25.11 su m m a ry

A software project planner must estimate three things before a project begins: how 
long it will take, how much effort will be required, and how many people will be 
involved. In addition, the planner must predict the resources (hardware and software) 
that will be required and the risk involved.

The statement of scope helps the planner to develop estimates using one or more 
techniques that fall into two broad categories: decomposition and empirical modeling. 
Decomposition techniques require a delineation of major software functions, followed 
by estimates of either (1) the number of LOC, (2) selected values within the informa-
tion domain, (3) the number of use cases, (4) the number of person-months required 
to implement each function, or (5) the number of person-months required for each 
software engineering activity. Empirical techniques use empirically derived expres-
sions for effort and time to predict these project quantities. Automated tools can be 
used to implement a specific empirical model.

Accurate project estimates generally use at least two of the three techniques just 
noted. By comparing and reconciling estimates developed using different techniques, 
the planner is more likely to derive an accurate estimate. Software project estimation 
can never be an exact science, but a combination of good historical data and system-
atic techniques can improve estimation accuracy.

Scheduling is the culmination of a planning activity that is a primary component 
of software project management. When combined with estimation methods and risk 
analysis, scheduling establishes a road map for the project manager.

Scheduling begins with process decomposition. The characteristics of the project 
are used to adapt an appropriate task set for the work to be done. A task network 
depicts each engineering task, its dependency on other tasks, and its projected duration. 
The task network is used to compute the critical path, a time-line chart, and a variety 
of project information. Using the schedule as a guide, you can track and control each 
step in the software process.

pro b L e m s a n d po i n t s to po n d e r

25.1. Assume that you are the project manager for a company that builds software for house-
hold robots. You have been contracted to build the software for a robot that mows the lawn for 
a homeowner. Write a statement of scope that describes the software. Be sure your statement 
of scope is bounded. If you’re unfamiliar with robots, do a bit of research before you begin 
writing. Also, state your assumptions about the hardware that will be required. Alternate: 
Replace the lawn-mowing robot with another problem that is of interest to you.

25.2. Do a functional decomposition of the robot software you described in Problem 25.1. 
Estimate the size of each function in LOC. Assuming that your organization produces 
450 LOC/pm with a burdened labor rate of $7,000 per person-month, estimate the effort 
and cost required to build the software using the LOC-based estimation technique described 
in this chapter.

25.3. Develop a spreadsheet model that implements one or more of the estimation techniques 
described in this chapter. Alternatively, acquire one or more online models for estimation from 
Web-based sources.
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25.4. It seems odd that cost and schedule estimates are developed during software project 
planning—before detailed software requirements analysis or design has been conducted. Why 
do you think this is done? Are there circumstances when it should not be done?

25.5. What is the difference between a macroscopic schedule and a detailed schedule? Is it 
possible to manage a project if only a macroscopic schedule is developed? Why?

25.6. The relationship between people and time is highly nonlinear. Using Putnam’s software 
equation (described in Section 25.8.2), develop a table that relates number of people to project 
duration for a software project requiring 50000 LOC and 15 person-years of effort (the 
productivity parameter is 5000 and B = 0.37). Assume that the software must be delivered in 
24 months plus or minus 12 months.

25.7. Assume that a university has contracted you to develop an online course registration 
system (OLCRS). First, act as the customer (if you’re a student, that should be easy) and 
specify the characteristics of a good system. (Alternatively, your instructor will provide you 
with a set of preliminary requirements for the system.) Using the estimation methods discussed 
in this chapter, develop an effort and duration estimate for OLCRS. Suggest how you would:

 a. Define parallel work activities during the OLCRS project.
 b. Distribute effort throughout the project.
 c. Establish milestones for the project.

25.8. Select an appropriate task set for the OLCRS project.

25.9. Define a task network for OLCRS described in Problem 25.8, or alternatively, for another 
software project that interests you. Be sure to show tasks and milestones and to attach effort 
and duration estimates to each task. If possible, use an automated scheduling tool to perform 
this work.

25.10. Using a scheduling tool (if available) or paper and pencil (if necessary), develop a 
time-line chart for the OLCRS project.

Design element: Quick Look icon magnifying glass: © Roger Pressman
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C H A P T E R

26 Risk  
Management

What is it? A risk is a potential problem for a 
software project—it might happen, it might 
not. But, regardless of the outcome, it’s a re-
ally good idea to identify it, assess its probabil-
ity of occurrence, estimate its impact, and 
establish a contingency plan. 

Who does it? Everyone involved in the soft-
ware process—managers, software engineers, 
and other stakeholders—participates in risk 
analysis and management.

Why is it important? Think about the Scout 
motto: “Be prepared.” Software is a difficult un-
dertaking. Lots of things can go wrong, and 
frankly, many often do. Understanding the risks 
and taking proactive measures to avoid or man-
age them—is a key element of good software 
project management. A project without a risk 
management plan can find itself in serious trou-
ble that could have been avoided if the project 
team had addressed its development risks in a 
more systematic manner and followed its plans.

What are the steps? Recognizing what can go 
wrong is the first step, called “risk identifica-
tion.” Next, each risk is analyzed to determine 
the likelihood that it will occur and the damage 
that it will do if it does occur. Once this infor-
mation is established, risks are ranked, by 
probability and impact. Finally, a plan is devel-
oped to manage those risks that have high 
probability and high impact.

What is the work product? A risk mitigation, 
monitoring, and management (RMMM) plan or 
a set of risk information sheets is produced.

How do I ensure that I’ve done it right? The 
risks that are analyzed and managed should 
be derived from a thorough study of the 
people, the product, the process, and the 
project. The RMMM should be revisited as 
the project proceeds to ensure that risks are 
kept up to date. Contingency plans for risk 
management should be realistic.
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k e y 
c o n c e p t s

In his book on risk analysis and management, Robert Charette [Cha89] notes 
that “risk concerns future happenings.” He correctly points out that concern 
about today and yesterday should not be the focus, but rather poses the pivotal 
question: “. . . by changing our actions today, [can we] create an opportunity for 
a different and hopefully better situation for ourselves tomorrow.” The impli
cation is that “risk involves choice,” and that introduces uncertainty in our actions.
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When you consider risk in the context of software engineering, Charette’s concep
tual underpinnings are always in evidence. The future is your concern—what risks 
might cause the software project to go awry? Change is your concern—how will 
changes in customer requirements, development technologies, target environments, 
and all other entities connected to the project affect timeliness and overall success? 
Last, you must grapple with choices—what methods and tools should you use, how 
many people should be involved, how much emphasis on quality is “enough”?

Technical debt is the term used to describe costs associated with putting off activ
ities like software documentation and refactoring. Technical debt that is not paid can 
result in a delivered software product with inadequate functionality, erratic behavior, 
poor quality, insufficient documentation, and unnecessary complexity. Technical debt 
implies that the costs (effort, time, and resources) of dealing with technical issues can 
be reduced if problems are dealt with earlier rather than later during project develop
ment. Like financial interest, technical debt increases with time because unrecognized 
problems introduced early compound. Accumulating technical debt is mortgaging a 
project’s future [Fai17].

Simply moving to agile software development does not remove the need to do 
intentional risk management. Elbanna and Sarker [Elb16] conducted a survey of sev
eral organizations that made extensive use of agile software development practices. 
They found several development risks that seemed to go unmanaged in agile projects. 
Technical debt was likely to accumulate as developers pushed for more new code and 
at the same time often forgot to spend time reducing this debt. In addition, inexperi
enced agile teams tend to produce more defects than they might have following a 
more controlled development model. Agile teams may be more likely to use nonstan
dardized project management and testing tools. These autonomous teams may not be 
documenting their decisionmaking processes adequately. That can doom developers 
to repeat past errors on future projects. None of these risks is impossible to control, 
as long as software developers are aware of them and make plans to manage them 
during their timeboxed sprints.

 26.1 Re ac t i v e ve R s u s pRoac t i v e Ri s k st R at e g i e s

Reactive risk strategies have been laughingly called the “Indiana Jones school of risk 
management” [Tho92]. In the movies that carried his name, Indiana Jones, when faced 
with overwhelming difficulty, would invariably say, “Don’t worry, I’ll think of some
thing!” Never worrying about problems until they happened, Indy would react in some 
heroic way.

Sadly, the average software project manager is not Indiana Jones and the members 
of the software project team are not his trusty sidekicks. Yet, most software teams 
continue to rely solely on reactive risk strategies. At best, a reactive strategy monitors 
the project for likely risks. Resources are set aside to deal with them, should they 
become actual problems. More commonly, the software team does nothing about risks 
until something goes wrong. Then, the team flies into action trying to correct the 
problem rapidly. This is often called a fire-fighting mode. When this fails, “crisis 
management” [Cha92] takes over and the project is in real jeopardy.
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A considerably more intelligent strategy for risk management is to be proactive.  
A proactive risk strategy begins long before technical work is initiated. Potential risks 
are identified, their probability and impact are assessed, and they are ranked by impor
tance. Then, the software team establishes a plan for managing risk. The primary 
objective is to avoid risk, but because not all risks can be avoided, the team works to 
develop a contingency plan that will enable it to respond in a controlled and effective 
manner. Proactive risk management is one of the software engineering tools that can 
be used to reduce technical debt. Throughout the remainder of this chapter, we discuss 
a proactive strategy for risk management.

 26.2 so f t wa R e Ri s k s

Although there has been considerable debate about the proper definition for software 
risk, there is general agreement that risk always involves two characteristics: 
uncertainty—the risk may or may not happen; that is, there are no 100 percent 
probable risks1—and loss—if the risk becomes a reality, unwanted consequences or 
losses will occur [Hig95]. When risks are analyzed, it is important to quantify the 
level of uncertainty and the degree of loss associated with each risk. To accomplish 
this, different categories of risks are considered.

Project risks threaten the project plan. That is, if project risks become real, it is 
likely that the project schedule will slip and that costs will increase. Project risks 
identify potential budgetary, schedule, personnel (staffing and organization), resource, 
stakeholder, and requirements problems and their impact on a software project. In 
Chapter 25, project complexity, size, and the degree of structural uncertainty were 
also defined as project (and estimation) risk factors.

Technical risks threaten the quality and timeliness of the software to be produced. 
If a technical risk becomes a reality, implementation may become difficult or impos
sible. Technical risks identify potential design, implementation, interface, verifica
tion, and maintenance problems. In addition, specification ambiguity, technical 
uncertainty, technical obsolescence, and “leadingedge” technology can also be risk 
factors. Technical risks occur because the problem is harder to solve than you thought 
it would be.

Business risks threaten the viability of the software to be built and often jeopardize 
the project or the product. Candidates for the top five business risks are (1) building 
an excellent product or system that no one really wants (market risk), (2) building a 
product that no longer fits into the overall business strategy for the company (strate
gic risk), (3) building a product that the sales force doesn’t understand how to sell 
(sales risk), (4) losing the support of senior management due to a change in focus or 
a change in people (management risk), and (5) losing budgetary or personnel commit
ment (budget risks).

It is extremely important to note that simple risk categorization won’t always work. 
Some risks are simply unpredictable in advance.

1 A risk that is 100 percent probable is a constraint on the software project.
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Another general categorization of risks has been proposed by Charette [Cha89]. 
Known risks are those that can be uncovered after careful evaluation of the project 
plan, the business and technical environment in which the project is being developed, 
and other reliable information sources (e.g., unrealistic delivery date, lack of docu
mented requirements or software scope, poor development environment). Predictable 
risks are extrapolated from past project experience (e.g., staff turnover, poor com
munication with the customer, dilution of staff effort as ongoing maintenance requests 
are serviced). Unpredictable risks are the joker in the deck. They can and do occur, 
but they are extremely difficult to identify in advance.

Seven Principles of Risk 
Management
The Software Engineering Institute (SEI) 

(www.sei.cmu.edu) identifies seven principles that 
“provide a framework to accomplish effective risk 
management.” They are:

Maintain a global perspective. View software 
risks within the context of a system in which it 
is a component and the business problem that 
it is intended to solve.

Take a forward-looking view. Think about the 
risks that may arise in the future (e.g., due to 
changes in the software); establish contingency 
plans so that future events are manageable.

Encourage open communication. If someone 
states a potential risk, don’t discount it. If a risk 
is proposed in an informal manner, consider it. 

Encourage all stakeholders and users to 
suggest risks at any time.

Integrate. A consideration of risk must be 
integrated into the software process.

Emphasize a continuous process. The team must 
be vigilant throughout the software process, 
modifying identified risks as more information 
is known and adding new ones as better 
insight is achieved.

Develop a shared product vision. If all 
stakeholders share the same vision of the 
software, it is likely that better risk identification 
and assessment will occur.

Encourage teamwork. The talents, skills, and 
knowledge of all stakeholders should be 
pooled when risk management activities are 
conducted.

info

 26.3 Ri s k id e n t i f i cat i o n

Risk identification is a systematic attempt to specify threats to the project plan (esti
mates, schedule, resource loading, etc.). By identifying known and predictable risks, 
the project manager takes a first step toward avoiding them when possible and control
ling them when necessary.

There are two distinct types of risks for each of the categories that have been 
presented in Section 26.2. Generic risks are a potential threat to every software 
project. Product-specific risks can be identified only by those with a clear understand
ing of the technology, the people, and the environment that is specific to the software 
that is to be built. Although generic risks are important to consider, it’s the product
specific risks that cause the most headaches. Be certain to invest the time to identify 
as many productspecific risks as possible. To identify productspecific risks, you 
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should begin by examining the project plan and the software statement of scope and 
then develop an answer to the question, “What special characteristics of this product 
may threaten our project plan?”

One method for identifying risks is to create a risk item checklist. The checklist 
can be used for risk identification and focuses on some subset of known and predict
able risks in the following generic subcategories:

∙ Product size. Risks associated with the overall size of the software to be 
built or modified.

∙ Business impact. Risks associated with constraints imposed by management 
or the marketplace.

∙ Stakeholder characteristics. Risks associated with the sophistication of the 
stakeholders and the developer’s ability to communicate with stakeholders in 
a timely manner.

∙ Process definition. Risks associated with the degree to which the 
software process has been defined and is followed by the development 
organization.

∙ Development environment. Risks associated with the availability and quality 
of the tools to be used to build the product.

∙ Technology to be built. Risks associated with the complexity of the system 
to be built and the “newness” of the technology that is packaged by the 
system.

∙ Staff size and experience. Risks associated with the overall technical and 
project experience of the software engineers who will do the work.

The risk item checklist can be organized in different ways. Questions relevant to each 
of the topics can be answered for each software project. The answers to these ques
tions allow you to estimate the impact of risk. A different risk item checklist format 
simply lists characteristics that are relevant to each generic subcategory. Finally, a set 
of “risk components and drivers” [AFC88] are listed along with their probability of 
occurrence. Drivers for performance, support, cost, and schedule are discussed in 
answer to later questions.

Several comprehensive checklists for software project risk are available on the 
Web (e.g., [Arn11], [NAS07]). You can use these checklists to gain insight into 
generic risks for software projects. In addition to the use of checklists, risk pat-
terns ([Mil04], [San17]) have been proposed as a systematic approach to risk 
identification.

26.3.1 Assessing Overall Project Risk
So how can we determine if the software project we’re working on is at serious risk? 
The following questions have been derived from risk data obtained by surveying 
experienced software project managers in different parts of the world [Kei98]. The 
questions are ordered by their relative importance to the success of a project.
 1. Have top software and customer managers formally committed to support the 

project?
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 2. Are end users enthusiastically committed to the project and the system/
product to be built?

 3. Are requirements fully understood by the software engineering team and its 
customers?

 4. Have customers been involved fully in the definition of requirements?
 5. Do end users have realistic expectations?
 6. Is the project scope stable?
 7. Does the software engineering team have the right mix of skills?
 8. Are project requirements stable?
 9. Does the project team have experience with the technology to be 

implemented?
 10. Is the number of people on the project team adequate to do the job?
 11. Do all customer/user constituencies agree on the importance of the project 

and on the requirements for the system/product to be built?

If any one of these questions is answered negatively, mitigation, monitoring, and 
management steps should be instituted without fail. The degree to which the project 
is at risk is directly proportional to the number of negative responses to these questions.

26.3.2 Risk Components and Drivers
The U.S. Air Force [AFC88] has published a pamphlet that contains excellent guide
lines for software risk identification and abatement. The Air Force approach requires 
that the project manager identify the risk drivers that affect software risk components—
performance, cost, support, and schedule. In the context of this discussion, the risk 
components are defined in the following manner:

∙ Performance risk. The degree of uncertainty that the product will meet its 
requirements and be fit for its intended use.

∙ Cost risk. The degree of uncertainty that the project budget will be 
maintained.

∙ Support risk. The degree of uncertainty that the resultant software will be 
easy to correct, adapt, and enhance.

∙ Schedule risk. The degree of uncertainty that the project schedule will be 
maintained and that the product will be delivered on time.

The impact of each risk driver on the risk component is divided into one of four 
impact categories—negligible, marginal, critical, or catastrophic. Boehm [Boe89] sug
gests that negligible impact results only in inconvenience. The additional cost required 
to mitigate the impact is very low. Marginal impact might affect secondary mission 
objectives or requirements but would not impact overall mission success. Cost would 
be somewhat higher but manageable. Critical impact would directly affect system 
performance and some or all requirements and would bring mission success into ques
tion. Cost to mitigate would be high. Finally, catastrophic impact would result in 
mission failure. The cost of mitigation would be unacceptable.
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 26.4 Ri s k pRo j e c t i o n

Risk projection, also called risk estimation, attempts to rate each risk in two ways— 
(1) the likelihood or probability that the risk is real and will occur and (2) the 
consequences of the problems associated with the risk, should it occur. You work 
along with other managers and technical staff to perform four risk projection steps:

 1. Establish a scale that reflects the perceived likelihood of a risk.
 2. Delineate the consequences of the risk.
 3. Estimate the impact of the risk on the project and the product.
 4. Assess the overall accuracy of the risk projection so that there will be no 

misunderstandings.

The intent of these steps is to consider risks in a manner that leads to prioritization. 
No software team has the resources to address every possible risk with the same 
degree of rigor. By prioritizing risks, you can allocate resources where they will have 
the most impact.

26.4.1 Developing a Risk Table
A risk table provides you with a simple technique for risk projection.2 A sample risk 
table is illustrated in Figure 26.1.

You begin by listing all risks (no matter how remote) in the first column of the 
table. This can be accomplished with the help of the risk item checklists referenced 

2 The risk table can be implemented as a spreadsheet model. This enables easy manipulation 
and sorting of the entries.

Category Probability Impact RMMMRisk

Size estimate may be significantly low
Larger number of users than planned
Less reuse than planned
End users resist system
Delivery deadline will be tightened
Funding will be lost
Customer will change requirements
Technology will not meet exceptions
Lack of training on tools
Sta� inexperienced
Sta� turnover will be high

Impact values:
11 − catastrophic
2 − critical
3 − marginal
4 − negligible

PS
PS
PS
BU
BU
CU
PS
TR
DE
ST
ST

60%
30%
70%
40%
50%
40%
80%
30%
80%
30%
60%

2
3
2
3
2
1
2
1
3
2
2

Figure 26.1 Sample risk table prior to sorting



CHAPTER 26 RISK MANAGEMENT  539

in Section 26.3. Each risk is categorized in the second column (e.g., PS implies a 
project size risk, BU implies a business risk). The probability of occurrence of each 
risk is entered in the next column of the table. The probability value for each risk can 
be estimated by team members individually. One way to accomplish this is to poll 
individual team members in roundrobin fashion until their collective assessment of 
risk probability begins to converge.

Another possible starting point would be to look at the risk assessment table for 
a previous project and see which risks apply to your current project, which do not, 
and identify risks that should be added. Risk assessment does not always need to be 
recreated from scratch. Agile developers often work on similar projects and can 
realize the cost savings by maintaining lists of risk management procedures shared 
companywide.

Next, the impact of each risk is assessed. Each risk component is assessed using 
the characterization presented in Figure 26.1, and an impact category is determined. 
The categories for each of the four risk components—performance, support, cost, and 
schedule—are averaged3 to determine an overall impact value.

Once the first four columns of the risk table have been completed, the table is 
sorted by probability and by impact. Highprobability, highimpact risks percolate to 
the top of the table, and lowprobability risks drop to the bottom. This accomplishes 
firstorder risk prioritization.

A project manager can then establish a cutoff line at some row in the table 
(Figure 26.1). All risks that lie above the cutoff line should be managed. The column 
labeled RMMM contains a pointer into a risk mitigation, monitoring, and management 
plan or, alternatively, a collection of risk information sheets developed for all risks 
that lie above the cutoff. The RMMM plan and risk information sheets are discussed 
in Sections 26.5 and 26.6.

Risk probability can be determined by making individual estimates and then devel
oping a single consensus value. Although this approach is workable, more sophisti
cated techniques for determining risk probability have been developed (e.g., [McC09]). 
Recent work makes use of fuzzy logic4 to determine the characteristics that make 
software projects that are prone to failure. These projects often have multiple inter
related risk factors that are affected by imprecision or uncertainty and require use of 
expert knowledge and fuzzy logic to better understand the nature of their combined 
risk impact [Rod16].

Referring to Figure 26.2, risk impact and probability have a distinct influence on 
management concern. A risk factor that is classified as high impact but has a very low 
probability of occurrence should not absorb a significant amount of management time. 
However, highimpact risks with moderate to high probability and lowimpact risks 
with high probability should be carried forward into the risk analysis steps that follow.

3 A weighted average can be used if one risk component has more significance for a project.
4 Fuzzy logic is a type of logic that recognizes more than simple true and false values (unlike 

the propositional logic you may have studied in a discrete mathematics class). With fuzzy 
logic, propositions can be represented with degrees of truthfulness and falsehood. For exam
ple, the statement, any animal with stripes is a tiger might only be 50% likely to be true. 
Fuzzy logic has proved to be particularly useful in artificial intelligence applications that 
involve making decisions involving incomplete or uncertain information.
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26.4.2 Assessing Risk Impact
Three factors affect the consequences that are likely if a risk does occur: its nature, 
its scope, and its timing. The nature of the risk indicates the problems that are likely 
if it occurs. For example, a poorly defined external interface to customer hardware 
(a technical risk) will preclude early design and testing and will likely lead to system 
integration problems late in a project. The scope of a risk combines the severity (just 
how serious is it?) with its overall distribution (how much of the project will be 
affected or how many stakeholders are harmed?). Finally, the timing of a risk consid
ers when and for how long the impact will be felt. In most cases, you want the “bad 
news” to occur as soon as possible, but in some cases, the longer the delay, the better.

Returning once more to the risk analysis approach proposed by the U.S. Air Force 
[AFC88], you can apply the following steps to determine the overall consequences of 
a risk: (1) determine the average probability of occurrence value for each risk com
ponent; (2) using the discussion presented in Section 26.3.2, determine the impact for 
each component based on the criteria shown, and (3) complete the risk table and 
analyze the results as described in the preceding sections.

The overall risk exposure (RE), is determined using the following relationship [Hal98]:

RE = P × C

where P is the probability of occurrence for a risk, and C is the cost to the project 
should the risk occur.

Figure 26.2
Risk and 
management 
concern

Very high

Very low

Disregard
risk factor

High

0

1.0

Impact
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of occurrence

Management
concern
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For example, assume that the software team defines a project risk in the following 
manner:

Risk identification. Only 70 percent of the software components scheduled 
for reuse will, in fact, be integrated into the application. The remaining 
functionality will have to be custom developed.
Risk probability. Eighty percent (likely).
Risk impact. Sixty reusable software components were planned. If only 
70 percent can be used, 18 components would have to be developed from 
scratch (in addition to other custom software that has been scheduled for 
development). Because the average component is 100 LOC and local data 
indicate that the software engineering cost for each LOC is $14.00, the overall 
cost (impact) to develop the components would be 18 × 100 × 14 = $25,200.
Risk exposure. RE = 0.80 × 25,200 ~ $20,200.

Risk exposure can be computed for each risk in the risk table, once an estimate of 
the cost of the risk is made. The total risk exposure for all risks (above the cutoff in 
the risk table) can provide a means for adjusting the final cost estimate for a project. 
It can also be used to predict the probable increase in staff resources required at 
various points during the project schedule.

The risk projection and analysis techniques described in Sections 26.4.1 and 
26.4.2 are applied iteratively as the software project proceeds.5 The project team 
should revisit the risk table at regular intervals, reevaluating each risk to determine 
when new circumstances cause its probability and impact to change. After complet
ing this activity, the team may decide to add new risks to the table, remove some 
risks that are no longer relevant, or change the relative positions of still others. The 
team should compare the RE for all risks to their project cost estimate. If the total 
RE is greater than 50 percent of the project cost, the viability of the project must be 
questioned.

5 If you have further interest, a more mathematical treatment of the cost of risk is presented 
in [Ben10b].

Risk Analysis

The scene: Doug Miller’s office, 
prior to the initiation of the 

SafeHome software project.

The players: Doug Miller, manager of the 
SafeHome software engineering team, and 
Vinod Raman, Jamie Lazar, and other members 
of the product software engineering team.

The conversation:
Doug: I’d like to spend some time brainstorm-
ing risks for the SafeHome project.

Jamie: As in what can go wrong?

Doug: Yep. Here are a few categories where 
things can go wrong.

safeHome
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 26.5 Ri s k Re f i n e m e n t

During early stages of project planning, a risk may be stated quite generally. As time 
passes and more is learned about the project and the risk, it may be possible to refine 
the risk into a set of more detailed risks, each somewhat easier to mitigate, monitor, 
and manage.

One way to do this is to represent the risk in condition-transition-consequence 
(CTC) format [Glu94]. That is, the risk is stated in the following form:

Given that <condition> then there is concern that (possibly) <consequence>.

Using the CTC format for the reuse risk noted in Section 26.4.2, you could write:

Given that all reusable software components must conform to specific design standards 
and that some do not conform, then there is concern that (possibly) only 70 percent of 
the planned reusable modules may be integrated into the asbuilt system, resulting in the 
need to custom engineer the remaining 30 percent of components.

This general condition can be refined in the following manner:

Subcondition 1. Certain reusable components were developed by a third party 
with no knowledge of internal design standards.

Subcondition 2. The design standard for component interfaces has not been 
solidified and may not conform to certain existing reusable components.

 [He shows everyone the categories noted in 
the introduction to Section 26.3.]

Vinod: Umm . . . do you want us to just call 
them out, or . . .

Doug: No, here’s what I thought we’d do. 
Everyone make a list of risks . . . right now . . .

 [Ten minutes pass, everyone is writing.]

Doug: Okay, stop.

Jamie: But I’m not done!

Doug: That’s okay. We’ll revisit the list again. 
Now, for each item on your list, assign a 
percent likelihood that the risk will occur. Then, 
assign an impact to the project on a scale of 
1 (minor) to 5 (catastrophic).

Vinod: So if I think that the risk is a coin flip,  
I specify a 50 percent likelihood, and if I think 
it’ll have a moderate project impact, I specify 
a 3, right?

Doug: Exactly.

 [Five minutes pass, everyone is writing.]

Doug: Okay, stop. Now we’ll make a group list 
on the whiteboard. I’ll do the writing; we’ll call 
out one entry from your list in round-robin 
format.

 [Fifteen minutes pass; the list is created.]

Jamie (pointing at the board and laughing):  
Vinod, that risk (pointing toward an entry on 
the board) is ridiculous. There’s a higher 
likelihood that we’ll all get hit by lightning. 
We should remove it.

Doug: No, let’s leave it for now. We consider 
all risks, no matter how weird. Later we’ll 
winnow the list.

Jamie: But we already have over 40 risks . . . 
how on earth can we manage them all?

Doug: We can’t. That’s why we’ll define a 
cut-off after we sort these guys. I’ll do that 
off-line and we’ll meet again tomorrow. For 
now, get back to work . . . and in your spare 
time, think about any risks that we’ve missed.
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Subcondition 3. Certain reusable components have been implemented in a 
language that is not supported on the target environment.

The consequences associated with these refined subconditions remain the same (i.e., 
30 percent of software components must be custom engineered), but the refinement 
helps to isolate the underlying risks and might lead to easier analysis and response.

 26.6 Ri s k mi t i gat i o n,  mo n i to R i ng,  
a n d ma nag e m e n t

All the risk analysis activities presented to this point have a single goal—to assist the 
project team in developing a strategy for dealing with risk. An effective strategy must 
consider three issues: risk avoidance, risk monitoring, and risk management and 
contingency planning.

If a software team adopts a proactive approach to risk, avoidance is always the best 
strategy. This is achieved by developing a plan for risk mitigation. For example, 
assume that high staff turnover is noted as a project risk r1. Based on its history and 
management intuition, the likelihood l1 of high turnover is estimated to be 0.70 
(70 percent, rather high) and the impact x1 is projected as critical. That is, high 
turnover will have a critical impact on project cost and schedule.

To mitigate this risk, you would develop a strategy for reducing turnover. Among 
the possible steps to be taken are:

∙ Meet with current staff to determine causes for turnover (e.g., poor working 
conditions, low pay, competitive job market).

∙ Mitigate those causes that are under your control before the project starts.
∙ Once the project commences, assume turnover will occur and develop 

techniques to ensure continuity when people leave.
∙ Organize project teams so that information about each development activity is 

widely dispersed.
∙ Define work product standards and establish mechanisms to be sure that all 

models and documents are developed in a timely manner.
∙ Conduct peer reviews of all work (so that more than one person is “up to 

speed”).
∙ Assign a backup staff member for every critical technologist.

As the project proceeds, risk-monitoring activities commence. The project manager 
monitors factors that may provide an indication of whether the risk is becoming more 
likely or less likely. In the case of high staff turnover, the general attitude of team 
members based on project pressures, the degree to which the team has jelled, inter
personal relationships among team members, potential problems with compensation 
and benefits, and the availability of jobs within the company and outside it are all 
monitored.

In addition to monitoring these factors, a project manager should monitor the effec
tiveness of risk mitigation steps. For example, a risk mitigation step noted here called 
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for the definition of work product standards and mechanisms to be sure that work 
products are developed in a timely manner. This is one mechanism for ensuring 
continuity, should a critical individual leave the project. The project manager should 
monitor work products carefully to ensure that each can stand on its own and that 
each imparts information that would be necessary if a newcomer were forced to join 
the software team somewhere in the middle of the project.

Risk management and contingency planning assumes that mitigation efforts have 
failed and that the risk has become a reality. Continuing the example, the project is 
well under way and several people announce that they will be leaving. If the mitiga
tion strategy has been followed, backup is available, information is documented, and 
knowledge has been dispersed across the team. In addition, you can temporarily refo
cus resources (and readjust the project schedule) to those functions that are fully 
staffed, enabling newcomers who must be added to the team to “get up to speed.” 
Those individuals who are leaving are asked to stop all work and spend their last 
weeks in “knowledge transfer mode.” This might include videobased knowledge cap
ture, the development of “commentary documents or Wikis,” and/or meeting with 
other team members who will remain on the project.

It is important to note that risk mitigation, monitoring, and management (RMMM) 
steps incur additional project cost. For example, spending the time to back up every 
critical technology costs money. Part of risk management, therefore, is to evaluate 
when the benefits accrued by the RMMM steps are outweighed by the costs associated 
with implementing them. You need to perform a classic costbenefit analysis. If RE 
for a specific risk is less than the cost of risk mitigation, don’t try to mitigate the risk 
but continue to monitor it. If risk aversion steps for high turnover will increase both 
project cost and duration by an estimated 15 percent, but the predominant cost factor 
is “backup,” management may decide not to implement this step. On the other hand, 
if the risk aversion steps are projected to increase costs by 5 percent and duration by 
only 3 percent, management will likely put all into place.

For a large project, 30 or 40 risks may be identified. If between three and seven 
risk management steps are identified for each, risk management may require signifi
cant resources to manage. For this reason, you should adapt the Pareto 80–20 rule to 
software risk. Experience indicates that 80 percent of the overall project risk (i.e., 
80 percent of the potential for project failure) can be accounted for by only 20 percent 
of the identified risks. The work performed during earlier risk analysis steps will help 
you to determine which of the risks reside in that 20 percent (e.g., risks that lead to 
the highest risk exposure). For this reason, some of the risks identified, assessed, and 
projected may not make it into the RMMM plan—they don’t fall into the critical 
20 percent (the risks with highest project priority).

Gamification6 has been suggested as an approach to encouraging software develop
ers to follow process compliance procedures in the areas like quality and risk 

6 Deterding et al. defined gamification as the use of game design elements in nongame set
tings to increase motivation and attention on a task [Det11]. It is important to note that this 
definition does not refer to the playing of games, but rather the use of game design elements 
in other contexts.
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management [Ped14]. A typical gamification approach might award points, badges, 
or other nonmonetary awards to each developer and make use of a public leader board 
showing each person’s ranking within the development group. If such an approach 
can be implemented based on automatic data collection (e.g., tracking the number of 
commitments to the software repository), it can be a costeffective way of ensuring 
all team members are monitoring the risk factor measures intended to trigger the 
mitigation steps required to prevent the risk from becoming a disaster [Baj11]. A word 
of caution: You must ensure that members of the team are not rewarded for doing 
things like injecting problems into the process, so they can earn badges for mitigating 
the problems they caused [Bri13].

Risk is not limited to the software project itself. Risks can occur after the software 
has been successfully developed and delivered to the customer. These risks are typi
cally associated with the consequences of software failure in the field.

Software safety and hazard analysis (e.g., [Fir15], [Har12a], [Lev12]) are software 
quality assurance activities (Chapter 17) that focus on the identification and assess
ment of potential hazards that may affect software negatively and cause an entire 
system to fail. If hazards can be identified early in the software engineering process, 
software design features can be specified that will either eliminate or control potential 
hazards.

Gamification and Risk Management

The scene: Doug Miller’s office, 
prior to the initiation of the 

SafeHome software project.

The players: Doug Miller, manager of the 
SafeHome software engineering team,  
and Vinod Raman, Jamie Lazar, and other 
members of the product software 
engineering team.

The conversation:
Doug: I’d like to spend some time brainstorm-
ing ideas for getting all developers on board 
with monitoring and mitigating the risks we 
identified for the SafeHome project.

Jamie: I thought it was your job to keep track 
of the project?

Doug: It is, but the development team mem-
bers are able to see potential problems much 

quicker than I can, since they’re working in the 
trenches.

Vinod: Working is right. We already have  
a lot to do to keep this project moving 
forward . . .

Doug: Exactly, we don’t have time to fix prob-
lems that could have been prevented by 
addressing risks early.

Jamie: Okay . . . so what are you thinking?

Doug: I’m thinking since you guys like 
games, that may be a way to make risk 
monitoring more like a game than a project 
task.

Jamie: You know, my buddy—he works at 
another company—told me about something 
called “gamification.” Sounds like what you’re 
talking about, Doug.

safeHome
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 26.7 tH e Rmmm pL a n

A risk management strategy can be included in the software project plan, or the 
risk management steps can be organized into a separate risk mitigation, monitor-
ing, and management plan. The RMMM plan documents all work performed as 
part of risk analysis and is used by the project manager as part of the overall 
project plan.

Some software teams do not develop a formal RMMM document. Rather, each 
risk is documented individually using a risk information sheet (RIS) [Wil97]. In most 
cases, the RIS is maintained using a cloud database system so that creation and 
information entry, priority ordering, searches, and other analysis may be accom
plished easily. This approach might lend itself to supporting gamification of the risk 
management process. It would also facilitate the sharing of the risk information 
sheets to all the company software teams. The format of the RIS is illustrated in 
Figure 26.3.

Once RMMM has been documented and the project has begun, risk mitigation and 
monitoring steps commence. As we have already discussed, risk mitigation is a prob
lem avoidance activity. Risk monitoring is a project tracking activity with three pri
mary objectives: (1) to assess whether predicted risks do, in fact, occur; (2) to ensure 
that risk aversion steps defined for the risk are being properly applied; and (3) to 
collect information that can be used for future risk analysis. In many cases, the prob
lems that occur during a project can be traced to more than one risk. Another job of 
risk monitoring is to attempt to allocate origin [what risk(s) caused which problems 
throughout the project].

Doug: Yeah, gamification is growing in 
popularity as a compliance tool in software 
process areas like quality assurance and risk 
management.

Vinod: So how can we do this?

Doug: I was thinking that most of the triggers 
for our risk mitigation tasks are based on the 
metrics we already have in the project 
management dashboard. It might just be a 
question of encouraging developers to check 
the dashboard on a regular basis.

Jamie: Are we going to use “snoopware” to 
track the number of times people check?

Doug: Maybe not. Perhaps we can reward the 
first person who reports a trigger value that 
indicates something’s wrong.

Jamie: My buddy mentioned that they use 
leader boards to encourage competition. We 

can do a simple leader board as a Google doc 
spreadsheet.

Vinod: Some games have badges. We might 
create badges for the leader board.

Doug: Would people work for badges?

Jamie: They might if they could cash badges 
in for rewards.

Doug: What kind of rewards?

Jamie: Maybe something like getting first pick 
on a user story to develop in the current sprint. 
Or a cash reward if a person’s actions save the 
company a lot of rework costs.

Doug: Let me think some more on this and let 
you know what I come up with for rewards and 
a point system for the leader board. We’ll meet 
again tomorrow. For now, think about the most 
important risks we should be monitoring when 
we start our first sprint.
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 26.8 su m m a Ry

Whenever a lot is riding on a software project, common sense dictates risk analysis. 
And yet, most software project managers do it informally and superficially, if they do 
it at all. The time spent identifying, analyzing, and managing risk pays itself back in 
many ways—less upheaval during the project, a greater ability to track and control a 
project, and the confidence that comes with planning for problems before they occur.

Risk analysis can absorb a significant amount of project planning effort. Identifica
tion, projection, assessment, management, and monitoring all take time. But the effort 
is worth it. To quote Sun Tzu, a Chinese general who lived 2,500 years ago, “If you 
know the enemy and know yourself, you need not fear the result of a hundred battles.” 
For the software project manager, the enemy is risk.

Risk ID:    P02-4-32

Originator:    D. Gagne Assigned:    B. Laster

Description:

Only 70 percent of the software components scheduled for reuse will, in fact, be integrated into the application. The
remaining functionality will have to be custom developed.

Refinement/context:

Subcondition  1:  Certain reusable components were developed by a third party with no knowledge of internal design
           standards.

Subcondition  2:  The design standard for component interfaces has not been solidified and may not conform to
           certain existing reusable components.

Subcondition  3:  Certain reusable components have been implemented in a language that is not supported on the
           target environment.

Mitigation/monitoring:

1. Contact third party to determine conformance with design standards.

2. Press for interface standards completion; consider component structure when deciding on interface protocol.

3. Check to determine number of components in subcondition 3 category; check to determine if language support
can be acquired.

Date:    5 / 9 / 19 Prob:    80% Impact:    high

Risk information sheet

Management/contingency plan/trigger:

RE computed to be $20,200.  Allocate this amount within project contingency cost.  Develop revised schedule
assuming that 18 additional components will have to be custom built; allocate sta� accordingly.

Trigger:  Mitigation steps unproductive as of 7 / 1 / 19.

Current status:

5 / 12 / 19:  Mitigation steps initiated.

Figure 26.3 Risk information sheet
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Pro b l e m s a n d Po i n t s to Po n d e r

26.1. Provide five examples from other fields that illustrate the problems associated with a 
reactive risk strategy.

26.2. Describe the difference between “known risks” and “predictable risks.”

26.3. You’re the project manager for a major software company. You have been asked to lead 
a team seeking to build a breakthrough product that combines virtual reality hardware with 
state-of-the-art software. Create a risk table for the project.

26.4. Develop a risk mitigation strategy and specific risk mitigation activities for three of the 
risks noted in Figure 26.1.

26.5. Develop a risk monitoring strategy and specific risk monitoring activities for three of the 
risks noted in Figure 26.1. Be sure to identify the factors that you’ll be monitoring to determine 
whether the risk is becoming more likely or less likely to occur.

26.6. Develop a risk management strategy and specific risk management activities for three of 
the risks noted in Figure 26.1.

26.7. Attempt to refine three of the risks noted in Figure 26.1, and then create risk information 
sheets for each.

26.8. Recompute the risk exposure discussed in Section 26.4.2 when cost/LOC is $16 and the 
probability is 60 percent.

26.9. Can you think of a situation in which a high-probability, high-impact risk would not be 
considered as part of your RMMM plan?

26.10. Describe five software application areas in which software safety and hazard analysis 
would be a major concern.

Design element: Quick Look icon magnifying glass: © Roger Pressman
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27A Strategy for  
Software Support

What is it? Software support encompasses a set of 
activities that correct bugs, adapt the software to 
changes in its environment, enhance the software 
based on stakeholder requests, and reengineer 
the software to achieve better functionality and 
performance. During these activities, quality must 
be ensured and change must be controlled.

Who does it? At an organizational level, support 
staff from the software engineering organization 
perform all support activities. User training, bug 
report management, performing warranty repairs, 
and continuing to manage customer relations 
may be handled by other specialized teams.

Why is it important? Software exists within a rap-
idly changing technology and business environ-
ment. That’s why software must be maintained 
continually, and at the appropriate time, reengi-
neered to keep pace. 

What are the steps? Software support incorpo-
rates a maintenance function that corrects defects, 

adapts the software to meet a changing environ-
ment, and enhances functionality to meet the 
evolving needs of customers. At a strategic level, 
the support team works with stakeholders to 
 examine the existing business goals for the soft-
ware product and creates a revised software 
product to better meet the revised business 
goals. Software evolution using reengineering 
creates versions of existing programs that exhibit 
higher quality and better maintainability.

What is the work product? A variety of mainte-
nance and reengineering work products (e.g., 
use cases, analysis and design models, test pro-
cedures) are produced. The final output is up-
graded software that is easier to maintain and 
better meets the needs of its users.

How do I ensure that I’ve done it right? Use 
the same software quality and change manage-
ment practices that are applied in every software 
engineering process.
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k e y 
c o n c e p t s

Regardless of its application domain, its size, or its complexity, computer soft-
ware will evolve over time. Change drives this process. For computer software, 
change occurs when errors are corrected, when the software is adapted to a new 
environment, when customers request new features or functions, and when the 
application is reengineered to provide benefit in a modern context. Software 
support actually begins when the developers involve stakeholders in the require-
ments gathering and prototype evolution process (Figure 27.1). Software support 
ends with the decision to retire the system from active use.
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Over the past 40 years, Manny Lehman (e.g., [Leh97a]) and his colleagues have 
performed detailed analyses of industry-grade software and systems in an effort to 
develop a unified theory for software evolution. The details of this work are beyond 
the scope of this book, but a brief mention of some of these laws [Leh97b] is 
worthwhile:

Law of continuing change (1974). Software that has been implemented in a  
real-world computing context and will therefore evolve over time (called E-type systems) 
must be continually adapted else they become progressively less satisfactory.

Law of increasing complexity (1974). As an E-type system evolves its complexity 
increases unless work is done to maintain or reduce it.

Law of conservation of familiarity (1980). As an E-type system evolves all associ-
ated with it, developers, sales personnel, users, for example, must maintain knowledge 
of its content and behavior to achieve satisfactory evolution. Excessive growth diminishes 
that knowledge. Hence the average incremental growth remains invariant as the system 
evolves.

Law of continuing growth (1980). The functional content of E-type systems must 
be continually increased to maintain user satisfaction over their lifetime.

Law of declining quality (1996). The quality of E-type systems will appear to be 
declining unless they are rigorously maintained and adapted to operational environment 
changes.

The laws that Lehman and his colleagues have defined are an inherent part of a soft-
ware engineer’s reality. In this chapter, we’ll discuss the challenges of software support 
including maintenance and evolution activities that are required to extend the effective 
life of legacy systems.

 27.1 so f t wa r e su p p o rt

Software support can be considered an umbrella activity that includes many activities 
we have already discussed in this book: change management (Chapter 22), proactive 
risk management (Chapter 26), process management (Chapter 25), configuration man-
agement (Chapter 22), quality assurance (Chapter 17), and release management 
(Chapter 4). Release management is the process that brings high-quality code changes 
from a developer’s workspace to the end user, encompassing code change integration, 
continuous integration, build system specifications, infrastructure-as-code, and 
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Figure 27.1 Software prototype evolution process model



CHAPTER 27 A STRATEGY FOR SOFTWARE SUPPORT  551

deployment and release [Ada16]. Ultimately software needs to be retired. Figure 27.2 
provides an example of a time line showing the release and retirement of a software 
product.

To effectively support industry-grade software, your organization (or its designee) 
must be capable of making the corrections, adaptations, and enhancements that are 
part of the maintenance activity. But in addition, the organization must provide other 
important support activities that include ongoing operational support, end-user sup-
port, and reengineering activities over the complete life of the software. Figure 27.3 
shows one model for supporting software after it is released.
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A reasonable definition of software supportability is

.  .  .  the capability of supporting a software system over its whole product life. This 
implies satisfying any necessary needs or requirements, but also the provision of equip-
ment, support infrastructure, additional software, facilities, labor, or any other resource 
required to maintain the software operational and capable of satisfying its function. 
[SSO08]

In essence, supportability is one of many quality factors that should be considered 
during the analysis and design actions that are part of the software process. It should 
be addressed as part of the requirements model (or specification) and considered as 
the design evolves and construction commences. There should be some consider-
ation for how long the software will be maintained before it is replaced by a new 
product.

For example, the need to “antibug” software at the component and code level has 
been discussed previously in this book. The software should contain facilities to assist 
support personnel when a defect is encountered in the operational environment (and 
make no mistake, defects will be encountered). In addition, support personnel should 
have access to a database that contains records of all defects that have already been 
encountered—their characteristics, cause, and cure. This will enable support personnel 
to examine “similar” defects and may provide a means for more rapid diagnosis and 
correction.

Although defects encountered in an application are a critical support issue, sup-
portability also demands that resources be provided to support day-to-day end-user 
issues. The job of end-user support personnel is to answer user queries about the 
installation, operation, and use of the application.

 27.2 so f t wa r e Ma i n t e na nc e

Maintenance begins almost immediately. Software is released to end users, and within 
days, bug reports filter back to the software engineering organization. Within weeks, 
one class of users indicates that the software must be changed so that it can accom-
modate the special needs of their environment. And within months, another corporate 
group that wanted nothing to do with the software when it was released now recog-
nizes that it may provide unexpected benefit. They’ll need a few enhancements to 
make it work in their world.

The challenge of software maintenance has begun. You’re faced with a growing 
queue of bug fixes, adaptation requests, and outright enhancements that must be 
planned, scheduled, and ultimately accomplished. Before long, the queue has grown 
long, and the work it implies threatens to overwhelm the available resources. As time 
passes, your organization finds that it’s spending more money and time maintaining 
existing programs than it is engineering new applications. In fact, it’s not unusual for 
a software organization to expend as much as 60 to 70 percent of all resources on 
software maintenance for products that have been in active use for several years.

As we noted in Chapter 22, the ubiquitous nature of change underlies all software 
work. Change is inevitable when computer-based systems are built; therefore, you 
must develop mechanisms for evaluating, controlling, and making modifications.
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Throughout this book, we’ve emphasized the importance of understanding the 
problem (analysis) and developing a well-structured solution (design). In fact, Part 2 
of the book is dedicated to the mechanics of these software engineering actions, and 
Part 3 focuses on the techniques required to be sure you’ve done them correctly. Both 
analysis and design lead to an important software characteristic that we call maintain-
ability. In essence, maintainability is a qualitative indication1 of the ease with which 
existing software can be corrected, adapted, or enhanced. Much of what software 
engineering is about is building systems that exhibit high maintainability.

But what is maintainability? Maintainable software exhibits effective modularity 
(Chapter 9). It makes use of design patterns (Chapter 14) that allow ease of under-
standing. It has been constructed using well-defined coding standards and conventions, 
leading to source code that is self-documenting and understandable. It has undergone 
a variety of quality assurance techniques (Part 3 of this book) that have uncovered 
potential maintenance problems before the software is released. It has been created 
by software engineers who recognize that they may not be around when changes must 
be made. Therefore, the design and implementation of the software must “assist” the 
person who is making the change.

27.2.1 Maintenance Types
In Chapter 4 we discussed the four types of maintenance shown in Figure 27.4. It is 
clear that corrective and adaptive maintenance do not add new functionality. It is likely 
that new functionality will be added to the software during perfective maintenance 
and possibly during preventative maintenance as well.

In this chapter, we will discuss three broad classes of software maintenance that 
are relevant to the software support process: reverse engineering, software refactoring, 
and software evolution or reengineering. Reverse engineering is the process of analyz-
ing a software system to identify the system’s components and their interrelationships 
and to create representations of the system in another form or at a higher level of 
abstraction (Section 27.2.2). Often reverse engineering is used to rediscover system 

Software Maintenance

Adaptive MaintenanceCorrective Maintenance Proactive Maintenance

Preventive MaintenancePerfective Maintenance

Figure 27.4 Types of software maintenance

1 There are many quantitative measures that provide an indirect indication of maintainability 
(e.g., [Sch99], [SEI02]).
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design elements and redocument them prior to modifying the system source code. 
Refactoring is the process of changing a software system in such a way that it does 
not alter its external behavior but improves its internal structure. Refactoring is often 
used to improve the quality of a software product and make it easier to understand 
and easier to maintain (Section 27.4). Reengineering (evolution) of software is the 
process of taking an existing software system and generating a new system from it 
that has the same quality as software created using modern software engineering 
practices [Osb90]. Reengineering and software evolution are discussed in Section 27.5.

27.2.2 Maintenance Tasks
The scenario is all too common: An application has served the business needs of a 
company for 10 or 15 years. During this time period it has been corrected, adapted, 
and enhanced many times. People approached this work with the best intentions, but 
good software engineering practices were always shunted to the side (due to the 
urgency of other matters). Now the application is unstable. It still works, but every 
time a change is attempted, unexpected and serious side effects occur. Yet the appli-
cation must continue to evolve. What to do?

Unmaintainable software is not a new problem. In fact, the broadening emphasis 
on software evolution and reengineering (Section 27.5) has been spawned by software 
maintenance problems that have been building for almost half a century. Figure 27.5 
shows a set of generic tasks that should be completed as part of a controlled software 
maintenance process.

Agile process models similar to the one we described in Chapter 4 deliver incre-
mental prototypes in 4-week sprints. It can be argued that agile developers are in 
perpetual software support mode as they add new stakeholder requested features in 
every software increment. However, it is important to realize that software develop-
ment is not maintenance. It is advisable for separate groups of engineers to handle 
these two tasks. Heeager and Rose [Hee15] suggest nine heuristics to help the 
maintenance become more agile.
 1. Use sprints to organize the maintenance work. You should balance the goal of 

keeping customers happy with the technical needs of the developers.
 2. Allow for urgent customer requests to interrupt scheduled maintenance 

sprints, by including time for them during maintenance sprint planning.
 3. Facilitate team learning by ensuring that more experienced developers are 

able to mentor less experienced team members even when working on their 
own discrete tasks.

Determining
Maintenance

Objectives

Understanding
Programs

Generating
Maintenance
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Accounting
for

Ripple E�ect
Revalidating

Figure 27.5 Software maintenance tasks
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 4. Allow multiple team members to accept customer requests as they arise and 
coordinate their processing with the other maintenance team members.

 5. Balance the use of written documentation with face-to-face communication to 
ensure planning meeting time is used wisely.

 6. Write informal use cases to supplement the other documentation being used 
for communications with stakeholders.

 7. Have developers test each other’s work (both defect repairs and new feature 
implementations). This allows for shared learning and improves the feelings 
of product ownership by the team members.

 8. Make sure developers are empowered to share knowledge with one another. 
This can motivate people to improve the skills and knowledge (allows devel-
opers to learn new things, improves their professional skills, and distributes 
tasks more evenly).

 9. Keep planning meetings short, frequent, and focused.

27.2.3 Reverse Engineering
The first task that needs to be completed by software engineers before responding to 
any maintenance request is to understand the system that needs to be modified. Sadly, 
the system being maintained often has low quality and lacks reasonable documenta-
tion. This is what technical debt is all about. Technical debt is often caused by devel-
opers adding features without documenting them or considering their impact on the 
larger software system.

Reverse engineering can be used to extract design information from source code, 
but the abstraction level of this information, the completeness of the documentation, 
and the degree to which human analysts work comfortably with the available tools, 
are highly variable. Reverse engineering conjures an image of the “magic slot.” You 
feed a haphazardly designed, undocumented source file into the slot and out the other 
end comes a complete design description (and full documentation) for the computer 
program. Unfortunately, the magic slot doesn’t exist.

Reverse engineering requires developers to evaluate the old software system by 
examining its (often undocumented) source code, developing a meaningful specifica-
tion of the processing being performed, the user interface that was used, and the 
program data structures or associated database.

Reverse Engineering to Understand Data. This occurs at different levels of 
abstraction and is often the first reengineering task. In some cases, the first reverse 
engineering activity attempts to construct a UML class diagram. At the program level, 
internal program data structures must often be reverse engineered as part of an over-
all reengineering effort. At the system level, global data structures (e.g., files, data-
bases) are often reengineered to accommodate new database management paradigms 
(e.g., the move from flat file to relational or object-oriented database systems). Reverse 
engineering of the current global data structures sets the stage for the introduction of 
a new systemwide database.

Internal Data Structures. Reverse engineering techniques for internal program data 
focus on the definition of object classes. This is accomplished by examining the 
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program code with the intent of grouping related program variables together. In many 
cases, the data organization within the code suggests several abstract data types. For 
example, record structures, files, lists, and other data structures often provide initial 
suggestions for possible classes.

Database Structure. Regardless of its logical organization and physical structure, 
a database allows the definition of data objects and supports some method for estab-
lishing relationships among the objects. Therefore, reengineering one database schema 
into another requires an understanding of existing objects and their relationships.

The following steps [Pre94] may be used to define the existing data model as a 
precursor to reengineering a new database model: (1) build an initial object model, 
(2) determine candidate keys (the attributes are examined to determine whether they 
are used to point to another record or table; those that serve as pointers become 
candidate keys), (3) refine the tentative classes, (4) define generalizations, and  
(5) discover associations using techniques that are analogous to the CRC approach. 
Once information defined in the preceding steps is known, a series of transforma-
tions [Pre94] can be applied to map the old database structure into a new database 
structure.

Reverse engineering to understand processing begins with an attempt to under-
stand and then extract procedural abstractions represented by the source code. To 
understand procedural abstractions, the code is analyzed at varying levels of abstrac-
tion: system, program, component, pattern, and statement.

The overall functionality of the entire application must be understood before more 
detailed reverse engineering work occurs. This establishes a context for further anal-
ysis and provides insight into interoperability issues among applications within a 
larger system. Each of the programs that make up the system represents a functional 
abstraction at a high level of detail. A block diagram, representing the interaction 
between these functional abstractions, is created. Each component performs some 
subfunction and represents a defined procedural abstraction. A processing narrative 
for each component is developed. In some situations, system, program, and component 
specifications already exist. When this is the case, the specifications are reviewed for 
conformance to existing code.2

Things become more complex when the code inside a component is considered. 
You should look for sections of code that represent generic procedural patterns. In 
almost every component, a section of code prepares data for processing (within the 
module), a different section of code does the processing, and another section of code 
prepares the results of processing for export from the component. Within each of these 
sections, you can encounter smaller patterns; for example, data validation and bounds 
checking often occur within the section of code that prepares data for processing.

For large systems, reverse engineering is generally accomplished using a semi-
automated approach. Automated tools can be used to help you understand the seman-
tics of existing code. The output of this process is then passed to restructuring and 
forward engineering tools to complete the reengineering process.

2 Often, specifications written early in the life history of a program are never updated. As 
changes are made, the code no longer conforms to the specification.
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Reverse engineering to understand user interfaces may need to be done as part 
of the maintenance task. Sophisticated GUIs have become de rigueur for computer-
based products and systems of every type. Therefore, the redevelopment of user inter-
faces has become one of the most common types of reengineering activity. But before 
a user interface can be rebuilt, reverse engineering should occur.

To fully understand an existing user interface, the structure and behavior of the 
interface must be specified. Merlo and his colleagues [Mer93] suggest three basic 
questions that must be answered as reverse engineering of the UI commences:

∙ What are the basic actions (e.g., keystrokes and mouse clicks) that the 
interface must process?

∙ What is a compact description of the behavioral response of the system to 
these actions?

∙ What is meant by a “replacement,” or more precisely, what concept of equiva-
lence of interfaces is relevant here?

Behavioral modeling notation (Chapter 9) can provide a means for developing answers 
to the first two questions. Much of the information necessary to create a behavioral 
model can be obtained by observing the external manifestation of the existing inter-
face. But additional information necessary to create the behavioral model must be 
extracted from the code.

It is important to note that a replacement GUI may not mirror the old interface 
exactly (in fact, it may be radically different). It is often worthwhile to develop a new 
interaction metaphor. For example, an old UI that prompts the user to provide a scale 
factor (ranging from 1 to 10) to shrink or magnify a graphical image. A reengineered 
GUI might use a touch-screen gesture to accomplish the same function.

 27.3 proac t i v e so f t wa r e su p p o rt

We described the differences between reactive and proactive risk management in 
Chapter 26. We also described preventative maintenance and perfective maintenance 
as being proactive maintenance activities (Section 27.2.1). If the goal of software 
engineering is to deliver high-quality products that meet customer needs in a timely 
and cost-effective manner, then software support, like other software engineering 
activities, requires the use of managed workflow processes so that unnecessary rework 
is avoided.

Supporting software means adapting it to meet changing customer demands and 
repairing defects reported by end users. This work may be required by law, by con-
tractual agreement, or via product warranty. Repairing software can be a time-consuming 
and costly process, and it’s important to anticipate problems and schedule the work 
required to respond to customer concerns before they become emergencies. Proactive 
software support requires software engineers to create tools and processes that can help 
them identify and resolve software issues before they become problems. A generic 
process for proactive software maintenance and support is shown in Figure 27.6.

The proactive support process is similar to risk monitoring and mitigation 
(Section  26.6). Developers need to search for indicators that suggest their software 
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product may have quality problems. Sometimes these problems can be addressed by 
evolving the product and migrating it to a newer version (Section 27.5). Sometimes 
the software can be restructured or refactored (Section 27.4) to improve its quality 
and make it easier to maintain. In some cases, the problems are so severe that the 
developer will need to make plans to retire the product and begin creating a replace-
ment product before the customers abandon it.

27.3.1 Use of Software Analytics
There are currently three dominant uses for artificial intelligence methods in software 
engineering work [Har12b]: probabilistic reasoning, machine learning and prediction, 
and search-based software engineering. Probabilistic reasoning techniques can be used 
to model software reliability (Section 17.7.2). Machine learning can be used to auto-
mate the process of discovering root causes of software failures before they occur by 
predicting the presence of defects likely to cause these failures (Section 15.4.3). 
Search-based software engineering may be used to assist developers in identifying 
useful test cases to make regression testing more effective (Section 20.3). All of these 
AI applications make use of software analytics similar to those we discussed in 
Chapter 23.

For analytics to be useful they must be actionable, which means expending the 
effort to determine which measures are worth collecting because of their predictive 
value and which are not. Port and Tabor [Por18] suggest that analytics can be used 
to estimate: defect discovery rates based on estimates of yet undiscovered defects 
present in the product, time between defect discoveries during operation, and effort 
required to repair defects. Having an understanding of these can allow for better 
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planning in terms of the cost and time that should be allocated for maintaining the 
system once it is released to the end users for active use. It is important to keep in 
mind that even the best estimates contain elements of guessing, so unanticipated 
failures may still occur.

Zhang and her colleagues [Zha13] report several lessons learned when using soft-
ware analytics for proactive maintenance tasks.

 1. Be sure you are using analytics to identify meaningful development problems, 
or you will get no buy-in from the software engineers.

 2. The analytics must make use of application domain knowledge to be useful to 
developers (this implies the use of experts to validate the analytics).

 3. Developing analytics requires iterative and timely feedback from the intended 
users.

 4. Make sure the analytics are scalable to larger problems and customizable to 
incorporate new discoveries made over time.

 5. Evaluation criteria used needs to be correlated to real software engineering 
practices.

Mining of the historical information housed in software repositories is a popular 
way of obtaining the training information needed for the AI techniques mentioned 
earlier [Sun15]. Using this discovered knowledge helps developers to target their soft-
ware support actions. Additional discussion of the use of analytics and data science 
appears in Appendix 2 to this book.

27.3.2 Role of Social Media
Many online stores such as Google Play or Apple’s App Store allow users to provide 
feedback on the apps by posting ratings or comments. The feedback found in these 
reviews may contain usage scenarios, bug reports, or feature requests. Mining these 
reports using natural language processing and machine learning techniques can help 
developers identify potential maintenance and software evolution tasks [Sun15]. How-
ever, much of this information is unstructured, and there is so much of it that it is 
hard to make sense of it without the use of automated statistical tools to reduce the 
sheer volume of information and create actionable analytics to guide support decisions.

Many companies maintain Facebook pages or Twitter feeds to support their user 
communities. Some companies encourage their software product users to send pro-
gram crash information for analysis by the support team members. Still other compa-
nies pursue the questionable practice of tracking how and where their products are 
being used by their customers without their knowledge. It is very easy to collect a lot 
of user information automatically. Software engineers must resist the temptation to 
make use of this information in unethical ways.

27.3.3 Cost of Support
In a perfect world, every unmaintainable program would be retired immediately, to 
be replaced by high-quality, reengineered applications developed using modern soft-
ware engineering practices. But we live in a world of limited resources. Software 
evolution and maintenance tasks drain resources that can be used for other business 
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purposes. Therefore, before an organization attempts to modify or replace an existing 
application, it should perform a cost-benefit analysis.

A cost-benefit analysis model for reengineering has been proposed by Sneed 
[Sne95]. Nine parameters are defined:

P1 = current annual maintenance cost for an application
P2 = current annual operations cost for an application
P3 = current annual business value of an application
P4 = predicted annual maintenance cost after reengineering
P5 = predicted annual operations cost after reengineering
P6 = predicted annual business value after reengineering
P7 = estimated reengineering costs
P8 = estimated reengineering calendar time
P9 = reengineering risk factor (P9 = 1.0 is nominal)
L = expected life of the system

The cost associated with continuing maintenance of a candidate application (i.e., reen-
gineering is not performed) can be defined as

Cmaint = [P3 − (P1 + P2)] × L (27.1)

The costs associated with reengineering are defined using the following relationship:

Creeng = P6 − (P4 + P5) × (L − P8) − (P7 × P9)  (27.2)

Using the costs presented in Equations (27.1) and (27.2), the overall benefit of reen-
gineering can be computed as

Cost benefit = Creeng − Cmaint (27.3)

The cost-benefit analysis presented in these equations can be performed for all high-
priority applications identified as candidates to evolve or retire (Section 27.5). Those 
applications that show the highest cost-benefit can be targeted for proactive mainte-
nance or evolution, while work on other applications can be postponed until resources 
are available.

 27.4 re fac to r i ng

Software refactoring (also known as restructuring) modifies source code and/or data 
in an effort to make it amenable to future changes. In general, refactoring does not 
modify the overall program architecture. It tends to focus on the design details of 
individual modules and on local data structures defined within modules. If the refac-
toring effort extends beyond module boundaries and encompasses the software archi-
tecture, restructuring becomes forward engineering (Section 27.5).

Refactoring occurs when the basic architecture of an application is solid, even 
though technical internals need work. It is initiated when major parts of the software 
are serviceable and only a subset of all modules and data need extensive modification.3

3 It is sometimes difficult to make a distinction between extensive refactoring and evolution. 
Both are reengineering.
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27.4.1 Data Refactoring
Before data refactoring can begin, a reverse engineering activity called source code 
analysis should be conducted. All programming language statements that contain data 
definitions, file descriptions, I/O, and interface descriptions are evaluated. The intent 
is to extract data items and objects, to get information on data flow, and to understand 
the existing data structures that have been implemented. This activity is sometimes 
called data analysis.

Once data analysis has been completed, data redesign commences. In its simplest 
form, a data record standardization step clarifies data definitions to achieve consis-
tency among data item names or physical record formats within an existing data 
structure or file format. Another form of redesign, called data name rationalization, 
ensures that all data naming conventions conform to local standards and that aliases 
are eliminated as data flow through the system.

When refactoring moves beyond standardization and rationalization, physical mod-
ifications to existing data structures are made to make the data design more effective. 
This may mean a translation from one file format to another, or in some cases, trans-
lation from one type of database to another.

27.4.2 Code Refactoring
Code refactoring is performed to yield a design that produces the same function but with 
higher quality than the original program. The objective is to take “spaghetti-bowl” code 
and derive a design that conforms to the quality factors discussed in Chapters 15 and 17.

Other restructuring techniques have also been proposed for use with refactoring 
tools. One approach might rely on the use of anti-patterns (Section 14.5), both to 
identify bad code design practices and suggest possible solutions to reduce coupling 
and improve cohesion [Bro98]. Although code refactoring can alleviate immediate 
problems associated with debugging or small changes, it is not reengineering. Real 
benefit is achieved only when data and architecture are refactored as well.

27.4.3 Architecture Refactoring
We made the point in Chapter 10 that making architectural changes to a software 
product already in production can be a costly and time-consuming process. However, 
when a program with control flow that looks like the graphic equivalent of a bowl of 
spaghetti, with “modules” that are 2,000 statements long, with few meaningful com-
ment lines in 290,000 source statements and no other documentation must be modified 
to accommodate changing user requirements, it may be desirable to consider archi-
tectural refactoring as one of the design trade-offs. In general, for a messy program 
like this you have the following options:

 1. You can struggle through modification after modification, fighting the ad hoc 
design and tangled source code to implement the necessary changes.

 2. You can attempt to understand the broader inner workings of the program in 
an effort to make modifications more effectively.

 3. You can revise (redesign, recode, and test) those portions of the software that 
require modification, applying a meaningful software engineering approach to 
all revised segments.
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 4. You can completely redo (redesign, recode, and test) the complete program, 
using reengineering tools to assist in understanding the current design.

There is no single “correct” option. Circumstances may dictate the first option even 
if the others are more desirable.

Rather than waiting until a maintenance request is received, the development or 
support organization uses the results of inventory analysis to select a program that  
(1) will remain in use for a preselected number of years, (2) is currently being used 
successfully, and (3) is likely to undergo major modification or enhancement in the 
near future. Then, option 2, 3, or 4 is applied. We will discuss software evolution and 
reengineering in Section 27.5.

 27.5 so f t wa r e evo Lu t i o n

At first glance, the suggestion that you redevelop a large program when a working 
version already exists may seem quite extravagant. Reengineering takes time, it has 
significant cost, and it absorbs resources that might be otherwise occupied on imme-
diate concerns. For all these reasons, reengineering is not accomplished in a few 
months or even a few years.

Reengineering of software systems is an activity that will absorb software engineer-
ing resources for many years. That’s why every organization needs a pragmatic strat-
egy for software reengineering. If time and resources are in short supply, you might 
consider applying the Pareto principle to the software that is to be reengineered and 
apply the reengineering process to the 20 percent of the software that accounts for 80 
percent of the problems.

Before passing judgment, consider the following arguments. The cost to maintain 
one line of source code may be 20 to 40 times the cost of initial development of that 
line. In addition, redesign of the software architecture (program and/or data structure), 
using modern design concepts, can greatly facilitate future maintenance. Automated 
tools for reengineering or software evolution will make some part of the job easier. 
Because a prototype of the software already exists, development productivity should 
be much higher than average. The user now has experience with the software. There-
fore, new requirements and the direction of change can be ascertained with greater 
ease. At the end of this evolutionary preventive maintenance, the developers will end 
up with a complete software configuration (documents, programs, and data).

Reengineering is a rebuilding activity. To better understand it, consider an analo-
gous activity: the rebuilding of a house. Consider the following situation. You’ve 
purchased a house in another state. You’ve never actually seen the property, but you 
acquired it at an amazingly low price, with the warning that it might have to be com-
pletely rebuilt. How would you proceed?

∙ Before you can start rebuilding, it would seem reasonable to inspect the house. 
To determine whether it is in need of rebuilding, you (or a professional inspec-
tor) would create a list of criteria so that your inspection would be systematic.

∙ Before you tear down and rebuild the entire house, be sure that the structure 
is weak. If the house is structurally sound, it may be possible to “remodel” 
without rebuilding (at much lower cost and in much less time).
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∙ Before you start rebuilding, be sure you understand how the original was built. 
Take a peek behind the walls. Understand the wiring, the plumbing, and the 
structural internals. Even if you trash them all, the insight you’ll gain will 
serve you well when you start construction.

∙ If you begin to rebuild, use only the most modern, long-lasting materials. 
This may cost a bit more now, but it will help you to avoid expensive and 
time-consuming maintenance later.

∙ If you decide to rebuild, be disciplined about it. Use practices that will result 
in high quality—today and in the future.

Although these principles focus on the rebuilding of a house, they apply equally well 
to the evolving computer-based systems and applications.

To implement these principles, you can use a cyclical process model for reengineer-
ing like the one shown in Figure 27.7. This model defines six activities. Because it 
is cyclical, each of the activities presented may be revisited as often as needed. For 
any particular cycle, the process can terminate after any one of these activities.

27.5.1 Inventory Analysis
Every software organization should have an inventory of all applications. The inven-
tory can be nothing more than a spreadsheet model containing information that pro-
vides a detailed description (e.g., size, age, business criticality) of every active 
application. By sorting this information according to business criticality, longevity, 
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current maintainability and supportability, and other locally important criteria, candi-
dates for reengineering appear. Resources can then be allocated to candidate applica-
tions for reengineering work.

It is important to note that the inventory should be revisited on a regular basis. 
The status of applications (e.g., business criticality) can change as a function of time, 
and as a result, priorities for reengineering will shift.

27.5.2 Document Restructuring
Weak documentation is the trademark of many legacy systems. But what can you do 
about it? What are your options? In some cases, creating documentation when none 
exists is simply too costly. If the software works, let it be! In other cases, some 
documentation must be created, but only when changes are made. If a modification 
occurs, document it. Finally, there are situations in which a critical system must be 
fully documented, but even here, documents should achieve an essential minimum. 
Your software organization must choose the documentation option that is most appro-
priate for each case.

27.5.3 Reverse Engineering
Reverse engineering for software is the process of analyzing a program in an effort to 
create a representation of the program at a higher level of abstraction than source code. 
Reverse engineering is a process of design recovery. Reverse engineering tools extract 
data, architectural, and procedural design information from an existing program.

27.5.4 Code Refactoring
The most common type of reengineering (actually, the use of the term reengineering 
is questionable in this case) is code refactoring. Some legacy systems have a solid 
program architecture, but individual modules were coded in a way that makes them 
difficult to understand, test, and maintain. In such cases, the code within the suspect 
modules can be restructured.

To accomplish this activity, the source code is analyzed using a restructuring tool. 
Violations of good design practices are noted, and code is then refactored or even 
rewritten in a more modern programming language. The resultant refactored code is 
reviewed and tested to ensure that no anomalies have been introduced. Internal code 
documentation is updated.

27.5.5 Data Refactoring
A program with weak data architecture will be difficult to adapt and enhance. In fact, 
for many applications, information architecture has more to do with the long-term 
viability of a program than the source code itself.

Unlike code restructuring, which occurs at a relatively low level of abstraction, 
data restructuring is a full-scale reengineering activity. In most cases, data restructur-
ing begins with a reverse engineering activity. Current data architecture is dissected, 
and necessary data models are defined. Data objects and attributes are identified, and 
existing data structures are reviewed for quality.

When data structure is weak (e.g., flat files are currently implemented, when a 
relational approach would greatly simplify processing), the data are reengineered.
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Because data architecture has a strong influence on program architecture and the 
algorithms that populate it, changes to the data will invariably result in either archi-
tectural or code-level changes.

27.5.6 Forward Engineering
In an ideal world, applications would be rebuilt using an automated “reengineering 
engine.” The old program would be fed into the engine, analyzed, restructured, and then 
regenerated in a form that exhibited the best aspects of software quality. In the short 
term, it is unlikely that such an “engine” will appear, but vendors have introduced tools 
that provide a limited subset of these capabilities that addresses specific application 
domains (e.g., applications that are implemented using a specific database system). More 
important, these reengineering tools are becoming increasingly more sophisticated.

Forward engineering not only recovers design information from existing software 
but uses this information to alter or reconstitute the existing system in an effort to 
improve its overall quality. In most cases, reengineered software re-creates the func-
tion of the existing system and also adds new functions and/or improves overall per-
formance. In most cases, forward engineering does not simply create a modern 
equivalent of an older program. Rather, new user and technology requirements are 
integrated into the reengineering effort. The redeveloped program extends the capa-
bilities of the older application.

 27.6 su M M a ry

Software support is an ongoing activity that occurs throughout the life cycle of an 
application. During support, maintenance actions are initiated, defects are corrected, 
applications are adapted to a changing operational or business environment, enhance-
ments are implemented at the request of stakeholders. In addition, users are supported 
as they integrate an application into their personal or business work flow.

Software maintenance and support activities need to be proactive in their nature. 
It is better to anticipate problems and remove their root causes before the customers 
find them and become dissatisfied with the software product. The use of software 
analytics may help software developers identify potential defects and maintenance 
issues before they become problematic.

At the software level, reengineering examines information systems and applications 
with the intent of restructuring or reconstructing them so that they exhibit higher 
quality. Software evolution or reengineering encompasses a series of activities that 
include inventory analysis, document restructuring, reverse engineering, program and 
data restructuring, and forward engineering. The intent of these activities is to create 
versions of existing programs that exhibit higher quality and better maintainability—
programs that will be viable well into the twenty-first century.

The cost-benefit of reengineering can be determined quantitatively. The cost of the 
status quo, that is, the cost associated with ongoing support and maintenance of an 
existing application, is compared to the projected costs of reengineering and the resul-
tant reduction in maintenance and support costs. In almost every case in which a 
program has a long life and currently exhibits poor maintainability or supportability, 
reengineering represents a cost-effective business strategy.
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Pro b l e m s a n d Po i n t s to Po n d e r

27.1. How does software support differ from software maintenance?

27.2. Your instructor will select one of the programs that everyone in the class has developed 
during this course. Exchange your program randomly with someone else in the class. Do not 
explain or walk through the program. Now, implement an enhancement (specified by your 
instructor) in the program you have received.

 a.  Perform all software engineering tasks including a brief walkthrough (but not with the 
author of the program).

 b.  Keep careful track of all errors encountered during testing.
 c.  Discuss your experiences in class.

27.3. Create a software reengineering inventory analysis checklist, and propose a quantitative 
software rating system that could be applied to existing programs in an effort to pick candidate 
programs for reengineering. Your system should extend beyond the economic analysis presented 
in Section 27.3.

27.4. Suggest alternatives to paper and ink or conventional electronic documentation that could 
serve as the basis for document restructuring. (Hint: Think of new descriptive technologies that 
could be used to communicate the intent of the software.)

27.5. Some people believe that artificial intelligence technology will increase the abstraction 
level of the reverse engineering process. Do some research on this subject (i.e., the use of AI 
for reverse engineering), and write a brief paper that takes a stand on this point.

27.6. Why is completeness difficult to achieve as abstraction level increases?

27.7. Why is proactive software support preferable to reactive defect repair?

27.8. Using information obtained via the Web, present characteristics of three reverse engineer-
ing tools to your class.

27.9. There is a subtle difference between refactoring and forward engineering. What is it?

27.10. How would you determine P4 through P7 in the cost-benefit model presented in 
Section 27.3.3?

Design element: Quick Look icon magnifying glass: © Roger Pressman
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P A R T 

Five
Advanced  

Topics

In this part of Software Engineering: A Practitioner’s Approach, we con-
sider several advanced topics that will extend your understanding of soft-
ware engineering. The following questions are addressed in the chapters 
that follow:

∙ What is software process improvement and how can it be used to 
improve the state of software engineering practice?

∙ What emerging trends can be expected to have a significant influence 
on software engineering practice in the next decade?

∙ What is the road ahead for software engineers?

Once these questions are answered, you’ll understand topics that may have 
a profound impact on software engineering in the years to come.
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C H A P T E R 

28 Software  
Process Improvement

What is it? Software process improvement (SPI) 
encompasses a set of activities that will lead 
to a better software process and higher-
quality software delivered in a timely manner.

Who does it? Technical managers, software en-
gineers, and individuals who have quality as-
surance responsibility.

Why is it important? As an organization works 
to improve its software engineering practices, 
it must address and correct weaknesses in its 
existing software process. 

What are the steps? The approach to SPI is 
iterative and continuous, but it can be viewed 

in five steps: (1) assessment; (2) education and 
training; (3) selection and justification of pro-
cess and technology; (4) implementation of 
the SPI plan; and (5) evaluation and tuning of 
the results.

What is the work product? An improved 
software process that leads to higher-quality 
software.

How do I ensure that I’ve done it right? The 
software your organization produces will be de-
livered with fewer defects, rework at each stage 
of the software process will be reduced, and 
on-time delivery will become much more likely.
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k e y 
c o n c e p t s

Long before the phrase “software process improvement” was widely used, RSP 
worked with major corporations to help them improve the state of their software 
engineering practices. Based on his experiences, he wrote a book titled 
Making Software Engineering Happen [Pre88]. In the preface of that book he 
made the following comment:

For the past ten years I have had the opportunity to help a number of large com-
panies implement software engineering practices. The job is difficult and rarely 
goes as smoothly as one might like—but when it succeeds, the results are 
profound  .  .  .

But all is not sweetness and light. Many companies attempt to implement soft-
ware engineering practice and give up in frustration. Others do it half-way and never 
see the benefits noted above. Still others do it in a heavy-handed fashion that results 
in open rebellion among technical staff and managers and subsequent loss of morale.
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Even though these words were written over three decades ago, they remain equally 
true today.

Over the years, virtually every major software engineering organization has 
attempted to “make software engineering happen.” Some have implemented individual 
practices that have helped to improve the quality of the product they build and the 
timeliness of their delivery. Others have established a “mature” software process that 
guides their technical and project management activities. But others continue to strug-
gle. Their practices are hit-and-miss, and their process is ad hoc. Occasionally, their 
work is spectacular, but in the main, each project is an adventure, and no one knows 
whether it will end badly or well.

So, which of these two cohorts needs software process improvement? The answer 
(which may surprise you) is both. Those that have succeeded in making software 
engineering happen cannot become complacent. They must work continually to 
improve their approach to software engineering. And those that struggle must begin 
their journey down the road toward improvement.

 28.1 Wh at is  spi?
The term software process improvement (SPI) implies many things. First, it implies 
that elements of an effective software process can be defined in an effective manner; 
second, that an existing organizational approach to software development can be 
assessed against those elements; and third, that a meaningful strategy for improvement 
can be defined. The SPI strategy transforms the existing approach to software devel-
opment into something that is more focused, more repeatable, and more reliable 
(in terms of the quality of the product produced and the timeliness of delivery).

Because SPI is not free, it must deliver a return on investment. The effort and time 
that is required to implement an SPI strategy must pay for itself in some measurable 
way. To do this, the results of improved process and practice must lead to a reduction 
in software “problems” that cost time and money. It must reduce the number of defects 
that are delivered to end users, reduce the amount of rework due to quality problems, 
reduce the costs associated with software maintenance and support (Chapter 27), and 
reduce the indirect costs that occur when software is delivered late.

28.1.1 Approaches to SPI
Although an organization can choose a relatively informal approach to SPI, the vast 
majority choose one of a number of SPI frameworks. An SPI framework defines  
(1) a set of characteristics that must be present if an effective software process is to 
be achieved, (2) a method for assessing whether those characteristics are present,  
(3) a mechanism for summarizing the results of any assessment, and (4) a strategy 
for assisting a software organization in implementing those process characteristics that 
have been found to be weak or missing.

An SPI framework assesses the “maturity” of an organization’s software process 
and provides a qualitative indication of a maturity level. In fact, the term maturity 
model (Section 28.1.2) is often applied. The SPI framework encompasses a maturity 
model that in turn incorporates a set of process quality indicators that provide an 
overall measure of the process quality that will lead to product quality.
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Figure 28.1 provides an overview of a typical SPI framework. The key elements 
of the framework and their relationship to one another are shown.

You should note that there is no universal SPI framework. In fact, the SPI frame-
work that is chosen by an organization reflects the people in the organization that are 
championing the SPI effort. As an SPI framework is applied, an organization must 
establish mechanisms to: (1) support technology transition, (2) determine the degree 
to which an organization is ready to absorb process changes that are proposed, and 
(3) measure the degree to which changes have been adopted.

28.1.2 Maturity Models
A maturity model is applied within the context of an SPI framework. The intent of 
the maturity model is to provide an overall indication of the “process maturity” exhib-
ited by a software organization, that is, an indication of the quality of the software 
process, the degree to which practitioners understand and apply the process, and the 
general state of software engineering practice. This is accomplished using some type 
of ordinal scale.

For example, the Software Engineering Institute’s original Capability Maturity 
Model (Section 28.3) suggests five levels of maturity ranging from initial (rudimentary 
software process) to optimized (a process that leads to best practices).1
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Figure 28.1
Elements of an 
SPI framework
Source: Adapted 
from Rout, Terry, 
“Software Process 
Assessment— 
Part 1: Concepts 
and Introductory 
Guide,” Spice, 
2002.

1 The original CMM has been updated and is discussed in Section 28.3.
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The overriding question is whether maturity scales, such as the one proposed as 
part of the Capability Maturity Model Integration (CMMI) process framework, pro-
vide any real benefit. We think that they do. A maturity scale provides an easily 
understood snapshot of process quality that can be used by practitioners and managers 
as a benchmark from which improvement strategies can be planned.

28.1.3 Is SPI for Everyone?
For many years, SPI was viewed as a “corporate” activity—a euphemism for some-
thing that only large companies perform. But today, a significant percentage of all 
software development is being performed by companies that employ fewer than  
100 people (or in the case of startups less than 24 people). Can a small company 
initiate SPI activities and do it successfully?

There are substantial cultural differences between large software development orga-
nizations and small ones. It should come as no surprise that small organizations are 
more informal, apply fewer standard practices, and tend to be self-organizing. They 
also tend to pride themselves on the “creativity” of individual members of the software 
organization, and initially view an SPI framework as overly bureaucratic and ponder-
ous. Yet, process improvement is as important for a small organization as it is for a 
large one.

Within small organizations the implementation of an SPI framework requires 
resources that may be in short supply. Managers must allocate people and money 
to make software engineering happen. Therefore, regardless of the size of the 
software organization, it’s reasonable to consider the business motivation for SPI. 
You always need to look at the process activities that are being proposed. If a 
specific process model or SPI approach feels like overkill for your organization, 
it probably is.

Quantitative analyses of many projects have shown that the agile project method-
ologies favored by smaller organizations can lead to greater process efficiency and 
increase customer satisfaction [Ser15]. It is still likely SPI will be approved and imple-
mented only after its proponents demonstrate financial leverage [Bir98]. Financial 
leverage is demonstrated by examining technical benefits (e.g., fewer defects delivered 
to the field, reduced rework, lower maintenance costs, or more rapid time to market) 
and translating them into dollars. You must show a realistic return on investment 
(Section 28.6) to justify SPI costs.

 28.2 th e spi pro c e s s

The hard part of SPI isn’t the definition of characteristics that define a high-quality 
software process or the creation of a process maturity model. Those things are rela-
tively easy. Rather, the hard part is establishing a consensus for initiating SPI and 
defining an ongoing strategy for implementing it across a software organization.

The Software Engineering Institute has developed IDEAL—“an organizational 
improvement model that serves as a road map for initiating, planning, and implement-
ing improvement actions” [SEI08]. IDEAL is representative of many process models 
for SPI, defining five distinct activities—initiating, diagnosing, establishing, acting, 
and learning—that guide an organization through SPI activities.
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In this book, we present a somewhat different road map for SPI, based on the 
process model for SPI originally proposed in [Pre88]. It applies a commonsense 
philosophy that requires an organization to (1) look in the mirror, (2) then get smarter 
so it can make intelligent choices, (3) select the process model (and related technology 
elements) that best meets its needs, (4) instantiate the model into its operating envi-
ronment and its culture, and (5) evaluate what has been done. These five activities 
(discussed in the subsections2 that follow) are applied in an iterative (cyclical) manner 
that fosters continuous process improvement.

28.2.1 Assessment and Gap Analysis
Any attempt to improve your current software process without first assessing the 
efficacy of current framework activities and associated software engineering practices 
would be like starting on a long journey to a new location with no idea where you 
are starting from. You’d depart with great flourish, wander around trying to get your 
bearings, expend lots of energy and endure large doses of frustration, and likely, 
decide you really didn’t want to travel anyway. Stated simply, before you begin any 
journey, it’s a good idea to know precisely where you are.

The first road map activity, called assessment, allows you to get your bearings. The 
intent of assessment is to uncover both strengths and weaknesses in the way your 
organization applies the existing software process and the software engineering prac-
tices that populate the process.

Assessment examines a wide range of actions and tasks that will lead to a high-
quality process. For example, regardless of the process model that is chosen, the 
software organization must establish generic mechanisms such as defined approaches 
for customer communication; established methods for representing user requirements; 
a project management framework that includes scoping, estimation, scheduling, and 
project tracking; risk analysis methods; change management procedures; quality assur-
ance and control activities including reviews; and many others. Each is considered 
within the context of the framework activities (Chapter 2) that have been established, 
and each is assessed to determine whether all the following questions have been 
addressed:

∙ Is the objective of the activity clearly defined?
∙ Are work products required as input and produced as output identified and 

described?
∙ Are the work tasks to be performed clearly described?
∙ Are the people who must perform the activity identified by role?
∙ Have entry and exit criteria been established?
∙ Have metrics for the activity been established?
∙ Are tools available to support the activity?
∙ Is there an explicit training program that addresses the activity?
∙ Is the activity performed uniformly for all projects?

2 Some of the content in these sections has been adapted from [Pre88] with permission.
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Although the questions noted imply a yes or no answer, the role of assessment is to 
look behind the answer to determine whether the activity in question is being per-
formed in a manner that would conform to best practice.

As the process assessment is conducted, you (or those who have been hired to 
perform the assessment) should also focus on the following issues:

Consistency. Are important activities, actions, and tasks applied consistently 
across all software projects and by all software teams?
Sophistication. Are management and technical actions performed with a 
level of sophistication that implies a thorough understanding of best practice?
Acceptance. Is the software process and software engineering practice 
widely accepted by management and technical staff?
Commitment. Has management committed the resources required to achieve 
consistency, sophistication, and acceptance?

The difference between local application and best practice represents a “gap” that 
offers opportunities for improvement. The degree to which consistency, sophistication, 
acceptance, and commitment are achieved indicates the amount of cultural change that 
will be required to achieve meaningful improvement.

28.2.2 Education and Training
Although few software people question the benefit of an agile, organized software 
process or solid software engineering practices, many practitioners and managers do 
not know enough about either subject.3 As a consequence, inaccurate perceptions of 
process and practice lead to inappropriate decisions when an SPI framework is intro-
duced. It follows that a key element of any SPI strategy is education and training for 
practitioners, technical managers, and more senior managers who have direct contact 
with the software organization. It is wise to try to provide “just-in-time” training tar-
geted to the real needs of a software team. Three types of education and training should 
be conducted: generic software engineering concepts and methods, specific technology 
and tools, and communication and quality-oriented topics. In a modern context, educa-
tion and training can be delivered in a variety of different ways. Everything from 
podcasts, to short YouTube videos, to more comprehensive Internet-based training such 
as Coursera,4 to e-books, to classroom courses can be offered as part of an SPI strategy.

28.2.3 Selection and Justification
Once the initial assessment activity5 has been completed and education has begun, 
a software organization should begin to make choices. These choices occur during 
a selection and justification activity in which process characteristics and specific 
software engineering methods and tools are chosen to populate the software 
process.

3 If you’ve spent time reading this book, you won’t be one of them!
4 See https://www.coursera.org/.
5 In actuality, assessment is an ongoing activity. It is conducted periodically in an effort to 

determine whether the SPI strategy has achieved its immediate goals and to set the stage 
for future improvement.
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First, you should choose the process model (Chapters 2 through 4) that best fits 
your organization, its stakeholders, and the software that you build. You should decide 
which of the set of framework activities will be applied, the major work products that 
will be produced, and the quality assurance checkpoints that will enable your team to 
assess progress. If the SPI assessment activity indicates that you have specific weak-
nesses (e.g., you have no formal SQA functions), you should focus attention on pro-
cess characteristics that will address these weaknesses directly.

Next, develop an adaptable work breakdown for each framework activity (e.g., 
modeling), defining the task set that would be applied for a typical project. You should 
also consider the software engineering methods that can be applied to achieve these 
tasks. As choices are made, education and training should be coordinated to ensure 
that understanding is reinforced.

As you make your choices, be sure to consider the culture of your organization 
and the level of acceptance that each choice will likely elicit. Ideally, everyone works 
together to select various process and technology elements and moves smoothly 
toward the installation or migration activity (Section 28.2.4). In reality, selection can 
be a rocky road. It is often difficult to achieve consensus among different constituen-
cies. If the criteria for selection are established by committee, people may argue 
endlessly about whether the criteria are appropriate and whether a choice truly meets 
the criteria that have been established.

It is true that a bad choice can do more harm than good, but “paralysis by analysis” 
means that little if any progress occurs and process problems remain. As long as the 
process characteristic or technology element has a good chance at meeting an orga-
nization’s needs, it’s sometimes better to pull the trigger and make a choice, rather 
than waiting for the perfect solution.

28.2.4 Installation/Migration
Installation is the first point at which a software organization feels the effects of 
changes triggered by following the SPI road map. In some cases, an entirely new 
process is recommended for an organization. Framework activities, software engineer-
ing actions, and individual work tasks must be defined and installed as part of a new 
software engineering culture. Such changes represent a substantial organizational and 
technological transition and must be managed very carefully.

In other cases, changes associated with SPI are relatively minor, representing small, 
but meaningful, modifications to an existing process model. Such changes are often 
referred to as process migration. Today, many software organizations have a “process” 
in place. The problem is that it doesn’t work in an effective manner. Therefore, an 
incremental migration from one process (that doesn’t work as well as desired) to 
another process is a more effective strategy.

Installation and migration are software process redesign (SPR) activities. Scacchi 
[Sca00] states that “SPR is concerned with identification, application, and refinement 
of new ways to dramatically improve and transform software processes.” When a 
formal approach to SPR is initiated, three different process models are considered:  
(1) the existing (“as is”) process, (2) a transitional (“here to there”) process, and the 
target (“to be”) process. If the target process is significantly different from the exist-
ing process, the only rational approach to installation is an incremental strategy in 
which the transitional process is implemented in steps. The transitional process 
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provides a series of waypoints that enable the software organization’s culture to adapt 
to small changes over time.

28.2.5 Evaluation
Although it is listed as the last activity in the SPI road map, evaluation occurs 
throughout SPI. The evaluation activity assesses the degree to which changes have 
been instantiated and adopted, the degree to which such changes result in better soft-
ware quality or other tangible process benefits, and the overall status of the process 
and the organizational culture as SPI activities proceed.

Both qualitative factors and quantitative metrics are considered during the evalua-
tion activity. From a qualitative point of view, past management and practitioner atti-
tudes about the software process can be compared to attitudes polled after installation 
of process changes. Quantitative metrics (Chapter 23) are collected from projects that 
have used the transitional or “to be” process and compared with similar metrics that 
were collected for projects that were conducted under the “as is” process.

28.2.6 Risk Management for SPI
SPI is a risky undertaking. SPI often fails because risks were not properly thought 
through and no contingency planning occurred. In fact, more than half of all SPI 
efforts end in failure. The reasons for failure vary greatly and are organizationally 
specific. Among the most common risks are: a lack of management support, cultural 
resistance by technical staff, a poorly planned SPI strategy, an overly formal approach 
to SPI, selection of an inappropriate process, a lack of buy-in by key stakeholders, an 
inadequate budget, a lack of staff training, and organizational instability, but there are 
a myriad of other factors. The role of those chartered with the responsibility for SPI 
is to analyze likely risks and develop an internal strategy for mitigating them [Dut15].

A software organization should manage risk at three key points in the SPI process 
[Ive04]: prior to the initiation of the SPI road map, during the execution of SPI 
activities (assessment, education, selection, installation), and during the evaluation 
activity that follows the instantiation of some process characteristic. In general, the 
following categories [Ive04] can be identified for SPI risk factors: budget and cost, 
content and deliverables, culture, maintenance of SPI deliverables, mission and goals, 
organizational management, organizational stability, process stakeholders, schedule for 
SPI development, SPI development environment, SPI development process, SPI proj-
ect management, and SPI staff.

Within each category, several generic risk factors can be identified. For example, 
the organizational culture has a strong bearing on risk. The following generic risk 
factors6 can be defined for the culture category [Ive04]:

∙ Attitude toward change, based on prior efforts to change
∙ Experience with quality programs, level of success
∙ Action orientation for solving problems versus political struggles
∙ Use of facts to manage the organization and business

6 Risk factors for each of the risk categories noted in this section can be found in [Ive04].
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∙ Patience with change; ability to spend time socializing
∙ Tools orientation—expectation that tools can solve the problems
∙ Level of “planfulness”—ability of organization to plan
∙ Ability of organization members to participate with various levels of organiza-

tion openly at meetings
∙ Ability of organization members to manage meetings effectively
∙ Level of experience in organization with defined processes

Using the risk factors and generic attributes as a guide, a risk table (Chapter 26) 
can be developed to isolate those risks that warrant further management attention.

 28.3 th e cMMi
The original Capability Maturity Model (CMM) was developed and upgraded by the 
Software Engineering Institute throughout the 1990s as a complete SPI framework. 
Today, it has evolved into the Capability Maturity Model Integration (CMMI) 
[CMM18], a comprehensive process meta-model that is predicated on a set of system 
and software engineering capabilities that should be present as organizations reach 
different levels of process capability and maturity.

The CMMI represents a process meta-model in two different ways: (1) as a “con-
tinuous” model and (2) as a “staged” model. The continuous CMMI meta-model 
describes a process in two dimensions as illustrated in Figure 28.2. Each process area 
(e.g., project planning or requirements management) is formally assessed against spe-
cific goals and practices and is rated according to the following capability levels:

Level 0: Incomplete. The process area (e.g., requirements management) is 
either not performed or does not achieve all goals and objectives defined by 
the CMMI for level 1 capability for the process area.
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Level 1: Performed. All the specific goals of the process area (as defined 
by the CMMI) have been satisfied. Work tasks required to produce defined 
work products are being conducted.
Level 2: Managed. All capability level 1 criteria have been satisfied. In 
addition, all work associated with the process area conforms to an organiza-
tionally defined policy; all people doing the work have access to adequate 
resources to get the job done; stakeholders are actively involved in the process 
area as required; all work tasks and work products are “monitored, controlled, 
and reviewed; and are evaluated for adherence to the process description” 
[CMM18].
Level 3: Defined. All capability level 2 criteria have been achieved. In addi-
tion, the process is “tailored from the organization’s set of standard processes 
according to the organization’s tailoring guidelines, and contributes work 
products, measures, and other process-improvement information to the 
organizational process assets” [CMM18].
Level 4: Quantitatively managed. All capability level 3 criteria have been 
achieved. In addition, the process area is controlled and improved using mea-
surement and quantitative assessment. “Quantitative objectives for quality and 
process performance are established and used as criteria in managing the 
process” [CMM18].
Level 5: Optimized. All capability level 4 criteria have been achieved.  
In addition, the process area is adapted and optimized using quantitative 
(statistical) means to meet changing customer needs and to continually 
improve the efficacy of the process area under consideration.

The CMMI defines each process area in terms of “specific goals” and the “specific 
practices” required to achieve these goals. Specific goals establish the characteristics 
that must exist if the activities implied by a process area are to be effective. Specific 
practices refine a goal into a set of process-related activities.

In addition to specific goals and practices, the CMMI also defines a set of five 
generic goals and related practices for each process area. Each of the five generic 
goals corresponds to one of the five capability levels. To achieve a maturity level, 
the specific goals and practices associated with a set of process areas must be 
achieved. The relationship between maturity levels and process areas is shown in 
Figure 28.3.

A software process, no matter how well conceived, will not succeed without 
talented, motivated software people. The People CMM suggests practices that 
improve the workforce competence and culture [CMM18a]. The goal of the People 
CMM is to encourage continuous improvement of generic workforce knowledge 
(called “core competencies”), specific software engineering and project manage-
ment skills (called “workforce competencies”), and process-related abilities. Like 
the CMMI, the People CMM defines a set of five organizational maturity levels 
that provide an indication of the relative sophistication of workforce practices and 
processes.
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Figure 28.3
Process areas 
required to 
achieve a 
maturity level

Optimizing

Performed

Causal analysis and resolution
Organizational innovation and deployment

Continuous Process
Improvement

Quantitatively
Managed

Quantitative project management
Organizational process performance

Quantitative
Management

Managed

Supplier agreement management
Process and product quality assurance
Project planning
Requirements management
Configuration management
Measurement and analysis
Project monitoring and control

Basic Product
Management

Defined

Technical solution
Verification
Organizational training
Integrated project management
Integrated teaming
Requirements development
Validation
Decision analysis and resolution
Organizational environment for integration
Product integration
Organizational process definition
Integrated supplier management
Risk management
Organizational process focus

Process
Standardization

Level Focus Process Area

The CMMI—Should We, 
or Shouldn’t We?
The CMMI is a process meta-model. It 

defines (in 700+ pages) the process characteris-
tics that should exist if an organization wants to 
establish a software process that is complete. The 
question that has been debated for almost two 
decades is: “Is the CMMI overkill?” Like most 
things in life (and in software), the answer is not 
a simple yes or no.

The spirit of the CMMI should always be ad-
opted. At the risk of oversimplification, it argues 
that software development must be taken seri-
ously—it must be planned thoroughly, it must be 
controlled uniformly, it must be tracked accurately, 
and it must be conducted professionally. It must 
focus on the needs of project stakeholders, the 

skills of the software engineers, and the quality 
of the end product. No one would argue with 
these ideas.

The detailed requirements of the CMMI should 
be seriously considered if an organization builds 
large, complex systems that involve dozens or 
hundreds of people over many months or years. It 
may be that the CMMI is “just right” in such situa-
tions, if the organizational culture is amenable to 
standard process models and management is 
committed to making it a success. However, in 
other situations, the CMMI may simply be too 
much for an organization to successfully assimi-
late. Does this mean that the CMMI is “bad” or 
“overly bureaucratic” or “old-fashioned”? No . . . it 
does not. It simply means that what is right for one 
organizational culture may not be right for another.

info
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 28.4 ot h e r spi fr a M e Wo r k s

Although the SEI’s CMM and CMMI are the most widely applied SPI frameworks, 
several alternatives7 have been proposed and are in use. We provide a brief overview 
of two of these frameworks.8

28.4.1 SPICE
The SPICE (Software Process Improvement and Capability dEtermination) model 
[SPI99] provides an SPI assessment framework that is compliant with ISO 15504-
5:2015 and ISO 12207:2017. The purpose of SPICE was to provide a framework to 
assess a process and provide information on the strengths, weaknesses, and capabili-
ties to help an organization achieve its goals. [Kar12l presents an overview of the SPI 
framework, including a model for process management, guidelines for conducting an 
assessment, and rating the process under consideration.

28.4.2 TickIT Plus
The TickIT auditing method [Tic18] ensures compliance with ISO 9001:2015 for 
Software—a generic standard that applies to any organization that wants to improve 
the overall quality of the products, systems, or services that it provides. Therefore, 
the standard is directly applicable to software organizations and companies.

ISO 9001:2015 has adopted a “plan-do-check-act” cycle that is applied to the qual-
ity management elements of a software project. Within a software context, “plan” 
establishes the process objectives, activities, and tasks necessary to achieve high-
quality software and resultant customer satisfaction. “Do” implements the software 
process (including both framework and umbrella activities). “Act” initiates software 
process improvement activities that continually work to improve the process. TickIT 
can be used throughout the “plan-do-check-act” cycle to ensure that SPI progress is 
being made. TickIT auditors assess the application of the cycle as a precursor to ISO 
9001:2015 certification. For a detailed discussion of ISO 9001:2015 and TickIT, you 
should examine [Tic18] and [ISO15].

The CMMI is a significant achievement in soft-
ware engineering. It provides a comprehensive 
discussion of the activities and actions that should 
be present when an organization builds computer 
software. Even if a software organization chooses 

not to adopt its details, every software team 
should embrace its spirit and gain insight from its 
discussion of software engineering process and 
practice.

7 It’s reasonable to argue that some of these frameworks are not so much “alternatives” as 
they are complementary approaches to SPI. A comprehensive table of many more SPI 
frameworks can be found at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.47
87&rep=rep1&type=pdf.

8 If you have further interest, a wide array of print and Web-based resources is available for 
each.
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 28.5 spi re t u r n o n in v e st M e n t

SPI is hard work and requires substantial investment of dollars and people. Managers 
who approve the budget and resources for SPI will invariably ask the question: “How 
do I know that we’ll achieve a reasonable return for the money we’re spending?”

At a qualitative level, proponents of SPI argue that an improved software process 
will lead to improved software quality. They contend that an improved process will result 
in the implementation of better-quality filters (resulting in fewer propagated defects), 
better control of change (resulting in less project chaos), and less technical rework 
(resulting in lower cost and better time to market). But can these qualitative benefits be 
translated into quantitative results? The classic return on investment (ROI) equation is:

ROI =
Σ(benefits) − Σ(costs)

Σ(costs)
× 100%

where

benefits include the cost savings associated with higher product quality (fewer 
defects), less rework, reduced effort associated with changes, and the income that 
accrues from shorter time to market.

costs include both direct SPI costs (e.g., training, measurement) and indirect 
costs associated with greater emphasis on quality control and change management 
activities and more rigorous application of software engineering methods (e.g., the 
creation of a design model).

In the real world, these quantitative benefits and costs are sometimes difficult to 
measure with accuracy, and all are open to interpretation. But that doesn’t mean that 
a software organization should conduct an SPI program without careful analysis of 
the costs and benefits that accrue. Even very small software organizations benefit from 
software process improvement, but they examine the ROI of the SPI activities they 
choose to employ [Lar16]. A comprehensive treatment of ROI for SPI can be found 
in a unique book by David Rico [Ric04].

 28.6 spi tr e n d s

Over the past 35 years, many companies have attempted to improve their software 
engineering practices by applying an SPI framework to effect organizational change 
and technology transition. As we noted earlier in this chapter, over half fail in this 
endeavor. Regardless of success or failure, all spend significant amounts of money. 
David Rico [Ric04] reports that a typical application of an SPI framework such as 
the SEI CMMI can cost between $25,000 and $70,000 per person and take years to 
complete! It should come as no surprise that the future of SPI should emphasize a 
less costly and time-consuming approach.

To be effective in the twenty-first-century world of software development, future 
SPI frameworks must become significantly more agile [Bjø16]. Rather than an orga-
nizational focus (which can take years to complete successfully), contemporary SPI 
efforts should focus on the project level, working to improve a team process in weeks, 
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not months or years [Bjø16]. To achieve meaningful results (even at the project level) 
in a short time frame, complex framework models may give way to simpler models 
[Lar16]. Rather than dozens of key practices and hundreds of supplementary practices, 
an agile SPI framework should emphasize only a few pivotal practices (e.g., analogous 
to the framework activities discussed throughout this book) [Din16].

Any attempt at SPI demands a knowledgeable workforce, but education and train-
ing can be expensive and should be minimized (and streamlined). Rather than class-
room courses (expensive and time consuming), future SPI efforts should rely on 
Web-based training that is targeted at pivotal practices. Rather than far-reaching 
attempts to change organizational culture (with all the political perils that ensue), 
cultural change should occur as it does in the real world, one small group at a time 
until a tipping point is reached. Jovanovic and his colleagues suggest using retrospec-
tive gaming as part of the Scrum retrospective as a means of educating and engaging 
agile development team members in process improvement [Jov15].

The SPI work of the past three decades has significant merit. The frameworks and 
models that have been developed represent substantial intellectual assets for the soft-
ware engineering community. But like all things, these assets guide future attempts at 
SPI not by becoming a recurring dogma, but by serving as the basis for better, simpler, 
and more agile SPI models.

 28.7 su M M a ry

A software process improvement framework defines the characteristics that must be 
present if an effective software process is to be achieved, an assessment method that 
helps determine whether those characteristics are present, and a strategy for assisting 
a software organization in implementing those process characteristics that have been 
found to be weak or missing. Regardless of who in the organization sponsors SPI, the 
goal is to improve process quality and to improve software quality and timeliness.

A process maturity model provides an overall indication of the “process maturity” 
exhibited by a software organization. It provides a qualitative feel for the relative 
effectiveness of the software process that is currently being used.

The SPI road map begins with assessment—a series of evaluation activities that 
uncover both strengths and weaknesses in the way your organization applies the existing 
software process and the software engineering practices that populate the process. Assess-
ment is the tool that allows a software organization to develop an overall SPI plan.

One of the key elements of any SPI plan is education and training, an activity that 
focuses on improving the knowledge level of managers and practitioners. Once staff 
becomes well versed in current software technologies, selection and justification com-
mence. These tasks lead to choices about the architecture of the software process, the 
methods that populate it, and the tools that support it. Installation and evaluation are 
SPI activities that instantiate process changes and assess their efficacy and impact.

To successfully improve its software process, an organization must exhibit the fol-
lowing characteristics: management commitment and support for SPI, staff involve-
ment throughout the SPI process, process integration into the overall organizational 
culture, an SPI strategy that has been customized for local needs, and solid manage-
ment of the SPI project.
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Several SPI frameworks are in use today. The SEI’s CMM and CMMI are widely 
used. The People CMM has been customized to assess the quality of the organizational 
culture and the people who populate it. SPICE and TickIT are additional frameworks 
that can lead to effective SPI.

SPI is hard work that requires substantial investment of dollars and people. To 
ensure that a reasonable return on investment is achieved, an organization must measure 
the costs associated with SPI and the benefits that can be directly attributed to it.

Pro b l e m s a n d Po i n t s to Po n d e r

28.1. Why is it that software organizations often struggle when they embark on an effort to 
improve local software process?

28.2. Describe the concept of “process maturity” in your own words.

28.3. Do some research (check the SEI website), and determine the process maturity distribution 
for software organizations in the United States and worldwide.

28.4. You work for a very small software organization—only 11 people are involved in 
developing software. Is SPI for you? Explain your answer.

28.5. Assessment is analogous to an annual physical exam. Using a physical exam as a 
metaphor, describe the SPI assessment activity.

28.6. What is the difference between an “as is” process, a “here to there” process, and a “to be” 
process?

28.7. How is risk management applied within the context of SPI?

28.8. Do some research on the key factors for predicting success in software process improve-
ment efforts. Pick one of them, and write a paper describing how it might be achieved in a 
small software development organization.

28.9. Do some research to try to determine how CMMI can be used with agile process 
frameworks.

28.10. Select one of the SPI frameworks discussed in Section 28.5, and write a brief paper 
describing it in more detail.

Design element: Quick Look icon magnifying glass: © Roger Pressman



583

What is it? No one can predict the future with 
absolute certainty. But it is possible to assess 
trends in the software engineering area and 
from those trends to suggest possible direc-
tions for the technology. That’s what we at-
tempt to do in this chapter.

Who does it? Anyone who is willing to spend 
the time to stay abreast of software engineer-
ing issues can try to predict the future direc-
tion of the technology.

Why is it important? Why did ancient kings 
hire soothsayers? Why do major multinational 
corporations hire consulting firms and think 
tanks to prepare forecasts? Why does a sub-
stantial percentage of the public read horo-
scopes? We want to know what’s coming so 
we can ready ourselves.

What are the steps? There is no formula for 
predicting the road ahead. We attempt to do 

this by collecting data, organizing it to 
provide useful information, examining subtle 
associations to extract knowledge, and from 
this knowledge to suggest probable trends 
that predict how things will be at some future 
time.

What is the work product? A view of the 
near-term future that may or may not be 
correct.

How do I ensure that I’ve done it right?  
Predicting the road ahead is an art, not a sci-
ence. In fact, it’s quite rare when a serious 
prediction about the future is absolutely 
right or unequivocally wrong (with the ex-
ception, thankfully, of predictions of the end 
of the world). We look for trends and try to 
extrapolate them. We can assess the cor-
rectness of the extrapolation only as time 
passes.

Q u i c k  L o o k

C H A P T E R

29
Throughout the relatively brief history of software engineering, practitioners and 
researchers have developed an array of process models, technical methods, and 
automated tools in an effort to foster fundamental change in the way we build 
computer software. Even though past experience indicates otherwise, there is a 
tacit desire to find the “silver bullet”—the magic process or transcendent technol-
ogy that will allow us to build large, complex, software-based systems easily, 
without confusion, without mistakes, without delay—without the many problems 
that continue to plague software work.
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But history indicates that our quest for the silver bullet appears doomed to failure. 
New technologies are introduced regularly, hyped as “solutions” to many of the prob-
lems software engineers face, and incorporated into projects large and small. Industry 
pundits stress the importance of these “new” software technologies, the cognoscenti 
of the software community adopt them with enthusiasm, and ultimately, they do play 
a role in the software engineering world. But they tend not to meet their promise, and 
as a consequence, the quest continues.

In past editions of this book (approaching four decades), we have discussed emerg-
ing technologies and their projected impact on software engineering. Some have been 
widely adopted, but others never reached their potential. Our conclusion: Technologies 
come and go; the real trends that we should explore are softer. By this we mean that 
progress in software engineering will be guided by business, organizational, market, 
and cultural trends. Those trends lead to technology innovation.

In this chapter, we’ll mention a few software engineering technology trends, but 
our primary emphasis will be on some of the business, organizational, market, and 
cultural trends that may have an important influence on software engineering technol-
ogy over the next 10 or 20 years.

 29.1 te c h no L o gy evo Lu t i o n

In a fascinating book that provides a compelling look at how computing (and other 
related) technologies will evolve, Ray Kurzweil [Kur05] argued that technological 
evolution is similar to biological evolution, but at a rate that is orders of magnitude 
faster. Evolution (whether biological or technological) occurs as a result of positive 
feedback—“the more capable methods resulting from one stage of evolutionary prog-
ress are used to create the next stage” [Kur05].

The big questions for the twenty-first century are: (1) How rapidly does a technol-
ogy evolve? (2) How significant are the effects of positive feedback? (3) How profound 
will the resultant changes be?

When a successful new technology is introduced, the initial concept moves through 
a reasonably predictable “innovation life cycle” [Gai95], as illustrated in Figure 29.1. 

Figure 29.1
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In the breakthrough phase, a problem is recognized and repeated attempts at a viable 
solution are attempted. At some point, a solution shows promise. The initial break-
through work is reproduced in the replicator phase and gains wider usage. Empiricism 
leads to the creation of empirical rules that govern the use of the technology, and 
repeated success leads to a broader theory of usage that is followed by the creation 
of automated tools during the automation phase. Finally, the technology matures and 
is used widely.

You should note that many research and technology trends never reach maturity. In 
fact, the vast majority of “promising” technologies in the software engineering domain 
receive widespread interest for a few years and then fall into niche usage by a dedicated 
band of adherents. This is not to say that these technologies lack merit, but rather to 
emphasize that the journey through the innovation life cycle is long and hard.

Computing technology is evolving at an exponential rate, and its growth may soon 
become explosive. Kurzweil [Kur05] agrees that computing technologies evolve 
through an “S-curve” that exhibits relatively slow growth during the technology’s 
formative years, rapid acceleration during its growth period, and then a leveling-off 
period as the technology reaches its limits. Today, we are at the knee of the S-curve 
for modern computing technologies—at the transition between early growth and the 
explosive growth that is to follow. The implication is that over the next 20 to 40 years, 
we will see dramatic (even mindboggling) changes in computing capability. He sug-
gests that within 20 years, technology evolution will accelerate at an increasingly rapid 
pace, ultimately leading to an era of nonbiological intelligence that will merge with 
and extend human intelligence in ways that are fascinating to contemplate.

And all of this, no matter how it evolves, will require software and systems that 
make our current efforts look infantile by comparison. By the year 2040, a combination 
of extreme computation, artificial intelligence and machine learning, nanotechnology, 
massively high bandwidth ubiquitous networks, and robotics will lead us into a differ-
ent world.1 Software—possibly in forms we cannot yet comprehend—will continue to 
reside at the core of this new world. Software engineering will not go away.

 29.2 so f t wa r e eng i n e e r i ng a s a Di s c i p L i n e

For almost 50 years, many academic researchers and industry professionals have clamored 
for a true engineering discipline for software. In an important follow-on to her classic 
1990 paper on the subject, Mary Shaw [Sha09] comments on this continuing quest:

Engineering disciplines typically evolve from craft practices of a technology, sufficient 
for local or ad hoc use. When the technology becomes economically significant, it 
requires stable production techniques and management control. The resulting commercial 
market is based on experience, rather than a deep understanding of the technology  .  .  . 
an engineering profession emerges when  .  .  . science becomes sufficiently mature to 
support purposeful practice and design evolution with predictable outcomes.

1 Kurzweil [Kur05] presents a reasoned technical argument that predicts a strong artificial 
intelligence (that will pass the Turing Test) by 2029 and suggests that the evolution of 
humans and machines will begin to merge by 2045. The vast majority of readers of this 
book will live to see whether this, in fact, takes place.
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We would argue that the industry has achieved “purposeful practice,” but that 
“predictable outcomes” have remained elusive.

As mobility begins to dominate the software landscape, Shaw identifies challenges 
that “emerge from the deep interdependencies between very complex systems and 
their users” [Sha09]. She argues that the knowledge base that leads to “purposeful 
practice” has been democratized by the specialized social networks that now populate 
the Web. For example, rather than referencing a centrally controlled software engi-
neering handbook, a software developer can pose a problem on an appropriate forum 
and obtain a crowd-sourced solution that draws from the experience of many other 
developers. The proposed solution if often critiqued in real time, with alternatives and 
adaptations offered as options.

But this is not the level of discipline that many demand. As Shaw states: “[P]roblems 
facing software engineers are increasingly situated in complex social contexts and 
delineating the problem’s boundaries is increasingly difficult” [Sha09]. As a conse-
quence, isolating the scientific underpinnings of a discipline remains a challenge. At 
this point in the history of our field, it is reasonable to state that “the discovery of 
new software engineering ideas is, by now, naturally incremental and evolutionary” 
[Erd10].

 29.3 ob s e rv i ng so f t wa r e eng i n e e r i ng tr e n D s

Barry Boehm [Boe08] suggests that “software engineers [will] face the formidable 
challenges of dealing with rapid change, uncertainty and emergence, dependability, 
diversity, and interdependence, but they also have opportunities to make significant 
contributions that will make a difference for the better.” But what are the trends that 
will enable you to face these challenges in the years ahead?

In the introduction to this chapter, we noted that “soft trends” have a significant 
impact on the overall direction of software engineering. But other (“harder”) research- 
and technology-oriented trends remain important. Research trends “are driven by gen-
eral perceptions of the state of the art and the state of the practice, by researcher 
perceptions of practitioner needs, by national funding programs that rally around spe-
cific strategic goals, and by sheer technical interest” [Mil00b]. Technology trends 
occur when research trends are extrapolated to meet industry needs and are shaped 
by market-driven demand.

In Section 29.1, we discussed the S-curve model for technology evolution. The 
S-curve is appropriate for considering the long-term effects of core technologies 
as they evolve. But what of more modest, short-term innovations, tools, and meth-
ods? The Gartner Group [Gar08]—a consultancy that studies technology trends 
across many industries—has developed a hype cycle for emerging technologies, 
represented in Figure 29.2. The “hype cycle” presents a realistic view of short-term 
technology integration. The long-term trend, however, is exponential. Not every 
software engineering technology makes it all the way through the hype cycle. In 
some cases, the disillusionment is justified, and the technology is relegated to 
obscurity.
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 29.4 iD e n t i f y i ng “so f t tr e n D s”
Each nation with a substantial IT industry has a set of unique characteristics that 
define the manner in which business is conducted, the organizational dynamics that 
arise within a company, the distinct marketing issues that apply to local customers, 
and the overriding culture that dictates all human interaction. However, some trends 
in each of these areas are universal and have as much to do with sociology, anthropol-
ogy, and group psychology (often referred to as the “soft sciences”) as they do with 
academic or industrial research.

Connectivity and collaboration (enabled by high-bandwidth communication) has 
already led to software teams that do not occupy the same physical space (telecom-
muting and part-time employment in a local context). One team collaborates with 
other teams that are separated by time zones, primary language, and culture. Software 
engineering must respond with an overarching process model for “distributed global 
engineering teams” that is agile enough to meet the demands of immediacy but dis-
ciplined enough to coordinate disparate groups.

Globalization leads to a diverse workforce (in terms of language, culture, prob-
lem resolution, management philosophy, communication priorities, and person-to-
person interaction). This, in turn, demands a flexible organizational structure. 
Different teams (in different countries) must respond to engineering problems in 
a way that best accommodates their unique needs, while at the same time foster-
ing a level of uniformity that allows an overall global project to proceed. This 
type of organization suggests fewer levels of management and a greater emphasis 

Figure 29.2
The Gartner 
Group’s hype 
cycle for 
emerging 
technologies
Source: Linden, 
Alexander, Fenn, 
Jackie, “Under-
standing Gartner’s 
Hype Cycles,” 
Strategic Analysis 
Report, Gartner, 
Inc., May 30, 
2003, 5.
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on team-level decision making. It can lead to greater agility, but only if commu-
nication mechanisms have been established so that every team can understand 
project and technical status (via networked groupware) at any time. Software engi-
neering methods and tools can help achieve some level of uniformity (teams speak 
the same “language” implemented through specific methods and tools). Software 
process can provide the framework for the instantiation of these methods and 
tools.

In some world regions (the United States and Europe are examples), the population 
is aging. This undeniable demographic (and cultural trend) implies that many experi-
enced software engineers and managers will be leaving the field over the coming 
decades. The software engineering community must respond with viable mechanisms 
that capture the knowledge of these aging managers and technologists [e.g., the use 
of patterns (Chapter 14) is a step in the right direction], so that it will be available 
to future generations of software workers. In other regions of the world, the number 
of young people available to the software industry is exploding. This provides an 
opportunity to mold a software engineering culture without the burden of 50 years of 
“old-school” prejudices.

It is estimated that over 1 billion new consumers will enter the worldwide market-
place over the next decade. Consumer spending in emerging economies is projected 
to grow to about $8 trillion by 2022 [Jai18]. The digitally influenced component of 
that spending will top $4 trillion. The implication—an increasing demand for new 
software. Can new software engineering technologies be developed to meet this world-
wide demand? Modern market trends are often driven by the supply side.2 In other 
cases, demand-side requirements drive the market. In either case, a cycle of innovation 
and demand progresses in a way that sometimes makes it difficult to determine which 
came first!

Finally, human culture itself will impact the direction of software engineering. 
Every generation establishes its own imprint on local culture, and yours will be no 
different. Faith Popcorn [Pop08], a well-known consultant who specializes in cultural 
trends, characterizes them in the following manner: “Our Trends are not fads. Our 
Trends endure. Our Trends evolve. They represent underlying forces, first causes, basic 
human needs, attitudes, aspirations. They help us navigate the world, understand 
what’s happening and why, and prepare for what is yet to come.” A detailed discus-
sion of how modern cultural trends will have an impact on software engineering is 
best left to those who specialize in the “soft sciences.”

29.4.1 Managing Complexity
When the first edition of this book was written (1982), digital consumer products as 
we now know them today didn’t exist, and mainframe-based systems containing a 
million lines of source code (LOC) were considered to be quite large. Today, small 
digital devices typically house between 60,000 to 200,000 lines of custom software, 
coupled with a few million LOC for operating system features. Modern computer-based 

2 Supply side adopts a “build it and they will come” approach to markets. Unique technologies 
are created, and consumers flock to adopt them—sometimes!
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systems containing 10 to 50 million lines of code are common.3 In the relatively near 
future, systems4 requiring over 1 billion LOC will begin to emerge.5

Think about that for a moment!
Consider the interfaces for a billion LOC system, both to the outside world, to 

other interoperable systems, to the Internet (or its successor), and to the millions of 
internal components that must all work together to make this computing monster 
operate successfully. Is there a reliable way to ensure that all these connections will 
allow information to flow properly?

Consider the project itself. How do we manage the work flow and track progress? 
Will conventional approaches scale upward by orders of magnitude?

Consider the number of people (and their locations) who will be doing the work, 
the coordination of people and technology, the unrelenting flow of changes, the like-
lihood of a multiplatform, multioperating system environment. Is there a way to man-
age and coordinate people who are working on a monster project?

Consider the engineering challenge. How can we analyze tens of thousands of 
requirements, constraints, and restrictions in a way that ensures that inconsistency and 
ambiguity, omissions, and outright errors are uncovered and corrected? How can we 
create a design architecture that is robust enough to handle a system of this size? How 
can software engineers establish a change management system that will have to handle 
hundreds of thousands of changes?

Consider the challenge of quality assurance. How can we perform verification and 
validation in a meaningful way? How do you test a 1-billion-LOC system?

In the early days, software engineers attempted to manage complexity in what can 
only be described as an ad-hoc fashion. Today, we use process, methods, and tools to 
keep complexity under control. But tomorrow? Is our current approach up to the task?

In the future, we are likely to see wider use of artificial intelligence techniques to help 
software engineers manage these levels of complexity [Har12b], [Xie18]. Machine learn-
ing is one such technique that can help with testing and bug fixing [Mei18]. Data science 
techniques can be used to help make sense of the vast amount of software engineering 
data generated by these large projects [Kim16b]. Mining of these repositories is becom-
ing an accepted research technique in the software engineering communities [Dye15].

29.4.2 Open-World Software
Concepts such as ambient intelligence,6 context-aware applications, and pervasive/
ubiquitous computing all focus on integrating software-based systems into an 

3 For example, modern laptop operating systems (e.g., Linux, macOS, and Windows) have 
between 30 and 60 million LOC. Operating system software for mobile devices can exceed 
2 million LOC.

4 In reality, this “system” will actually be a system of systems—hundreds of interoperable 
applications working together to achieve some overall objective, and many will be cloud 
based.

5 Not all complex systems are large. A relatively small application (say, less than 100,000 LOC) 
can still be exceedingly complex.

6 A worthwhile and quite detailed introduction to ambient intelligence can be found at https://
www.researchgate.net/publication/220737998_Ambient_Intelligence_Basic_Concepts_and_
Applications.
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environment far broader than a laptop, a mobile computing device, or any other dig-
ital device. These separate visions of the near-term future of computing collectively 
suggest “open-world software”—software that is designed to adapt to a continually 
changing environment “by self-organizing its structure and self-adapting its behavior” 
[Bar06b].

To help illustrate the challenges that software engineers will face in the near future, 
consider the notion of ambient intelligence (amI). Ducatel [Duc01] defines amI in the 
following way: “People are surrounded by intelligent, intuitive interfaces that are 
embedded in all kinds of objects. The ambient intelligence environment is capable of 
recognizing and responding to the presence of different individuals [while working] 
in a seamless, unobtrusive way.”

With the widespread use of low-cost, yet increasingly powerful smartphones, we 
are well on our way to ubiquitous amI systems. The challenge for software engineers 
is to develop apps that provide ever-increasing functionality in products of all types—
functionality that adapts to user needs while at the same time protecting privacy and 
providing security. The rise of digital assistants and intelligent chat bots are indicative 
of the types of applications ahead.

The engineering of variability intensive systems focuses on software that needs to 
accommodate different usage and deployment scenarios, as well as intentional and 
unintentional variability in functionality or quality attributes (e.g., performance). This 
includes meeting the challenges posed by context-aware apps, autonomous agents, and 
pervasive computing as well as creating product-line software.7 These systems can be 
highly variable during all software engineering activities (e.g., dynamic run-time con-
ditions, rapidly changing requirements, configuration management), and we need to 
improve our understanding of how to design and manage them in a cost-effective 
manner [Gal17].

29.4.3 Emergent Requirements
At the beginning of a software project, there’s a truism that applies equally to every 
stakeholder involved: “You don’t know what you don’t know.” That means that cus-
tomers rarely define “stable” requirements. It also means that software engineers can-
not always foresee where ambiguities and inconsistencies lie. Requirements 
change—but that’s nothing new.

As systems become more complex, it follows that even a rudimentary attempt to 
state comprehensive requirements is doomed to failure. A statement of overall goals 
may be possible, delineation of intermediate objectives can be accomplished, but 
stable requirements—not a chance! Requirements will emerge as everyone involved 
in the engineering and construction of a complex system learns more about it, the 
environment in which it is to reside, and the users who will interact with it.

This reality implies a number of software engineering trends. First, process models 
must be designed to embrace change and adopt the basic tenets of the agile philosophy 
(Chapter 3). Next, methods that yield engineering models (e.g., requirements and 

7 Product-line software is a set of application programs that are built from a common set of 
reusable software modules designed to be easily adaptable when creating in new software 
products.
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design models) must be used judiciously because those models will change repeatedly 
as more knowledge about the system is acquired. Finally, tools that support both 
process and methods must make adaptation and change easy.

But there is another aspect to emergent requirements. The vast majority of software 
developed to date assumes that the boundary between the software-based system and 
its external environment is stable. The boundary may change, but it will do so in a 
controlled manner, allowing the software to be adapted as part of a regular software 
maintenance cycle. This assumption is beginning to change. The growth of variability 
intensive systems (Section 29.4.2) demands that software “adapt and react to changes 
dynamically, even if they’re unanticipated” [Bar06b].

By their nature, emergent requirements lead to change. How do we control the 
evolution of a widely used application or system over its lifetime, and what effect 
does this have on the way we design software?

As the number of changes grows, the likelihood of unintended side effects also 
grows. This should be a cause for concern as complex systems with emergent require-
ments become the norm. The software engineering community must develop methods 
that help software teams predict the impact of change across an entire system, thereby 
mitigating unintended side effects. Today, our ability to accomplish this is severely 
limited.

29.4.4 The Talent Mix
As software-based systems become more complex, as communication and collabora-
tion among global teams becomes commonplace, as emergent requirements (with the 
resultant flow of changes) become the norm, the very nature of a software engineer-
ing team may change. Each software team must bring a variety of creative talent and 
technical skills to its part of a complex system, and the overall process must allow 
the output of these islands of talent to merge effectively. Using data mining for knowl-
edge discovery in the human aspects of software engineering may help managers 
select the right development team before beginning a project [Gup15].

Alexandra Weber-Morales [Mor05] suggests the talent mix of a “software dream 
team.” The Brain is a chief architect who is able to navigate the demands of stake-
holders and map them into a technology framework that is both extensible and imple-
mentable. The Data Grrl is a database and data structures guru who “blasts through 
rows and columns with profound understanding of predicate logic and set theory as 
it pertains to the relational model.” The Blocker is a technical leader (manager) who 
allows the team to work free of interference from other teams while at the same time 
ensuring that collaboration is occurring. The Hacker is a consummate programmer 
who is at home with patterns and languages and can use both effectively. The Gatherer 
“deftly discovers system requirements with . . . anthropological insight” and accurately 
expresses them with clarity.

29.4.5 Software Building Blocks
All of us who have fostered a software engineering philosophy have emphasized the 
need for reuse—of source code, object-oriented classes, components, patterns, and 
libraries. Although the software engineering community has made progress as it 
attempts to capture past knowledge and reuse proven solutions, a significant percentage 
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of the software that is built today continues to be built “from scratch.” Part of the 
reason for this is a continuing desire (by stakeholders and software engineering prac-
titioners) for “unique solutions.”

In the hardware world, original equipment manufacturers (OEMs) of digital devices 
use application-specific standard products (ASSPs) produced by silicon vendors 
almost exclusively. This “merchant hardware” provides the building blocks necessary 
to implement everything from a smartphone to a wearable computing device. Increas-
ingly, the same OEMs are using “merchant software”—software building blocks 
designed specifically for a unique application domain [e.g., Voice over Internet 
Protocol (VoIP) devices]. Michael Ward [War07] comments:

One advantage of the use of software components is that the OEM can leverage the 
functionality provided by the software without having to develop in-house expertise in 
the specific functions or invest developer time on the effort to implement and validate 
the components. Other advantages include the ability to acquire and deploy only the 
specific set of functionalities that are needed for the system, as well as the ability to 
integrate these components into an already-existing architecture.

In addition to components packaged as merchant software, there is an increasing 
tendency to adopt software platform solutions that “incorporate collections of related 
functionalities, typically provided within an integrated software framework” [War07]. 
A software platform frees an OEM from the work associated with developing base 
functionality and instead allows the OEM to dedicate software effort on those features 
that differentiate its product.

29.4.6 Changing Perceptions of “Value”
During the last quarter of the twentieth century, the operative question that business-
people asked when discussing software was: Why does it cost so much? That question 
is rarely asked today and has been replaced by: Why can’t we get it (software and/or 
the software-based product) sooner?

When computer software is considered, the modern perception of value is changing 
from business value (cost and profitability) to customer values that include: speed of 
delivery, richness of functionality, and overall product quality.

29.4.7 Open Source
Who owns the software you or your organization uses? Increasingly, the answer is 
“everyone.” The “open source” movement has been described in the following manner 
[OSO12]: “Open source is a development method for software that harnesses the 
power of distributed peer review and transparency of process. The promise of open 
source is better quality, higher reliability, more flexibility, lower cost, and an end to 
predatory vendor lock-in.” The term open source, when applied to computer software, 
implies that software engineering work products (models, source code, test suites) are 
open to the public and can be reviewed and extended (with controls) by anyone with 
interest and permission.

If you have further interest, Weber [Web05] provides a worthwhile introduction, 
Feller and his colleagues [Fel07] have edited a comprehensive and objective anthology 
that considers the benefits and problems associated with open source, and Brown 
[Bro12] provides a more technical discussion.
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 29.5 te c h no L o gy Di r e c t i o n s

We always seem to think that software engineering will change more rapidly than it 
does. A new “hyped” technology (it could be a new process, a unique method, or an 
exciting tool) is introduced, and pundits suggest that “everything” will change. But 
software engineering is about far more than technology—it’s about people and their 
ability to communicate their needs and innovate to make those needs a reality. When-
ever people are involved, change occurs slowly in fits and starts. It’s only when a 
“tipping point” [Gla02] is reached that a technology cascades across the software 
engineering community and broad-based change truly does occur.

In this section we’ll examine a few trends in process, methods, and tools that are 
likely to have some influence on software engineering over the next decade. Will they 
lead to a tipping point? We’ll just have to wait and see.

29.5.1 Process Trends
It can be argued that all the business, organizational, and cultural trends discussed in 
Section 29.4 reinforce the need for process. But do the frameworks discussed in 
Chapter 28 provide a road map into the future? Will process frameworks evolve to 
find a better balance between discipline and creativity? Will the software process 
adapt to the differing needs of stakeholders who procure software, those who build 
it, and those who use it? Can it provide a means for reducing risk for all three con-
stituencies at the same time?

These and many other questions remain open. In the paragraphs that follow, we 
have adapted six ideas proposed by Conradi and Fuggetta [Con02] to suggest possible 
process trends.

 1. As SPI frameworks evolve, they will emphasize “strategies that focus on 
goal orientation and product innovation” [Con02]. In the fast-paced world 
of software development, long-term SPI strategies rarely survive in a dynamic 
business environment. Too much changes too quickly. This means that a sta-
ble, step-by-step road map for SPI may have to be replaced with a framework 
that emphasizes short-term goals that have a product orientation.

 2. Because software engineers have a good sense of where the process is 
weak, process changes should generally be driven by their needs and 
should start from the bottom up. Conradi and Fuggetta [Con02] suggest 
that future SPI activities should “use a simple and focused scorecard to start 
with, not a large assessment.” By focusing SPI efforts narrowly and working 
from the bottom up, practitioners will begin to see substantive changes 
early—changes that make a real difference in the way that software 
engineering work is conducted.

 3. Automated software process technology (SPT) will move away from global 
process management (broad-based support of the entire software process) 
to focus on those aspects of the software process that can best benefit 
from automation. No one is against tools and automation, but in many 
instances, SPI has not met its promise (see Section 29.3). To be most effec-
tive, it should focus on umbrella activities (Chapter 1)—the most stable 
elements of the software process.
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 4. Greater emphasis will be placed on the return on investment of SPI 
activities. In Chapter 28 you learned that return on investment (ROI) can 
be defined as:

ROI =
Σ(benefits) − Σ(costs)

Σ(costs)
× 100%

  To date, software organizations have struggled to clearly delineate “benefits” 
in a quantitative manner. It can be argued [Con02] that “we therefore need a 
standardized market-value model  .  .  . to account for software improvement 
initiatives.”

 5. As time passes, the software community may come to understand that 
expertise in sociology and anthropology may have as much or more to do 
with successful SPI as other, more technical disciplines. More than any-
thing else SPI changes organizational culture, and cultural change involves 
individuals and groups of people. Conradi and Fuggetta [Con02] correctly 
note that “software developers are knowledge workers. They tend to respond 
negatively to top-level dictates on how to do work or change processes.” 
Much can be learned by examining the sociology of groups to better under-
stand effective ways to introduce change.

 6. New modes of learning may facilitate the transition to a more effective 
software process. In this context, “learning” implies learning from successes 
and mistakes. A software organization that collects metrics (Chapter 23) 
allows itself to understand how elements of a process affect the quality of 
the end product.

29.5.2 The Grand Challenge
There is one trend that is undeniable—software-based systems will undoubtedly 
become bigger and more complex as time passes. It is the engineering of these large, 
complex systems, regardless of delivery platform or application domain, that poses 
the “grand challenge” [Bro06] for software engineers. Manfred Broy [Bro06] suggests 
that software engineers can meet “the daunting challenge of complex software systems 
development” by creating new approaches to understanding system models and using 
those models as a basis for the construction of high-quality next-generation software. 
Techniques currently being studied for variability intensive systems (continuous 
delivery, self-adaptive software, value-based software engineering, content aware 
computing) may benefit the developers of all types of software products [Gal17].

As the software engineering community develops new model-driven approaches 
(discussed briefly later in this section) to the representation of system requirements 
and design, the following characteristics [Bro06] must be addressed: 

∙ Multifunctionality. As digital devices evolve, they have begun to deliver a 
rich set of sometimes unrelated functions. The mobile phone, once considered 
a straightforward communication device, has become a powerful pocket com-
puter that performs a wide spectrum of functions that are arguably more 
important than making a phone call. As Broy [Bro06] notes, “[E]ngineers 
must describe the detailed context in which the functions will be delivered 
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and, most important, must identify the potentially harmful interactions 
between the system’s different features.”

∙ Reactivity and timeliness. Digital devices increasingly interact with the 
real world and must react to external stimuli in a timely manner. They must 
interface with a broad array of sensors and must respond in a period that 
is appropriate to the task at hand. New methods must be developed that  
(1) help software engineers predict the timing of various reactive features and 
(2) implement those features in a way that makes the feature less machine 
dependent and more portable.

∙ New modes of user interaction. Open-world trends for software mean that new 
modes of interaction must be modeled and implemented. Whether these new 
approaches use multitouch interfaces, voice recognition, or direct mind interfaces, 
new generations of software for digital devices must accommodate them.

∙ Complex architectures. A luxury automobile has over 2,000 functions 
controlled by software residing within a complex hardware architecture that 
includes multiple processors, a sophisticated bus structure, actuators, sensors, 
an increasingly sophisticated human interface, and many safety-rated compo-
nents. Even more complex systems (e.g., autonomous vehicles) are on the 
immediate horizon, presenting significant challenges for software designers.

∙ Heterogeneous, distributed systems. The real-time components of any 
modern embedded system can be connected via an internal bus, a wireless 
network, or across the Internet (or all three).

∙ Criticality. Software has become the pivotal component in virtually all 
business-critical systems and in most safety-critical systems. Yet, the software 
engineering community has only begun to apply even the most basic princi-
ples of software safety.

∙ Maintenance variability. The life of software within a digital device rarely 
lasts beyond 3 to 5 years, but the complex avionics systems within an aircraft 
has a useful life of at least 20 years. Automobile software falls somewhere in 
between. Should this have an impact on design?

Broy [Bro06] argues that these and other software characteristics can be managed only 
if the software engineering community develops a more effective distributed and col-
laborative software engineering philosophy, better requirements engineering 
approaches, a more robust approach to model-driven development, and better software 
tools. In the sections that follow, we’ll explore each of these areas briefly.

29.5.3 Collaborative Development
It seems too obvious to state, but we’ll do so anyway: Software engineering is an 
information technology. From the onset of any software project, every stakeholder 
must share information—about basic business goals and objectives, about specific 
system requirements, about architectural design issues, about almost every aspect of 
the software to be built. Collaboration involves the timely dissemination of informa-
tion and an effective process for communication and decision making.

Today, software engineers collaborate across time zones and international 
boundaries. Every one of them must share information. The same holds for open-source 
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projects in which hundreds or thousands of software developers work to build an 
open-source app. Crowd sourcing has been suggested as a means of enhancing cover-
age test cases generated by automated testing tools [Mao17]. Coordination of such 
large testing communities will be challenging. Information must be disseminated so 
that open collaboration can occur.

29.5.4 Requirements Engineering
Basic requirements engineering actions—elicitation, elaboration, negotiation, specifi-
cation, and validation—were presented in Chapters 7 and 8. The success or failure of 
these actions has a very strong influence on the success or failure of the entire soft-
ware engineering process. And yet, requirements engineering (RE) has been compared 
to “trying to put a hose clamp around jello” [Gon04]. As we’ve noted in many places 
throughout this book, software requirements have a tendency to keep changing, and 
with the advent of open-world systems, emergent requirements (and near-continuous 
change) may become the norm.

Today, most “informal” requirements engineering approaches begin with the cre-
ation of user scenarios (e.g., use cases). More formal approaches create one or more 
requirements models and use these as a basis for design. Formal methods enable a 
software engineer to represent requirements using a verifiable mathematical notation. 
All can work reasonably well when requirements are stable, but do not readily solve 
the problem of dynamic or emergent requirements.

There are a number of distinct requirements engineering research directions includ-
ing natural language processing from translated textual descriptions into more struc-
tured representations (e.g., analysis classes), greater reliance on databases for 
structuring and understanding software requirements, the use of RE patterns to 
describe typical problems and solutions when requirements engineering tasks are con-
ducted, and goal-oriented requirements engineering. However, at the industry level, 
RE actions remain relatively informal and surprisingly basic. To improve the manner 
in which requirements are defined, the software engineering community will likely 
implement three distinct subprocesses as RE is conducted [Gli07]: (1) improved 
knowledge acquisition and knowledge sharing that allows more complete understand-
ing of application domain constraints and stakeholder needs, (2) greater emphasis on 
iteration as requirements are defined, and (3) more effective communication and coor-
dination tools that enable all stakeholders to collaborate effectively.

The RE subprocesses noted in the preceding paragraph will only succeed if they 
are properly integrated into an evolving approach to software engineering. As pattern-
based problem solving and component-based solutions begin to dominate many appli-
cation domains, RE must accommodate the desire for agility (rapid incremental 
delivery) and the inherent emergent requirements that result. The notion of a static 
“software specification” is beginning to disappear, to be replaced by “value-driven 
requirements” [Som05] derived as stakeholders respond to features and functions 
delivered in early software increments.

29.5.5 Model-Driven Software Development
Software engineers grapple with abstraction at virtually every step in the software 
engineering process. As design commences, architectural and component-level 
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abstractions are represented and assessed. They must then be translated into a pro-
gramming language representation that transforms the design (a relatively high level 
of abstraction) into an operable system with a specific computing environment (a low 
level of abstraction). Model-driven software development8 couples domain-specific 
modeling languages with transformation engines and generators in a way that facili-
tates the representation of abstraction at high levels and then transforms it into lower 
levels [Sch06]. Model-driven approaches address a continuing challenge for all soft-
ware developers—how to represent software at a higher level of abstraction than code.

Domain-specific modeling languages (DSMLs) represent “application structure, 
behavior and requirements within particular application domains” and are described 
with meta-models that “define the relationships among concepts in the domain and 
precisely specify the key semantics and constraints associated with these domain con-
cepts” [Sch06]. The key difference between a DSML and a general-purpose modeling 
language such as UML (Appendix 1) is that the DSML is tuned to design concepts 
inherent in the application domain and can therefore represent relationships and con-
straints among design elements in an efficient manner.

29.5.6 Search-Based Software Engineering
Many activities in software engineering can be stated as optimization problems. 
Search-based software engineering (SBSE) applies metaheuristic search techniques 
such as genetic algorithms9 to software engineering problems. Lionel Briand [Bri09] 
believes that evolutionary and other search techniques are more easily scaled to 
industrial-size problems than model-driven techniques and that there are opportunities 
for synergy between the two. Search-based software engineering was devised on the 
premise that it is often easier to check that a candidate solution solves a problem than 
it is to construct a solution from scratch [Kul13].

Search-based software engineering techniques can be used as the basis for genetic 
improvement to grow software products by grafting on new functional and nonfunctional 
features to existing software product line [Har14]. Genetic improvement of software has 
already resulted in dramatic performance improvements (e.g., execution time, energy 
usage, and memory consumption) in existing software products [Pet18]. Successful soft-
ware products evolve continually; however, evolution, if not properly managed, may 
weaken the software quality and may need to be refactored to remain viable.

Search-based software engineering techniques have been used to generate and 
repair sequences of refactoring recommendations. It is time consuming to create refac-
toring recommendations manually. Using a dynamic, interactive approach to generate 
refactoring recommendations can improve software quality while minimizing devia-
tions from the original design [Ali18]. Search-based software engineering techniques 
have been used to design test cases to evaluate developer fixes to the software fol-
lowing crashes [Als18]. It is possible that these techniques may lead to software 
systems capable of repairing themselves.

8 The term model-driven engineering (MDE) is also used.
9 Genetic algorithms can be used to generate high-quality solutions to optimization and search 

problems by relying on bio-inspired operators such as mutation, crossover, and selection to 
evolve potential solutions from a population of potential solutions.
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29.5.7 Test-Driven Development
Requirements drive design, and design establishes a foundation for construction. This 
simple software engineering reality works reasonably well and is essential as a soft-
ware architecture is created. However, a subtle change can provide significant benefit 
when component-level design and construction are considered.

In test-driven development (TDD), requirements for a software component serve as 
the basis for the creation of a series of test cases that exercise the interface and attempt 
to find errors in the data structures and functionality delivered by the component. 
TDD is not really a new technology but rather a trend that emphasizes the design of 
test cases before the creation of source code.10

The TDD process follows the simple procedural flow illustrated in Figure 29.3. 
Before the first small segment of code is created, a software engineer creates a test 
to exercise the code (to try to make the code fail). The code is then written to satisfy 
the test. If it passes, a new test is created for the next segment of code to be developed. 
The process continues until the component is fully coded and all tests execute without 
error. However, if any test succeeds in finding an error, the existing code is refactored 
(corrected) and all tests created to that point are executed again. This iterative flow 
continues until there are no tests left to be created, implying that the component meets 
all requirements defined for it.

10 Recall that Extreme Programming (Chapter 3) emphasizes this approach as part of its agile 
process model.
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During TDD, code is developed in very small increments (one subfunction at a 
time), and no code is written until a test exists to exercise it. You should note that 
each iteration results in one or more new tests that are added to a regression test suite 
that is run with every change. This is done to ensure that the new code has not gen-
erated side effects that cause errors in the older code. If you have further interest in 
TDD, see [Bec04b], [Ste10], or [Whi12].

 29.6 to o L s-re L at e D tr e n D s

Hundreds of industry-grade software engineering tools are introduced each year. The 
majority are provided by tools vendors who claim that their tool will improve project 
management, or requirements analysis, or design modeling, or code generation, or 
testing, or change management, or any of the many software engineering activities, 
actions, and tasks discussed throughout this book. Other tools have been developed 
as open-source offerings. The majority of open-source tools focus on “programming” 
activities with a specific emphasis on the construction activity (particularly code gen-
eration). Still other tools grow out of research efforts at universities and government 
labs. Although they have appeal in very limited applications, the majority are not 
ready for broad industry application.

At the industry level, the most comprehensive tools packages form software engi-
neering environments (SEEs)11 that integrate a collection of individual tools around 
a central database (repository). When considered as a whole, a SEE integrates infor-
mation across the software process and assists in the collaboration that is required for 
many large, complex software-based systems. But current environments are not easily 
extensible (it’s difficult to integrate a COTS tool that is not part of the package) and 
tend to be general purpose (i.e., they are not application domain specific). There is 
also a substantial time lag between the introduction of new technology solutions (e.g., 
model-driven software development) and the availability of viable SEEs that support 
the new technology.

In the past, software tools followed two distinct paths—a human-focused path that 
responds to some of the “soft trends” discussed in Section 29.4, and a technology-
centered path that addresses new technologies (Section 25.5) as they are introduced 
and adopted. Moving forward, software engineers are beginning to build tools that 
focus on the interaction of humans and technology. Machine-generated solutions do 
not always apply to every problem. Humans are still needed to make the decision to 
accept a machine recommendation or not.

The soft trends discussed in Section 29.4—the need to manage complexity, accom-
modate emergent requirements, establish process models that embrace change, coor-
dinate global teams with a changing talent mix, among others—suggest a new era in 
which tools support for stakeholder collaboration will become as important as tools 
support for technology.

Agility in software engineering (Chapter 3) is achieved when stakeholders work as 
a team. Therefore, the trend toward collaborative SEEs will provide benefits even 

11 The term integrated development environment (IDE) is also used.
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when software is developed locally. But what of the technology tools that complement 
the system and components that empower better collaboration?

One of the dominant trends in technology tools is the creation of a tool set that 
supports model-driven development (Section 29.5.5) with an emphasis on architecture-
driven design. Oren Novotny [Nov04] suggests that the model rather than the source 
code becomes the central software engineering focus:

Platform independent models are created in UML and then undergo various levels of 
transformation to eventually wind up as source code for a specific platform. It makes 
sense then, that the model, not the file, should become the new unit of output. A model 
has many different views at different levels of abstraction. At the highest level, platform 
independent components can be specified in analysis; at the lowest level there is a 
platform specific implementation that reduces to a set of classes in code.

Novotny argues that a new generation of tools will work in conjunction with a repos-
itory to create models at all necessary levels of abstraction, establish relationships 
between the various models, translate models at one level of abstraction to another 
level (e.g., translate a design model into source code), manage changes and versions, 
and coordinate quality control and assurance actions against the software models. 
Marouane Kessentini has deployed industry-grade tools at companies like eBay and 
SEMA that are designed to reduce technical debt problems by automatically detecting 
software defects [Man17] and recommending refactoring solutions to resolve them 
[Ali18]. This work is showing great promise.

In addition to complete software engineering environments, point-solution tools 
that address everything from requirements gathering to design/code refactoring to 
testing will continue to evolve and become more functionally capable. In some 
instances, modeling and testing tools targeted at a specific application domain will 
provide enhanced benefit when compared to their generic equivalents. Mark Harman’s 
group at Facebook has announced deployment of a tool that automatically designs test 
cases and tests developers fixes following software crashes [Als18] with the hope that 
production software may be able to repair itself someday.

 29.7 su m m a ry

The trends that have an effect on software engineering technology often come from 
business, organizational, market, and cultural arenas. These “soft trends” can guide 
the direction of research and the technology that is derived as a consequence of 
research. It is likely that artificial intelligence and data science methods will continue 
to impact all aspects of software engineering.

As a new technology is introduced, it moves through a life cycle that does not 
always lead to widespread adoption, even though original expectations are high. The 
degree to which any software engineering technology gains widespread adoption is 
tied to its ability to address the problems posed by both soft and hard trends. Digital 
personal assistants and social media seem to be influencing the activities of indi-
viduals in many aspects of everyday life. With their rise have come concerns about 
the importance of both security and privacy in the development of software products.

Soft trends—the growing need for connectivity and collaboration, global projects, 
knowledge transfer, the impact of emerging economies, and the influence of human 
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culture itself—lead to a set of challenges that spans managing complexity and emer-
gent requirements, to juggling an ever-changing talent mix among geographically 
dispersed software teams. Global engineering is likely here to stay.

Hard trends—the ever-accelerating pace of technology change—flow out of soft 
trends and affect the structure of the software and scope of the process and the man-
ner in which a process framework is characterized. Collaborative development, new 
forms of requirements engineering, model-based and test-driven development, and 
postmodern design will change the methods landscape. Tools environments will 
respond to a growing need for communication and collaboration and at the same time 
integrate domain-specific point solutions that may change the nature of current soft-
ware engineering tasks. Machine learning is likely to be one approach to automating 
many important software engineering tasks.

Pro b l e m s a n d Po i n t s to Po n d e r

29.1. Get a copy of the best-selling book The Tipping Point by Malcolm Gladwell (available 
via Google Book Search), and discuss how his theories apply to the adoption of new software 
engineering technologies.

29.2. Why does open-world software present a challenge to conventional software engineering 
approaches?

29.3. Review the Gartner Group’s hype cycle for emerging technologies. Select a well-known 
technology product, and present a brief history that illustrates how it traveled along the curve. 
Select another well-known technology product that did not follow the path suggested by the 
hype curve.

29.4. What is a “soft trend”?

29.5. You’re faced with an extremely complex problem that will require a lengthy solution. 
How would you go about addressing the complexity and crafting a solution?

29.6. What are “emergent requirements,” and why do they present a challenge to software 
engineers?

29.7. Select an open-source development effort (other than Linux), and present a brief history 
of its evolution and relative success.

29.8. Describe how you think the software process will change over the next decade.

29.9. You’re based in Los Angeles and are working on a global software engineering team. 
You and colleagues in London, Mumbai, Hong Kong, and Sydney must edit a 245-page require-
ments specification for a large system. The first editing pass must be completed in three days. 
Describe the ideal online tool set that would enable you to collaborate effectively.

29.10. Describe model-driven software development in your own words. Do the same for test-
driven development.

Design element: Quick Look icon magnifying glass: © Roger Pressman
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What is it? As we come to the end of a rela-
tively long journey through software engineer-
ing, it’s time to put things into perspective and 
make a few concluding comments.

Who does it? Authors like us. When you come 
to the end of a long and challenging book, it’s 
nice to wrap things up in a meaningful way.

Why is it important? It’s always worthwhile to 
remember where we’ve been and to consider 
where we’re going.

What are the steps? We’ll consider where 
we’ve been and address some of the core 
issues and some directions for the future.

What is the work product? A discussion that 
will help you understand the big picture.

How do I ensure that I’ve done it right?  
That’s difficult to accomplish in real time. It’s 
only after a number of years that any of us can 
tell whether the software engineering con-
cepts, principles, methods, and techniques 
discussed in this book have helped you to 
become a better software engineer.
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30
In the 29 chapters that have preceded this one, we’ve explored a process for 
software engineering that encompasses management procedures and technical 
methods, basic concepts and principles, specialized techniques, people-oriented 
activities and tasks that are amenable to automation, paper-and-pencil notation, 
and software tools. We have argued that measurement, discipline, and an over-
riding focus on agility and quality will result in software that meets the cus-
tomer’s needs, software that is reliable, software that is supportable, software 
that is better. Yet, we have never promised that software engineering is a panacea.

Concluding  
Comments
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Software and systems technologies remain a challenge for every software profes-
sional and every company that builds computer-based systems. Although he wrote 
these words with a twentieth-century outlook, Max Hopper [Hop90] accurately 
describes the current state of affairs:

Because changes in information technology are becoming so rapid and unforgiving, and 
the consequences of falling behind are so irreversible, companies will either master the 
technology or die . . . Think of it as a technology treadmill. Companies will have to run 
harder and harder just to stay in place.

Changes in software engineering technology are indeed “rapid and unforgiving,” but 
at the same time real progress is often quite slow. By the time a decision is made to 
adopt a new process, method, or tool; conduct the training necessary to understand 
its application; and introduce the technology into the software development culture, 
something newer (and even better) has come along, and the process begins anew.

One thing we’ve learned over our years in this field is that software engineering 
practitioners are “fashion conscious.” The road ahead will be littered with the carcasses 
of exciting new technologies (the latest fashion) that never really made it (despite the 
hype). It will be shaped by more modest technologies that somehow modify the 
direction and width of the thoroughfare. We discussed a few of those in Chapter 29.

In this concluding chapter, we’ll take a broader view and consider where we’ve 
been and where we’re going from a more philosophical perspective.

 30.1 th e im p o rta nc e o f so f t wa r e—re v i s i t e d

The importance of computer software can be stated in many ways. In Chapter 1, 
software was characterized as a differentiator. The function delivered by software dif-
ferentiates products, systems, and services and provides competitive advantage in the 
marketplace. But software is more than a differentiator. When taken as a whole, 
software engineering work products generate the most important commodity that any 
individual, business, or government can acquire—information.

In Chapter 29, we briefly discussed open-world computing—a technology that is 
fundamentally changing our perception of computers, the things that we do with them 
(and they do for us), and our perception of information as a guide, a commodity, and 
a necessity. We also noted that software required to support open-world computing 
will present dramatic new challenges for software engineers. But far more important, 
the growing pervasiveness of computer software will present even more dramatic 
challenges for society as a whole. Whenever a technology has a broad impact—an 
impact that can save lives or endanger them, build businesses or destroy them, inform 
government leaders or mislead them—it must be handled with care.

 30.2 pe o p L e a n d t h e way th e y Bu i L d syst e m s

The software required for high-technology systems becomes more complex with each 
passing year, and the size of resultant programs increases proportionally. The rapid 
growth in the size of the “average” program would present us with few problems if 
it wasn’t for one simple fact: As program size increases, the number of people who 
must work on the program must also increase.
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Experience indicates that as the number of people on a software project team 
increases, the overall productivity of the group may suffer. One way around this 
problem is to create a number of software engineering teams, thereby compartmental-
izing people into individual working groups. However, as the number of software 
engineering teams grows, communication between them becomes as difficult and time 
consuming. Worse, communication (between individuals or teams) tends to be 
inefficient—that is, too much time is spent transferring too little information content, 
and all too often, important information “falls into the cracks.”

If the software engineering community is to deal effectively with the communica-
tion dilemma, the road ahead for software engineers must include radical changes in 
the way individuals and teams communicate with one another. In Chapter 27, we 
discussed the use of social media in supporting software release management that may 
provide dramatic improvements in the ways developers and customers communicate.

Finally, communication is the transfer of knowledge, and the acquisition (and trans-
fer) of knowledge is changing in profound ways. As search engines become increas-
ingly sophisticated, social networking and crowd-sourcing morph into development 
tools, and mobile applications provide better synergy, the speed and quality of knowl-
edge transfer will grow exponentially.

If past history is any indication, it is fair to say that people themselves will not 
change. However, the ways in which they communicate, the environment in which 
they work, the manner in which they acquire knowledge, the methods and tools that 
they use, the discipline that they apply, and therefore, the overall culture for software 
development will change in significant and even profound ways.

Conclusion?

The scene: Doug Miller’s office.

The players: Doug Miller, manager of the 
SafeHome software engineering group, and 
Vinod Raman, a member of the product 
software engineering team.

The conversation:
Doug: I’m really pleased that we got it done 
without too much drama.

Vinod (sighing and leaning back in his chair):  
Yeah, but the project grew, didn’t it?

Doug: And you’re surprised? When we started 
SafeHome, marketing thought a desktop app 
would do the trick, and then . . .

Vinod (smiling): And then, context aware 
mobility took over and we dabbled with VR.

Doug: But we all learned a lot.

Vinod: We did. The tech stuff was interesting, 
but the software engineering stuff is probably 

what allowed us to get it done close to 
schedule.

Doug: Yeah, that and hard work by all of you 
guys. What are you seeing from customer 
support? How’s quality in the field?

Vinod: There are a few issues, but 
nothing really serious. We’re on it. In fact, 
I gotta meet with Jamie on one of them in 
5 minutes.

Doug: Before you go . . .

Vinod (on his way out the door): I know, more 
work, right?

Doug: Engineering has developed a new 
sensor . . . very high tech . . . we’ll need to 
integrate it in SafeHome II.

Vinod: SafeHome II?

Doug: Yeah, SafeHome II. We’ll begin 
planning next week.

safehome
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 30.3 know L e d g e di s c ov e ry

Over the history of computing, a subtle transition has occurred in the terminology 
that is used to describe software development work performed for the business com-
munity. Fifty years ago, the term data processing was the operative phrase for describ-
ing the use of computers in a business context. Today, data processing has given way 
to another phrase—information technology—that implies the same thing but presents 
a subtle shift in focus. The emphasis is not merely to process large quantities of data 
but rather to extract meaningful information from this data. Obviously, this was always 
the intent, but the shift in terminology reflects a far more important shift in manage-
ment philosophy.

When software applications are discussed today, the words data, information, and 
content occur repeatedly. We encounter the word knowledge in many artificial intel-
ligence applications. Virtually no one discusses wisdom in the context of software 
applications.

Data is raw information—collections of facts that must be processed to be mean-
ingful. Information is derived by associating facts within a given context. Knowledge 
relates information obtained in one context with other information obtained in a dif-
ferent context. Finally, wisdom occurs when generalized principles are derived from 
disparate bits of knowledge.

To date, the vast majority of all software has been built to process data or informa-
tion. Software engineers are now equally concerned with systems that process knowl-
edge.1 Information collected on a variety of related and unrelated topics is connected 
to form a body of facts that we call knowledge. The key is our ability to associate 
information from a variety of different sources that may not have any obvious con-
nection and combine it in a way that provides us with some distinct benefit.2

To illustrate the progression from data to knowledge, consider census data indicat-
ing that the birthrate in 1996 in the United States was 4.9 million. This number 
represents a data value. Relating this piece of data with birthrates for the preceding 
40 years, we can derive a useful piece of information—aging baby boomers of the 
1950s and early 1960s made a last-gasp effort to have children prior to the end of 
their child-bearing years. In addition, gen-Xers began their childbearing years. The 
census data can then be connected to other seemingly unrelated pieces of information, 
for example, the current number of elementary school teachers who will retire during 
the next decade, the number of college students graduating with degrees in primary 
and secondary education, and the pressure on politicians to hold down taxes and 
therefore limit pay increases for teachers.

All these pieces of information can be combined to formulate a representation of 
knowledge—there will be significant pressure on the education system in the United 
States in the early twenty-first century, and this pressure will continue for a number 
of decades. Using this knowledge, a business opportunity may emerge. There may be 
significant opportunity to develop new modes of learning that are more effective and 
less costly than current approaches.

1 The rapid growth of data mining and data warehousing technologies reflect this growing trend.
2 The semantic Web (Web 2.0) allows the creation of “mashups” that may provide a facile 

mechanism for achieving this.
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The road ahead for software leads to systems that both discover and process knowl-
edge. We have been processing data using computers for more than 70 years and 
extracting information for more than three decades. One of the most significant chal-
lenges facing the software engineering community is to build systems that take the 
next step along the spectrum—systems that extract knowledge from data and informa-
tion in a way that is practical and beneficial. Knowledge discovery is an interdisciplin-
ary area focusing upon methodologies for extracting useful relationships from data.

Mark Harman (currently Facebook’s manager for software engineering research) 
was one of the first people to recognize the value of using data mining and machine 
learning to solve difficult software engineering problems [Har12b]. The availability 
of several public software engineering data repositories (e.g., Bugzilla, GitHub, 
SourceForge) make it possible to use search-based software engineering techniques to 
discover insights into software development artifacts and processes [Dye15] [Gup15]. 
This is not an easy task and suggests that it may be desirable to include data scientists 
as members of large software engineering projects [Kim16b]. The knowledge discov-
ered while mining public repositories may suggest practice improvements to software 
engineers working on smaller proprietary projects or may yield techniques that can 
be applied on their own software engineering data repositories.

Machine learning has been used in many areas of software engineering ranging from 
behavior extraction, design pattern recognition, program generation, test-case generation, 
and defect detection [Mei18]. This work cannot be done without access to large sets of 
software engineering data and access to domain experts to help shape the concepts 
learned by machines. Genetic algorithms3 make use of automated search and can be used 
to grow an improved software product or process by heuristically combining elements 
of existing software products and processes. Genetics have been used to improve software 
performance for a diverse set of properties such as execution time, memory consumption, 
as well as defect repair and existing system functionality extensions [Pet18].

Intelligent software engineering is emerging as an academic area of study that com-
bines artificial intelligence (AI) and software engineering. Intelligent software engi-
neering techniques explore software engineering solutions to improve the productivity 
of developing AI software and the dependability of AI software. It also seeks to address 
some of the problems encountered when attempting to automate software engineering 
processes [Xie18]. As AI techniques become more powerful and easier to use, they are 
increasingly deployed as key components of modern software systems. Although this 
allows the creation of products better able to adapt to user needs, it also creates addi-
tional problems for software engineers and exposes companies to new risks [Fel18].

 30.4 th e Lo ng vi e w

In Section 30.3, we suggested that the road ahead leads to systems that “discover 
knowledge.” But the future of computing in general and software-based systems in 
particular may lead to events that are considerably more profound.

3 Genetic algorithms are used to search a population of computer-generated potential solutions 
to a problem with the intent of finding the best solution while maintaining the diversity of 
the set of candidate solutions.
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In a fascinating book that is must reading for every person involved in comput-
ing technologies, Ray Kurzweil [Kur05] suggests that we have reached a time when 
“the pace of technological change will be so rapid, its impact so deep, that human 
life will be irreversibly transformed.” Kurzweil4 makes a compelling argument that 
we are currently at the “knee” of an exponential growth curve that will lead to 
enormous increases in computing capacity over the next few decades. When cou-
pled with equivalent advances in nanotechnology, genetics, and robotics, we may 
approach a time in the middle part of this century when the distinction between 
humans (as we know them today) and machines begins to blur—a time when 
human evolution accelerates in ways that are both frightening (to some) and spec-
tacular (to others).

Kurzweil argues that sometime in the coming decade computing capacity and the 
requisite software will be sufficient to model every aspect of the human brain, includ-
ing all the physical connections, analog processes, and chemical overlays [Kur13]. 
When this occurs, human beings will take the first step toward achieving “strong AI 
(artificial intelligence),” and as a consequence, machines that truly do think (using 
today’s conventional use of the word). But there will be a fundamental difference. 
Human brain processes are exceedingly complex and only loosely connected to exter-
nal informal sources. They are also computationally slow, even in comparison to 
today’s computing technology. When full human brain emulation occurs, “thought” 
will occur at speeds thousands of times more rapid than its human counterpart with 
intimate connections to a sea of information (think of the present-day Web as a prim-
itive example). The result is  .  .  . well  .  .  . so fantastical that it’s best left to Kurzweil 
to describe.

It’s important to note that not everyone believes that the future Kurzweil describes 
is a good thing. In a now-famous essay titled “The Future Doesn’t Need Us,” Bill  
Joy [Joy00], one of the founders of Sun Microsystems, argues that “robotics, genetic 
engineering, and nanotech are threatening to make humans an endangered species.” 
His arguments, along with commentary by luminaries such Bill Gates, Elon Musk, 
and the late Steven Hawking, predicting a potential technology dystopia represent a 
counterpoint to Kurzweil’s predicted utopian future. Both should be seriously consid-
ered as software engineers take one of the lead roles in defining the long view for 
the human race.

 30.5 th e so f t wa r e eng i n e e r’s re s p o n s i B i L i t y

Software engineering has evolved into a respected, worldwide profession. As profes-
sionals, software engineers should abide by a code of ethics that guides the work they 
do and the products they produce. An ACM/IEEE-CS Joint Task Force has produced 

4 It’s important to note that Kurzweil is not a run-of-the mill science fiction writer or a futur-
ist without portfolio. He is a serious technologist who (from Wikipedia) “has been a pioneer 
in the fields of optical character recognition (OCR), text-to-speech synthesis, speech recog-
nition technology, and electronic keyboard instruments.”
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a Software Engineering Code of Ethics and Professional Practices (Version 5.1). 
The code [ACM12] states:

Software engineers shall commit themselves to making the analysis, specification, design, 
development, testing, and maintenance of software a beneficial and respected profession. 
In accordance with their commitment to the health, safety and welfare of the public, 
software engineers shall adhere to the following Eight Principles:

1. PUBLIC—Software engineers shall act consistently with the public interest.
2. CLIENT AND EMPLOYER—Software engineers shall act in a manner that is in the 

best interests of their client and employer consistent with the public interest.
3. PRODUCT—Software engineers shall ensure that their products and related 

modifications meet the highest professional standards possible.
4. JUDGMENT—Software engineers shall maintain integrity and independence in their 

professional judgment.
5. MANAGEMENT—Software engineering managers and leaders shall subscribe to and 

promote an ethical approach to the management of software development and 
maintenance.

6. PROFESSION—Software engineers shall advance the integrity and reputation of the 
profession consistent with the public interest.

7. COLLEAGUES—Software engineers shall be fair to and supportive of their 
colleagues.

8. SELF—Software engineers shall participate in lifelong learning regarding the practice 
of their profession and shall promote an ethical approach to the practice of the 
profession.

Although each of these eight principles is equally important, an overriding theme 
appears: A software engineer should work in the public interest. On a personal level, 
a software engineer should abide by the following rules:

∙ Never steal data for personal gain.
∙ Never distribute or sell proprietary information obtained as part of your work 

on a software project.
∙ Never maliciously destroy or modify another person’s programs, files, or data.
∙ Never violate the privacy of an individual, a group, or an organization.
∙ Never hack into a system for sport or profit.
∙ Never create or promulgate a computer virus or worm.
∙ Never use computing technology to facilitate discrimination or harassment.

Over the past decade, certain members of the software industry have lobbied for 
protective legislation that (1) allows companies to release software without disclosing 
known defects, (2) exempts developers from liability for any damages resulting from 
these known defects, (3) constrains others from disclosing defects without permission 
from the original developer, (4) allows the incorporation of “self-help” software within 
a product that can disable (via remote command) the operation of the product, and 
(5) exempts developers of software with “self-help” from damages should the software 
be disabled by a third party.

Like all legislation, debate often centers on issues that are political, not techno-
logical. However, many people (including us) feel that protective legislation, if 
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improperly drafted, conflicts with the software engineering code of ethics by indirectly 
exempting software engineers from their responsibility to produce high-quality soft-
ware. Given the sizeable social media data breaches that occurred in 2018, there will 
be more demands for enhanced security protections by companies storing large 
amounts of confidential customer data.

The growing decision-making capabilities of autonomous systems and the influ-
ence of AI in our daily lives make us want to consider the values embedded in these 
systems [Vak18]. The software engineering profession needs to examine ways to mea-
sure bias in search algorithms and social networks [Pit18]. The revised ACM Code 
of Ethics and Professional Conduct [ACM18] adopts several new principles that 
address issues in specific computing technologies such as AI, machine learning, and 
autonomous machines making ethically significant decisions [Got18]. It is likely that 
the ACM and IEEE will consider revising their Software Engineering Code of Ethics 
to reflect these new areas as well.

 30.6 a fi na L co m m e n t f ro m rsp
It has been almost four decades since work on the first edition of this book began. 
I [RSP] can still recall sitting at my desk as a young professor, writing the manuscript 
for a book on a subject that few people cared about and even fewer really understood. 
I remember the rejection letters from publishers, who argued (politely, but firmly) that 
there would never be a market for a book on “software engineering.” Luckily, McGraw-
Hill decided to try it,5 and the rest, as they say, is history.

Since the first edition, this book has changed dramatically—in scope, in size, in 
style, and in content. Like software engineering, it has grown and matured over the 
years.

An engineering approach to the development of computer software is now conven-
tional wisdom. Debate continues on the “right paradigm,” the importance of agility, 
the degree of automation, and the most effective methods. But the underlying prin-
ciples of software engineering are now accepted throughout the industry. Why, then, 
have we seen their broad adoption only recently?

The answer, I think, lies in the difficulty of technology transition and the cultural 
change that accompanies it. Even though most of us appreciate the need for an engi-
neering discipline for software, we struggle against the inertia of past practice and 
face new application domains (and the developers who work in them) that appear 
ready to repeat the mistakes of the past. To ease the transition, we need many things—
an agile, adaptable, and sensible software process; more effective methods; more 
powerful tools; better acceptance by practitioners and support from managers; and no 
small dose of education.

You may not agree with every approach described in this book. Some of the tech-
niques and opinions are controversial; others must be tuned to work well in different 

5 Actually, credit should go to Peter Freeman and Eric Munson, who convinced McGraw-Hill 
that it was worth a shot, and 3 million copies later, it’s fair to say they made a good decision.
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software development environments. It is my sincere hope, however, that Software 
Engineering: A Practitioner’s Approach has delineated the problems we face, dem-
onstrated the strength of software engineering concepts, and provided a framework of 
methods and tools.

As we move further into the twenty-first century, software continues to be the most 
important product and the most important industry on the world stage. Its impact and 
importance have come a long, long way. And yet, a new generation of software devel-
opers must meet many of the same challenges faced by earlier generations. Let us 
hope that the people who meet the challenge—software engineers—will have the 
wisdom to develop systems that improve the human condition.

Design element: Quick Look icon magnifying glass: © Roger Pressman
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K e y 
C o n C e p t s

The Unified Modeling Language (UML) is “a standard language for writing software 
blueprints. UML may be used to visualize, specify, construct, and document the 
artifacts of a software-intensive system” [Boo05]. In other words, just as building 
architects create blueprints to be used by a construction company, software architects 
create UML diagrams to help software developers build the software. If you under-
stand the vocabulary of UML (the diagrams’ pictorial elements and their meanings), 
you can much more easily understand and specify a system and explain the design of 
that system to others.

Grady Booch, Jim Rumbaugh, and Ivar Jacobson developed UML in the mid-1990s 
with much feedback from the software development community. UML merged a num-
ber of competing modeling notations that were in use by the software industry at the 
time. In 1997, UML 1.0 was submitted to the Object Management Group, a nonprofit 
consortium involved in maintaining specifications for use by the computer industry. 
UML 1.0 was revised to UML 1.1 and adopted later that year. The current standard 
is UML 2.5.12 and is now an ISO standard. Because this standard is new, many older 
references, such as [Gam95] do not use UML notation.

UML 2.5.1 provides 13 different diagrams for use in software modeling. In this 
appendix, we will discuss only class, deployment, use-case, sequence, communication, 
activity, and state diagrams. These diagrams are used in this edition of Software 
Engineering: A Practitioner’s Approach.

You should note that there are many optional features in UML diagrams. The UML 
language provides these (sometimes arcane) options so that you can express all the 
important aspects of a system. At the same time, you have the flexibility to suppress 
those parts of the diagram that are not relevant to the aspect being modeled to avoid 
cluttering the diagram with irrelevant details. Therefore, the omission of a feature does 
not mean that the feature is absent; it may mean that the feature was suppressed. In 

1 This appendix has been contributed by Dale Skrien and has been adapted from his book, 
An Introduction to Object-Oriented Design and Design Patterns in Java (McGraw-Hill, 
2008). All content is used with permission.

2 See https://www.omg.org/spec/UML/2.5.1/. This document contains the current specification 
for the UML 2.5.1 modeling language.
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this appendix, we will not present exhaustive coverage of all the features of the UML 
diagrams. Instead, we focus on the standard options, especially those options that have 
been used in this book.

  Cl a s s Di ag r a m s

To model classes, including their attributes, operations, and their relationships and 
associations with other classes, UML provides a class diagram. A class diagram 
provides a static or structural view of the system. It does not show the dynamic nature 
of the communications between the objects of the classes in the diagram.

The main elements of a class diagram are boxes, which are the icons used to rep-
resent classes and interfaces. Each box is divided into horizontal parts. The top part 
contains the name of the class. The middle section lists the attributes of the class. 
Attributes can be values that the class can compute from its instance variables or 
values that the class can get from other objects of which it is composed. For example, 
an object might always know the current time and be able to return it to you whenever 
you ask, in which case it would be appropriate to list the current time as an attribute 
of that class of objects. However, the object would most likely not have that time 
stored in one of its instance variables, because it would need to continually update 
that field. Instead, the object would likely compute the current time (e.g., through 
consultation with objects of other classes) at the moment when the time is requested. 
The third section of the class diagram contains the operations or behaviors of the 
class. An operation refers to what objects of the class can do. It is usually imple-
mented as a method of the class.

Figure A1.1 presents a simple example of a Thoroughbred class that models thor-
oughbred horses. It has three attributes displayed—mother, father, and birth year. 
The diagram also shows three operations: getCurrentAge(), getFather(), and getMother(). 
There may be other suppressed attributes and operations not shown in the diagram.

Each attribute can have a name, a type, and a level of visibility. The type and vis-
ibility are optional. The type follows the name and is separated from the name by a 
colon. The visibility is indicated by a preceding −, #, ~, or +, indicating, respectively, 
private, protected, package, or public visibility. In Figure A1.1, all attributes have 
private visibility, as indicated by the leading minus sign (−). You can also specify that 

Figure A1.1
A class 
diagram for a 
Thoroughbred 
class

Thoroughbred

-father: Thoroughbred
-mother: Thoroughbred
-birthyear: int

+getFather(): Thoroughbred
+getMother(): Thoroughbred
+getCurrentAge(currentYear:Date): int
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an attribute is a static or class attribute by underlining it. Each operation can also be 
displayed with a level of visibility, parameters with names and types, and a return type.

An abstract class or abstract method is indicated by the use of italics for the name 
in the class diagram. See the Horse class in Figure A1.2, for an example. An interface 
is indicated by adding the phrase “«interface»” (called a stereotype) above the name. 
See the OwnedObject interface in Figure A1.2. An interface can also be represented 
graphically by a hollow circle.

It is worth mentioning that the icon representing a class can have other optional 
parts. For example, a fourth section at the bottom of the class box can be used to list 
the responsibilities of the class. This section is particularly useful when transitioning 
from CRC cards (Chapter 8) to class diagrams in that the responsibilities listed on 
the CRC cards can be added to this fourth section in the class box in the UML diagram 
before creating the attributes and operations that carry out these responsibilities. This 
fourth section is not shown in any of the figures in this appendix.

Class diagrams can also show relationships between classes. A class that is a sub-
class of another class is connected to it by an arrow with a solid line for its shaft and 
with a triangular hollow arrowhead. The arrow points from the subclass to the super-
class. In UML, such a relationship is called a generalization. For example, in Figure 
A1.2, the Thoroughbred and QuarterHorse classes are shown to be subclasses of 
the Horse abstract class. An arrow with a dashed line for the arrow shaft indicates 
implementation of an interface. In UML, such a relationship is called a realization. 
For example, in Figure A1.2, the Horse class implements or realizes the OwnedObject 
interface.

An association between two classes means that there is a structural relationship 
between them. Associations are represented by solid lines. An association has many 
optional parts. It can be labeled, as can each of its ends, to indicate the role of each 
class in the association. For example, in Figure A1.2, there is an association between 
OwnedObject and Person in which the Person plays the role of owner. Arrows on 
either or both ends of an association line indicate navigability. Also, each end of the 
association line can have a multiplicity value displayed. Navigability and multiplicity 

Figure A1.2
A class 
diagram 
regarding 
horses

Horse

-name:String

+getName():String

+getOwner().Person

<< interface >>
OwnedObject

Thoroughbred QuarterHorse

Person
*   owner

Date
uses
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are explained in more detail later in this section. An association might also connect 
a class with itself, using a loop. Such an association indicates the connection of an 
object of the class with other objects of the same class.

An association with an arrow at one end indicates one-way navigability. The arrow 
means that from one class you can easily access the second associated class to which 
the association points, but from the second class, you cannot necessarily easily access 
the first class. Another way to think about this is that the first class is aware of the 
second class, but the second class is not necessarily directly aware of the first class. 
An association with no arrows usually indicates a two-way association, which is what 
was intended in Figure A1.2, but it could also just mean that the navigability is not 
important and so was left off.

It should be noted that an attribute of a class is very much the same thing as an 
association of the class with the class type of the attribute. That is, to indicate that a 
class has a property called “name” of type String, one could display that property as 
an attribute, as in the Horse class in Figure A1.2. Alternatively, one could create a 
one-way association from the Horse class to the String class with the role of the 
String class being “name.” The attribute approach is better for primitive data types, 
whereas the association approach is often better if the property’s class plays a major 
role in the design, in which case it is valuable to have a class box for that type.

A dependency relationship represents another connection between classes and is 
indicated by a dashed line (with optional arrows at the ends and with optional labels). 
One class depends on another if changes to the second class might require changes 
to the first class. An association from one class to another automatically indicates a 
dependency. No dashed line is needed between classes if there is already an associa-
tion between them. However, for a transient relationship (i.e., a class that does not 
maintain any long-term connection to another class but does use that class occasion-
ally) we should draw a dashed line from the first class to the second. For example, 
in Figure A1.2, the Thoroughbred class uses the Date class whenever its getCurrent-
Age() method is invoked, and so the dependency is labeled “uses.”

The multiplicity of one end of an association means the number of objects of that 
class associated with the other class. A multiplicity is specified by a nonnegative 
integer or by a range of integers. A multiplicity specified by “0..1” means that there 
are 0 or 1 objects on that end of the association. For example, each person in the world 
has either a Social Security number or no such number (especially if they are not U.S. 
citizens), and so a multiplicity of 0..1 could be used in an association between a 
Person class and a SocialSecurityNumber class in a class diagram. A multiplicity 
specified by “1..*” means one or more, and a multiplicity specified by “0..*” or just 
“*” means zero or more. An * was used as the multiplicity on the OwnedObject end 
of the association with class Person in Figure A1.2 because a Person can own zero 
or more objects.

If one end of an association has multiplicity greater than 1, then the objects of the 
class referred to at that end of the association are probably stored in a collection, such 
as a set or ordered list. One could also include that collection class itself in the UML 
diagram, but such a class is usually left out and is implicitly assumed to be there due 
to the multiplicity of the association.

An aggregation is a special kind of association indicated by a hollow diamond on 
one end of the icon. It indicates a “whole/part” relationship, in that the class to which 
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the arrow points is considered a “part” of the class at the diamond end of the asso-
ciation. A composition is an aggregation indicating strong ownership of the parts. In 
a composition, the parts live and die with the owner because they have no role in the 
software system independent of the owner. See Figure A1.3 for examples of aggrega-
tion and composition.

A College has an aggregation of Building objects, which represent the buildings 
making up the campus. The college also has a collection of courses. If the college were 
to fold, the buildings would still exist (assuming the college wasn’t physically destroyed) 
and could be used for other things, but a Course object has no use outside of the col-
lege at which it is being offered. If the college were to cease to exist as a business 
entity, the Course object would no longer be useful and so it would also cease to exist.

Another common element of a class diagram is a note, which is represented by a 
box with a dog-eared corner and is connected to other icons by a dashed line. It can 
have arbitrary content (text and graphics) and is similar in a programming language 
comment. It might contain information about the role of a class or constraints that all 
objects of that class must satisfy. If the contents are a constraint, braces surround the 
contents. Note the constraint attached to the Course class in Figure A1.3.

  De p l oy m e n t Di ag r a m s

A UML deployment diagram focuses on the structure of the software system and is 
useful for showing the physical distribution of a software system among hardware 
platforms and execution environments. Suppose, for example, you are developing a 
Web-based graphics-rendering package. Users of your package will use their Web 
browser to go to your website and enter rendering information. Your website would 
render a graphical image according to the user’s specification and send it back to the 
user. Because graphics rendering can be computationally expensive, you decide to 
move the rendering itself off the Web server and onto a separate platform. Therefore, 
there will be three hardware devices involved in your system: the Web client (the 
users’ computer running a browser), the computer hosting the Web server, and the 
computer hosting the rendering engine.

Figure A1.4 shows the deployment diagram for such a package. In such a diagram, 
hardware components are drawn in boxes labeled with “«device»”. Communication 
paths between hardware components are drawn with lines with optional labels. In 
Figure A1.4, the paths are labeled with the communication protocol and the type of 
network used to connect the devices.

Figure A1.3
The relation
ship between 
Colleges, 
Courses, and 
Buildings  {must take place in a Building}

CourseCollege

Building

*

*
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Each node in a deployment diagram can also be annotated with details about the 
device. For example, in Figure A1.4, the browser client is depicted to show that it 
contains an artifact consisting of the Web browser software. An artifact is typically a 
file containing software running on a device. You can also specify tagged values, as 
is shown in Figure A1.4 in the Web server node. These values define the vendor of 
the Web server and the operating system used by the server.

Deployment diagrams can also display execution environment nodes, which are 
drawn as boxes containing the label “«execution environment»”. These nodes repre-
sent systems, such as operating systems, that can host other software programs.

  Us e-Ca s e Di ag r a m s

Use cases (Chapters 7 and 8) and the UML use-case diagram help you determine the 
functionality and features of the software from the user’s perspective. To give you a 
feeling for how use cases and use-case diagrams work, we’ll create some for a soft-
ware application for managing an online digital music store. Some of the things the 
software might do include:

∙ Download an MP3 music file and store it in the application’s library.
∙ Capture streaming music and store it in the application’s library.
∙ Manage the application’s library (e.g., delete songs or organize them in playlists).
∙ Burn a list of the songs in the library onto a CD.
∙ Load a list of the songs in the library onto an iPod or MP3 player.
∙ Convert a song from MP3 format to AAC format and vice versa.

This is not an exhaustive list, but it is sufficient to understand the role of use cases 
and use-case diagrams.

A use case describes how a user interacts with the system by defining the steps 
required to accomplish a specific goal (e.g., burning a list of songs onto a CD). 

Figure A1.4
A deployment 
diagram

{web server = apache}
{OS = linux}

<<device>>
Web Server

http/LAN

http/Internet

<<device>>
Render Engine

<<artifact>>
Web Browser

<<device>>
Browser Client
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Variations in the sequence of steps describe various scenarios (e.g., what if all the 
songs in the list don’t fit on one CD?).

A UML use-case diagram is an overview of all the use cases and how they are 
related. It provides a big picture of the functionality of the system. A use-case diagram 
for the digital music application is shown in Figure A1.5.

In this diagram, the stick figure represents an actor (Chapter 8) that is associated 
with one category of user (or other interaction element). Complex systems typically 
have more than one actor. For example, a vending machine application might have three 
actors representing customers, repair personnel, and vendors who refill the machine.

In the use-case diagram, the use cases are displayed as ovals. The actors are con-
nected by lines to the use cases that they carry out. Note that none of the details of 
the use cases are included in the diagram and instead need to be stored separately. Note 
also that the use cases are placed in a rectangle but the actors are not. This rectangle 
is a visual reminder of the system boundaries and that the actors are outside the system.

Some use cases in a system might be related to each other. For example, there are 
similar steps in burning a list of songs to a CD and in loading a list of songs to an 
iPod or smartphone. In both cases, the user first creates an empty list and then adds 
songs from the library to the list. To avoid duplication in use cases, it is usually bet-
ter to create a new use case representing the duplicated activity and then let the other 

Figure A1.5
A usecase 
diagram for 
the music 
system

User

Download music file & save to library

Capture streaming music & save to library

Burn a list of songs to CD

Load a list of songs to iPod

Convert music file to new format

Organize the library
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use cases include this new use case as one of their steps. Such inclusion is indicated 
in use-case diagrams, as in Figure A1.6, by means of a dashed arrow labeled «include» 
connecting a use case with an included use case.

A use-case diagram, because it displays all use cases, is a helpful aid for ensuring 
that you have covered all the functionality of the system. In our digital music orga-
nizer, we would surely want more use cases, such as a use case for playing a song in 
the library. But keep in mind that the most valuable contribution of use cases to the 
software development process is the textual description of each use case, not the 
overall use-case diagram [Fow04]. It is through the descriptions that you are able to 
form a clear understanding of the goals of the system you are developing.

  se q U e nC e Di ag r a m s

In contrast to class diagrams and deployment diagrams, which show the static struc-
ture of a software component, a sequence diagram is used to show the dynamic com-
munications between objects during execution of a task. It shows the temporal order 
in which messages are sent between the objects to accomplish that task. One might 
use a sequence diagram to show the interactions in one use case or in one scenario 
of the software system.

Figure A1.6
A usecase 
diagram with 
included use 
cases

User

Convert music file to new format

Download music file & save to library

Capture streaming music & save to library

Organize the library

<< Include >>

<< Include >>

<< Include >> Edit song list

Burn a list of songs to CD

Load a list of songs to iPod
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In Figure A1.7, you see a sequence diagram for a drawing program. The diagram 
shows the steps involved in highlighting a figure in the drawing when it has been clicked. 
Each box in the row at the top of the diagram usually corresponds to an object, although 
it is possible to have the boxes model other things, such as classes. If the box represents 
an object (as is the case in all our examples), then inside the box you can optionally 
state the type of the object preceded by the colon. You can also precede the colon and 
type by a name for the object, as shown in the third box in Figure A1.7. Below each 
box there is a dashed line called the lifeline of the object. The vertical axis in the 
sequence diagram corresponds to time, with time increasing as you move downward.

A sequence diagram shows method calls using horizontal arrows from the caller 
to the callee, labeled with the method name and optionally including its parameters, 
their types, and the return type. For example, in Figure A1.7, the MouseListener calls 
the Drawing’s getFigureAt() method. When an object is executing a method (that is, 
when it has an activation frame on the stack), you can optionally display a white bar, 
called an activation bar, down the object’s lifeline. In Figure A1.7, activation bars are 
drawn for all method calls. The diagram can also optionally show the return from a 
method call with a dashed arrow and an optional label. In Figure A1.7, the getFigureAt() 
method call’s return is shown labeled with the name of the object that was returned. 
A common practice, as we have done in Figure A1.7, is to leave off the return arrow 
when a void method has been called, since it clutters up the diagram while providing 
little information of importance. A black circle with an arrow coming from it indicates 
a found message whose source is unknown or irrelevant.

You should now be able to understand the task that Figure A1.7 is displaying. An 
unknown source calls the mouseClicked() method of a MouseListener, passing in the 
point where the click occurred as the argument. The MouseListener in turn calls the 
getFigureAt() method of a Drawing, which returns a Figure. The MouseListener then 
calls the highlight method of Figure, passing in a Graphics object as an argument. In 
response, Figure calls three methods of the Graphics object to draw the figure in red.

Figure A1.7
A sample 
sequence 
diagram

:MouseListener :Drawing :GraphicsaFigure:Figure

.setColor(red)
.highlight(graphics)

.getFigureAt(point)
.mouseClicked(point)

 aFigure

.drawRect (x,y,w,h)

.drawString(s)
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The diagram in Figure A1.7 is very straightforward and contains no conditionals 
or loops. If logical control structures are required, it is probably best to draw a sepa-
rate sequence diagram for each case. That is, if the message flow can take two dif-
ferent paths depending on a condition, then draw two separate sequence diagrams, 
one for each possibility.

If you insist on including loops, conditionals, and other control structures in a 
sequence diagram, you can use interaction frames, which are rectangles that surround 
parts of the diagram and that are labeled with the type of control structures they 
represent. Figure A1.8 illustrates this, showing the process involved in highlighting 
all figures inside a given rectangle. The MouseListener is sent the rectDragged mes-
sage. The MouseListener then tells the drawing to highlight all figures in the rect-
angle by calling the method highlightFiguresIn(), passing the rectangle as the argument. 
The method loops through all Figure objects in the Drawing object and, if the Figure 
intersects the rectangle, the Figure is asked to highlight itself. The phrases in square 
brackets are called guards, which are Boolean conditions that must be true if the action 
inside the interaction frame is to continue.

There are many other special features that can be included in a sequence diagram. 
For example:

 1. You can distinguish between synchronous and asynchronous messages. 
Synchronous messages are shown with solid arrowheads, while asynchronous 
messages are shown with stick arrowheads.

 2. You can show an object sending itself a message with an arrow going out 
from the object, turning downward, and then pointing back to the same 
object.

 3. You can show object creation by drawing an arrow appropriately labeled 
(for example, with a «create» label) to an object’s box. In this case, the box 
will appear lower in the diagram than the boxes corresponding to objects 
already in existence when the action begins.

Figure A1.8
A sequence 
diagram with 
two interaction 
frames

:MouseListener :Figure:Drawing

.highlightFiguresIn(rect)
.rectDragged(rect)

.highlight(g)[ figure intersects
rect ]

[ for all Figures in the Drawing ]
opt

loop (  )



APPENDIX 1 AN INTRODUCTION TO UML  621

 4. You can show object destruction by a big X at the end of the object’s lifeline. 
Other objects can destroy an object, in which case an arrow points from the 
other object to the X. An X is also useful for indicating that an object is no 
longer usable and so is ready for garbage collection.

The last three features are all shown in the sequence diagram in Figure A1.9.

  Co m m U n i Cat i o n Di ag r a m s

The UML communication diagram (known as a “collaboration diagram” in UML 1.X) 
provides another indication of the temporal order of the communications, but empha-
sizes the relationships among the objects and classes instead of the temporal order. A 
communication diagram is illustrated in Figure A1.10, which displays the same actions 
shown in the sequence diagram in Figure A1.7.

In a communication diagram the interacting objects are represented by rectangles. 
Associations between objects are represented by lines connecting the rectangles. There 
is typically an incoming arrow to one object in the diagram that starts the sequence 
of message passing. That arrow is labeled with a number and a message name. If the 
incoming message is labeled with the number 1 and if it causes the receiving object 
to invoke other messages on other objects, then those messages are represented by 
arrows from the sender to the receiver along an association line and are given 
numbers 1.1, 1.2, and so forth, in the order they are called. If those messages in turn 
invoke other messages, another decimal point and number are added to the number 
labeling these messages, to indicate further nesting of the message passing.

In Figure A1.10, you see that the mouseClicked message invokes the methods 
getFigureAt() and then highlight(). The highlight() message invokes three other mes-
sages: setColor(), drawRect(), and drawString(). The numbering in each label shows 
the nesting as well as the sequential nature of each message.

There are many optional features that can be added to the arrow labels. For exam-
ple, you can precede the number with a letter. An incoming arrow could be labeled 
A1: mouseClicked(point). indicating an execution thread, A. If other messages are 

Figure A1.9
Creation, 
destruction, 
and loops  
in sequence 
diagrams

:Thing1

:Thing2
.Thing2()

.destroy()

.foo()

x

<< create >>
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executed in other threads, their label would be preceded by a different letter. For 
example, if the mouseClicked() method is executed in thread A but it creates a new 
thread B and invokes highlight() in that thread, then the arrow from MouseListener 
to Figure would be labeled 1.B2: highlight(graphics).

If you are interested in showing the relationships among the objects in addition to 
the messages being sent between them, the communication diagram is probably a 
better option than the sequence diagram. If you are more interested in the temporal 
order of the message passing, then a sequence diagram is probably better.

  aC t i v i t y Di ag r a m s

A UML activity diagram depicts the dynamic behavior of a system or part of a system 
through the flow of control between actions that the system performs. It is similar to 
a flowchart except that an activity diagram can show concurrent flows.

The main component of an activity diagram is an action node, represented by a 
rounded rectangle, which corresponds to a task performed by the software system. 
Arrows from one action node to another indicate the flow of control. That is, an arrow 
between two action nodes means that after the first action is complete the second 
action begins. A solid black dot forms the initial node that indicates the starting point 
of the activity. A black dot surrounded by a black circle is the final node, indicating 
the end of the activity.

A fork represents the separation of activities into two or more concurrent activities. 
It is drawn as a horizontal black bar with one arrow pointing to it and two or more 
arrows pointing out from it. Each outgoing arrow represents a flow of control that 
can be executed concurrently with the flows corresponding to the other outgoing 
arrows. These concurrent activities can be performed on a computer using different 
threads or even using different computers.

Figure A1.10
A UML  
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Figure A1.11 shows a sample activity diagram involving baking a cake. The first 
step is finding the recipe. Once the recipe has been found, the dry ingredients and 
wet ingredients can be measured and mixed and the oven can be preheated. The mix-
ing of the dry ingredients can be done in parallel with the mixing of the wet ingre-
dients and the preheating of the oven.

A join is a way of synchronizing concurrent flows of control. It is represented by 
a horizontal black bar with two or more incoming arrows and one outgoing arrow. 
The flow of control represented by the outgoing arrow cannot begin execution until 
all flows represented by incoming arrows have been completed. In Figure A1.11, we 
have a join before the action of mixing together the wet and dry ingredients. This join 
indicates that all dry ingredients must be mixed and all wet ingredients must be mixed 
before the two mixtures can be combined. The second join in the figure indicates that, 
before the baking of the cake can begin, all ingredients must be mixed together, and 
the oven must be at the right temperature.

Figure A1.11
A UML 
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A decision node corresponds to a branch in the flow of control based on a condi-
tion. Such a node is displayed as a white triangle with an incoming arrow and two or 
more outgoing arrows. Each outgoing arrow is labeled with a guard (a condition inside 
square brackets). The flow of control follows the outgoing arrow whose guard is true. 
It is advisable to make sure that the conditions cover all possibilities so that exactly 
one of them is true every time a decision node is reached. Figure A1.11 shows a 
decision node following the baking of the cake. If the cake is done, then it is removed 
from the oven. Otherwise, it is baked for a while longer.

One of the things the activity diagram in Figure A1.11 does not tell you is who 
or what does each of the actions. Often, the exact division of labor does not matter. 
But if you do want to indicate how the actions are divided among the participants, 
you can decorate the activity diagram with swimlanes, as shown in Figure A1.12. 
Swimlanes, as the name implies, are formed by dividing the diagram into strips or 
“lanes,” each of which corresponds to one of the participants. All actions in one lane 
are done by the corresponding participant. In Figure A1.12, Jennie is responsible for 

Figure A1.12
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mixing the dry ingredients and then mixing the dry and wet ingredients together, 
Helen is responsible for heating the oven and taking the cake out, and Mary is respon-
sible for everything else.

  stat e Di ag r a m s

The behavior of an object at a particular point in time often depends on the state of 
the object, that is, the values of its variables at that time. As a trivial example, consider 
an object with a Boolean instance variable. When asked to perform an operation, the 
object might do one thing if that variable is true and do something else if it is false.

A UML state diagram models an object’s states, the actions that are performed 
depending on those states, and the transitions between the states of the object.

As an example, consider the state diagram for a part of a Java compiler. The input 
to the compiler is a text file, which can be thought of as a long string of characters. 
The compiler reads characters one at a time and from them determines the structure 
of the program. One small part of this process of reading the characters involves 
ignoring “white-space” characters (e.g., the space, tab, newline, and return characters) 
and characters inside a comment.

Suppose that the compiler delegates to a WhiteSpaceAndCommentEliminator the 
job of advancing over white-space characters and characters in comments. That is, this 
object’s job is to read input characters until all white-space and comment characters have 
been read, at which point it returns control to the compiler to read and process non-white-
space and noncomment characters. Think about how the WhiteSpaceAndComment
Eliminator object reads in characters and determines whether the next character is white 
space or part of a comment. The object can check for white space by testing the next 
character against “ ”, “\t”, “\n”, and “\r”. But how does it determine whether the next 
character is part of a comment? For example, when it sees a “/” for the first time, it 
doesn’t yet know whether that character represents a division operator, part of the /= 
operator, or the beginning of a line or block comment. To make this determination, 
WhiteSpaceAndCommentEliminator needs to make a note of the fact that it saw a “/” 
and then move on to the next character. If the character following the “/” is another “/” 
or an “*”, then WhiteSpaceAndCommentEliminator knows that it is now reading a 
comment and can advance to the end of the comment without processing or saving any 
characters. If the character following the first “/” is anything other than a “/” or an “*”, 
then WhiteSpaceAndCommentEliminator knows that the “/” represents the division 
operator or part of the /= operator and so it stops advancing over characters.

In summary, as WhiteSpaceAndCommentEliminator reads in characters, it needs 
to keep track of several things, including whether the current character is white space, 
whether the previous character it read was a “/”, whether it is currently reading char-
acters in a comment, whether it has reached the end of comment, and so forth. These 
all correspond to different states of the WhiteSpaceAndCommentEliminator object. 
In each of these states, WhiteSpaceAndCommentEliminator behaves differently 
with regard to the next character read in.

To help you visualize all the states of this object and how it changes state, you can 
use a UML state diagram as shown in Figure A1.13. A state diagram displays states 
using rounded rectangles, each of which has a name in its upper half. There is also a 
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black circle called the “initial pseudostate,” which isn’t really a state and instead just 
points to the initial state. In Figure A1.13, the start state is the initial state. Arrows 
from one state to another state indicate transitions or changes in the state of the object. 
Each transition is labeled with a trigger event, a slash (/), and an activity. All parts of 
the transition labels are optional in state diagrams. If the object is in one state and the 
trigger event for one of its transitions occurs, then that transition’s activity is performed 
and the object takes on the new state indicated by the transition. For example, in Fig-
ure A1.13, if the WhiteSpaceAndCommentEliminator object is in the start state and 
the next character is “/”, then WhiteSpaceAndCommentEliminator advances past 
that character and changes to the saw ‘/’ state. If the character after the “/” is another 
“/”, then the object advances to the line comment state and stays there until it reads 
an end-of-line character. If instead the next character after the “/’”is a “*”, then the 
object advances to the block comment state and stays there until it sees another “*” 
followed by a “/”, which indicates the end of the block comment. Study the diagram 
to make sure you understand it. Note that, after advancing past white space or a com-
ment, WhiteSpaceAndCommentEliminator goes back to the start state and starts 
over. That behavior is necessary since there might be several successive comments or 
white-space characters before any other characters in the Java source code.

An object may transition to a final state, indicated by a black circle with a white 
circle around it, which indicates there are no more transitions. In Figure A1.13, the 

next char = eoln/advance
next char != eoln/advance

next char != ‘*’/advance

next char = ‘/’/advance

next char = ‘/’/advance
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Figure A1.13 A state diagram for advancing past white space and comments in Java
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WhiteSpaceAndCommentEliminator object is finished when the next character is not 
white space or part of a comment. Note that all transitions except the two transitions 
leading to the final state have activities consisting of advancing to the next character. The 
two transitions to the final state do not advance over the next character because the next 
character is part of a word or symbol of interest to the compiler. Note that if the object 
is in the saw ‘/’ state but the next character is not “/” or “*”, then the “/” is a division 
operator or part of the /= operator and so we don’t want to advance. In fact, we want to 
back up one character to make the “/” into the next character, so that the “/” can be used 
by the compiler. In Figure A1.13, this activity of backing up is labeled as pushback ‘/’.

A state diagram will help you to uncover missed or unexpected situations. That is, 
with a state diagram, it is relatively easy to ensure that all possible trigger events for 
all possible states have been accounted for. For example, in Figure A1.13, you can 
easily verify that every state has included transitions for all possible characters.

UML state diagrams can contain many other features not included in Figure A1.13. 
For example, when an object is in a state, it usually does nothing but sit and wait for a 
trigger event to occur. However, there is a special kind of state, called an activity state, in 
which the object performs some activity, called a do-activity, while it is in that state. To 
indicate that a state is an activity state in the state diagram, you include in the bottom half 
of the state’s rounded rectangle the phrase “do/” followed by the activity that is to be done 
while in that state. The do-activity may finish before any state transitions occur, after 
which the activity state behaves like a normal waiting state. If a transition out of the activ-
ity state occurs before the do-activity is finished, then the do-activity is interrupted.

Because a trigger event is optional when a transition occurs, it is possible that no 
trigger event may be listed as part of a transition’s label. In such cases for normal 
waiting states, the object will immediately transition from that state to the new state. 
For activity states, such a transition is taken as soon as the do-activity finishes.

Figure A1.14 illustrates this situation using the states for a business telephone. 
When a caller is placed on hold, the call goes into the On hold with music state 

Figure A1.14
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(soothing music is played for 10 seconds). After 10 seconds, the do-activity of the 
state is completed and the state behaves like a normal nonactivity state. If the caller 
pushes the # key when the call is in the On hold with music state, the call transitions 
to the Canceled state and then transitions immediately to the dial tone state. If the 
# key is pushed before the 10 seconds of soothing music has completed, the do-activity 
is interrupted and the music stops immediately.



629

2
A P P E N D I X

Data Science for  
Software Engineers

Contributed by: William Grosky and Terry Ruas1

classification problems  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .634
computational intelligence .  .  .  .  .  .  .  .  .  .  .  .  .  .  .638
data science  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .629
dimensional reduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .637

machine learning .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 631
regression problems  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .634
search-based software engineering  .  .  .  .  .  .  .638
statistical models  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .633

K e y 
C o n C e p t s

  Data sC i e nC e—th e Bi g pi C t u r e

Data science incorporates the work of many different disciplines to transform raw data 
into information, knowledge, and, hopefully, into wisdom. Data science has a long 
history that incorporates concepts from computer science, mathematics, statistics, data 
visualization, along with algorithms and their implementations. It is beyond the scope 
of this appendix to exhaustively detail all concepts under the rubric of “data science.” 
Instead, we hope to provide a concise summary of the most important topics while 
connecting them to software engineering.

Figure A2.1 indicates that data science is the intersection of three major areas: 
computer science, mathematics and statistics, and domain knowledge [Con10].

A data scientist must be interested in more than the data itself. Using knowledge 
of mathematics and statistics along with domain-specific knowledge, the data scientist 
develops necessary skills to evaluate whether data, experiments, and evaluation are 
properly designed for a given problem. However, to bring these capabilities to differ-
ent scenarios requires a certain flexibility, and good computing skills can be the way 
to accomplish it.

Popular Languages, APIs, and Tools
One of the great things about data science is that you can use it in virtually any 
environment that allows you to manipulate data. But to accomplish this, you’ll need 
programming languages, APIs, and tools to make your lives easier. We’ll provide an 
overview of these in the following sections.

Languages When it comes to programming languages, we all have our biases toward 
the one we like the most. For practitioners in data science, this is no different. How-
ever, you should keep in mind that one size does not fit all, and the proper approach 
to language selection for data science applications is to choose the right tool for the 
right job, considering its constraints, contexts, and goals.

1 Computer and Information Science Department, University of Michigan, Dearborn.
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For data science application, fast prototyping is a strongly desired characteristic, 
one that allows us to produce interesting projects with a simplified and intuitive syn-
tax. The resources available with respect to purpose and performance also play a 
crucial role in the adoption of a programming language. Thus, the less used a language 
is, the less attractive it will be for our daily tasks. Data science is closely related with 
data munging,2 which is “the process of transforming and mapping data from one 
‘raw’ data form into another format with the intent of making it more appropriate and 
valuable for a variety of downstream purposes, such as analytics.” Data munging is a 
time-consuming activity and community support through well-documented APIs and 
libraries can make a significant difference, especially when looking for use examples, 
details about specific methods, constraints, and other technical aspects. Thus, a pro-
gramming language used for data science applications should be broadly adopted, 
supported, and documented.

Therefore, it should come as no surprise that Python is widely used in the data 
science community. Other promising programming languages rising among data sci-
entists are Scala and Julia, both more concerned with high performance and scalabil-
ity. R is another interesting choice for data manipulation, specialized in statistical 
functions and data visualization libraries. Because its architecture is focused mainly 
on statistical analysis, data cleaning, and data visualization, R should not be your first 
choice for general-purpose programming. In other words, R is highly effective if used 
to solve the right problems.

Java’s popularity is indisputable in data science and many other areas of software 
development. Following the recent trends in data science and big data, Java also has 

2 See https://en.wikipedia.org/wiki/Data_wrangling.
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dedicated frameworks, such as Hive,3 Spark,4 and Hadoop.5 Considering its nonspe-
cific architecture and verbosity, Java should not be the first option for advanced sta-
tistical analysis or data munging, especially for machine-learning algorithms. For these 
cases, Python and R offer dynamic scripting and huge dedicated libraries that might 
be more interesting. Other strong programming languages, but not that popular among 
data scientists, are C/C++, F#, SQL.

Libraries and Tools
It is impossible to talk about data science without referring to the artifacts that assist 
you in the process of extracting knowledge out of data. In this section, we’ll note 
some of the most popular ones offered in Python [Van16].

NumPy is designed especially to efficiently manipulate n-dimensional arrays and 
handle scientific tasks. You can reshape the number of rows and columns, slice matrices, 
perform linear algebra operations, sort, search, and perform many other useful tasks. 
NumPy is used by a vast number of other libraries, and it is part of the SciPy stack.

There are two kinds of SciPy, the library itself and the scientific stack, composed of 
several open-source ecosystems, including the former. The sub-libraries that form the 
scientific stack are: NumPy, SciPy, Matplotlib, IPython, Sympy, and Pandas. The library, 
which is built on top of NumPy, is designed to provide efficient methods to deal with 
optimization, integration, and several other useful operations [Nun17], [Sci18].

As part of the scientific ecosystem, Pandas helps you with data structures and 
analysis through easy manipulations. It allows you to shape your data intuitively, 
providing easy adaptability from unstructured data to structured DataFrames. Some 
useful functions in Pandas include: indexing, labeling, fixing missing data records, 
and easy integration with different data structures [McK17], [Num18].

Particularly important for data science, Python also has a large portfolio of machine-
learning libraries, in which Scikit-learn, TensorFlow, and Keras have a special place 
in the spotlight. Scikit-learn is probably one of the most known off-the-shelf machine-
learning libraries in Python, featuring several algorithm types, such as clustering, 
regression, classification, and dimensionality reduction [Ger17]. TensorFlow, origi-
nally developed by the Google Brain team (part of Google’s AI division), proposes 
an open-source machine-learning and deep-learning framework for everyone.

Aside from the presented libraries, Python also has several other specialized tools 
that are used in data science. Examples of visualization tools are Matplotlib, Seaborn, 
Bokeh, and Plotly; examples of natural language processing (NLP) tools are Natural 
Language Toolkit (NLTK), Gensim, spaCy, and Scrapy [Act18].

  Data sC i e nC e a n D MaC h i n e Le a r n i ng

Data science is an umbrella term for a collection of data-driven approaches for find-
ing approximate solutions to very difficult problems. The main enabling technology 
of data science is machine learning, a suite of statistics-based techniques that use an 

3 https://hive.apache.org/.
4 https://spark.apache.org/.
5 https://hadoop.apache.org/.
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inductive approach that attempts to generalize from a set of known exemplars to 
unknown exemplars.

For example, our environment can consist of a set of multiple readings of various 
meteorological conditions, such as high temperature, low temperature, humidity, as 
well as several other values. We then have a small subset of these examples, our 
known exemplars, that are labeled; that is, for each example in this small set, the 
system is told whether it rained the following day or not. From this training set of 
known exemplars, the system then constructs a mathematical model to categorize an 
unknown daily example as to whether or not it will rain the following day. Another 
example from software engineering would be to predict whether an individual piece 
of code has a fault, based on a training set of faulty and nonfaulty programs. Alter-
natively, we might try to predict the cost of developing a new version of a program, 
based on the history of costs of previous versions of that same program.

In model building, there is an inherent tension between trying to construct a model 
that generalizes the training data, along with following the commonly held principle 
of Occam’s razor, which is that the model should be as simple as possible to explain 
the current training set data. Figure A2.2 illustrates this conundrum. If the training 
set consists of only the circles, Occam’s razor would choose the linear model, but 
with the addition of the triangle into the training set, perhaps Occam’s razor would 
choose the sine curve. So, which is the appropriate model: straight line, sine curve, 
or some, as yet, unknown curve?

In the meteorological example, the system tries to discover commonalities and, at 
the same time, differences among the meteorological readings, both in the training set 
for the days it rained the following day and for the days it didn’t rain the following 
day. Then it uses this metadata to determine whether or not it will rain tomorrow. 
Similarly, in the first software engineering example, the system tries to discover com-
monalities, in the training set, among programs with faults and those with no faults, 
as well as how faulty and nonfaulty programs differ, eventually being able to deter-
mine whether an unknown program is faulty or not. In the second software engineer-
ing example, the system tries to find a general rule that connects the cost of 
succeeding versions of programs in the training set, using this rule to predict the cost 
of succeeding versions not in the training set.

Figure A2.2
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The process which is followed during a data analytics project consists of 
(1) collecting the appropriate data, (2) cleaning the data, (3) transforming the data, 
(4) analyzing the data, and then (5) fabricating a training set.

 1. Data collection. Thinking about what data to collect is quite important, as it 
depends on the goal of your project. Questions that should be answered 
include what type of data is needed and how much data should be collected. 
For example, for software engineering data collection, what type of artifacts 
are needed? Do we need source code, object code, bug logs? What volume 
of data do we need to do the appropriate analytics?

 2. Data cleaning. Once collected, the data must be cleaned. This is a process 
that consists of eliminating problems in the data that would cause problems in 
further processing. For example, missing data should be filled in, and corrupt 
data should be found and corrected.

 3. Data transformation. After cleaning, data should be transformed so they are 
more suitable for the downstream analytics tasks. This process is called data 
munging or data wrangling. An example of this activity might be changing 
the format in which the data appears, eliminating punctuation in a text data 
file, and doing parts-of-speech analysis for text data.

 4. Data analysis. After all this, the data are ready to be analyzed and processed 
by various data analytics tools. But, before this happens, we generally use 
visualization tools for various tasks. For example, it may help us determine 
which features to use to predict the value of other features. It is only after 
this that we can determine the best analytical approach to be used for 
predictive or inferential purposes.

 5. Training set fabrication. Choosing an appropriate training set is important. 
The generalizations produced from different training sets might differ among 
themselves, but the hope is that the downstream answers produced are still 
correct. It is important not to overfit the training set, which means that the 
approach predicts items in the training set with close to 100 percent accuracy 
but largely fails to predict the correct results for unknown items. This can 
happen quite easily if one is not careful to try to avoid this outcome. All of 
this is determined by testing the derived statistical model on a test set of data 
to determine its error rate.

For the above process to work, objects must be represented by some mathematical 
structure that can be manipulated easily and compared among themselves. A common 
way of associating a mathematical structure with an individual object is to use feature 
vectors. A feature is a given property of an object. A feature vector is a vector of 
values for multiple features of an object class, so that the feature vectors for objects in 
the same object class have the same feature ordering. For example, the meteorological 
features of a day may have the following structure: low-temperature, high-temperature, 
low-humidity, high-humidity, prevailing-cloud-type, overall-wind-strength. The vari-
ables of low-temperature, high-temperature, low-humidity, high humidity are continu-
ous variables, while prevailing-cloud-type is an unordered categorical variable and 
overall-wind-strength is an ordered categorical variable (assuming the possible values 
are weak, average, strong).
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In the software engineering environment, a feature vector corresponding to a piece 
of code could be a vector of values of several software metrics, such as number of 
lines of code, average program execution time, cohesion, and coupling. It is often 
challenging to choose the appropriate feature vector, and a new area of study, feature 
engineering, has evolved to help guide the process.

Machine-Learning Approaches
Machine learning is an integral part of data science. The process discussed earlier in 
this section establishes the data set that is used to drive learning. Supervised learning 
consists of approaches where the user is in the loop and interacts with the learning 
system, mainly by providing certain types of meta-information, such as labeled data 
for training sets. Unsupervised learning does not have the user in the loop to provide 
categorical information. These techniques are purely data driven and find ways of 
labeling the data from the data itself.

Within supervised learning approaches, there are two main types of problems: 
classification problems and regression problems.

Classification problems are those whose aim is to determine which of several 
classes an entity belongs; in other words, to predict a class label. A problem with two 
possible labels is called a binary classification problem, while a problem with more 
than two classes is called a multiclass classification problem. If an entity can fall into 
several classes, we have a multilabel classification problem. In this case, it often hap-
pens that the membership of an entity in an individual class is associated with a 
number between 0 and 1. This number can be interpreted as the strength of member-
ship or the probability of membership. In this case, for a given entity, the sum of all 
its associated membership strengths or probabilities is equal to 1. A classic example 
of a binary classification problem is to classify e-mail as spam or nonspam. An 
example of a multiclass classification problem would be to classify the contents of an 
e-mail to various topic classes.

Regression problems are those whose aim is to predict the value of an output vari-
able given the values of several input variables. The value predicted can be real 
valued or discrete valued. Suppose one had many feature vectors consisting of vita-
related information for a prospective new hire. An example of a regression problem 
would be to predict the length of time that person will stay with your company before 
looking for a new job.

The boundary between classification problems and regression problems is imprecise. 
A regression problem where the values predicted are from a finite set can be couched 
as a classification problem where each class corresponds to a given value in the finite 
set of predicted values. Similarly, a classification problem can be couched as a regres-
sion problem where the output values predicted correspond to the set of class labels.

Popular techniques used for supervised learning include linear regression, logistic 
regression, linear discriminant analysis, decision trees, k-nearest neighbor, and neural 
networks. Popular techniques for unsupervised learning approaches include neural 
networks, clustering, and dimensional reduction. We consider only a small sampling 
of these techniques in this appendix.

Decision Trees Decision tree learning is a predictive technique that uses data-
derived observations contained in the branches of the tree to develop conclusions 
about a target value contained in the leaves of the tree. Based on the input variable 
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values, a set of hierarchical decisions are made. The output variable value is found 
by following a tree from the root to a leaf, based on answers to questions asked 
along the way.

In general, decision trees can be binary or nonbinary and the questions asked can 
be arbitrary, as long as they conform to the number of children at an individual node. 
For this appendix, we will consider only binary trees with Boolean questions of the 
form x < a or x ≤ b, for some input variable x and constants a and b. If the answer 
to a question is TRUE, we would choose the left child to continue our walk down the 
tree, while if it is FALSE, we would choose the right child.

Given a training set of input and output variable values, we construct the tree choos-
ing the type of Boolean question to ask at each internal node. This is usually done in 
a greedy fashion, simply asking, at a given node, which decision minimizes the sum 
of the squared errors. For visualization purposes, let us assume we have two input 
variables, x1 and x2, both of which are continuous. Suppose the training set is of the 
form (y, x1, x2) and is t1 = (5.7, 2.3, 9.6), t2 = (3.5, 1.1, 10), t3 = (0.55, 3.6, 17.5).  
We first must decide whether the first split will be on x1 or x2. We choose the input 
variable giving us the lowest error.

Now, each node of the tree is associated with a subset of the training set. For 
example, the root is associated with the entire training set. If the question at the root 
is x1 < 1, then the root’s left child is associated with the empty set and the root’s right 
child is associated with the entire training set. However, if the question at the root is 
x1 < 1.8, the root’s left child is associated with t2 and the root’s right child is associ-
ated with the training tuples t1 and t3. Note that if we change 1.8 to 2.2, we would 
have the same association. However, even if the tree is the same, the choice of the 
split point would affect the results for input value pairs which are not in the training 
set.

So, what is the error produced by the x1 < 1.8 split? If we stopped at this point, 
the tree would be used as follows. For an input value pair (c, d), if c < 1.8, we would 
predict the output value of 3.5, while if c ≥ 1.8, we would predict the output value 
of 3.125, the average of 5.7 and 0.55. For this example, the squared error produced 
from the left child is 0, while the squared error produced from the right child is 
(3.125 − 5.7)2 + (3.125 − 0.55)2 ≅ 13.26. We could stop here, or perform a further 
refinement on the right-hand side, producing a division of the plane into three regions, 
each associated with a single training set tuple. See Figure A2.3 for an illustration of 
the trees, associated regions, and errors for two different splits.

There are many efficient approaches to finding the best tree, which include when 
and how a region should be split and when to cease splitting a region containing more 
than one training set tuple. Some of these approaches can be found in [Jam13].

In Young et al. [You18], the use of decision trees in software engineering research 
is illustrated for the problem of just-in-time defect prediction. This technique predicts 
defects at small granularities. Code changes are predicted which are more likely to 
introduce defects. In this paper, it is demonstrated that the decision tree methodology 
is better than many other learning techniques for this problem. Decision trees are used 
in an ensemble learning environment. This type of learning combines many parallel 
learners in such a way that the final results are much improved.

Nearest Neighbor The technique of k-nearest neighbor is an approach to estimate 
the probability of membership of an unclassified input variable tuple, v, in a finite set 
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Figure A2.3
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of classes. It is quite simple conceptually but can be very powerful. One finds the 
closest k points in the training set to the given point v. For a given class, c, suppose 
there are n points among these closest k training set points that belong to class c. Then 
the probability that v belongs to c would be n/k. If we had to label v with a single 
class, it would be the class with the highest probability. The value of k certainly affects 
the results. It has been found that values of k that are too small or too large don’t 
perform well. As k increases to its sweet spot, the error decreases, but as k further 
increases, the error gets larger. See Figure A2.4 for an example: with 1-nearest neigh-
bor, the gray point is classified as black; with 3-nearest neighbors, it is classified as 
white; and with 5-nearest neighbors, it is classified as white.

In Huang et al. [Hua17], nearest neighbor is used to develop an improved approach 
for missing data in the software quality area. Missing data causes many problems 
for machine learning. There are many approaches to intelligently estimate values for 
this data.

Neural Networks Neural networks embody connectionism, an architecture consist-
ing of connections of multiple simple processors (i.e., brain cells) together in a mas-
sively parallel environment, supporting many concurrent processes, that can be used 
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to solve many problems. The power of neural networks results from the fact that this 
approach models the output variable as a nonlinear function of several linear combi-
nations of the input variables. The more powerful neural networks have some form 
of feedback. To specify a neural network, we must specify the connectivity of the 
nodes, the way that a given node transforms all its inputs into an output, and how the 
final output is generated. In general, a neural network uses feedback through what is 
called a backpropagation technique (steepest descent or following the gradient direc-
tion) to train the network (estimate the parameters needed to carry out the regression). 
A weakness of neural networks is that it is hard to determine how particular param-
eters correlate with the parameters of the problem, leading to a weakness in explana-
tory power as to why a neural net has made a given decision.

Clustering Clustering is a general data-driven approach to find groups of any 
entities that are similar in some sense. A group of clusters are found, each cluster 
containing a set of entities. The idea is that two entities in the same cluster are 
highly similar, while two entities, each in different clusters, are not as similar. It is 
generally up to the investigator to figure out what exactly is meant by similarity. In 
the context of this appendix, the entities will be feature vectors and similarity is 
defined using a distance function between vectors. Vectors having a smaller distance 
between them will be more similar. There are hundreds of clustering algorithms, 
and there is no guarantee that you will get the same clustering from each of them. 
Clusters can have different shapes, and some algorithms work better with convex 
shapes, while others can relax this condition. Some algorithms are specifically 
designed for high-dimensional spaces, while others aren’t.

Dimensional Reduction By dimensional reduction, we mean decreasing the lengths 
of the input feature vectors. In many important environments, the size of these vectors 
can get quite large. In natural language processing, for example, each vocabulary word 
has its own position in the vector. It is quite common, therefore, for these vectors to 
have from 5,000 to 50,000 elements. Reducing the dimensionality would thus speed 
up the learning process. Initially, in several disciplines of computer science, this was 
the sole reason for dimensionality reduction. However, it was soon discovered that 
reducing the dimensionality of the input feature vectors also improved the perfor-
mance of many of the underlying algorithms used in downstream applications.

Figure A2.4
k-Nearest 
neighbor 
example for  
k = 1,3,5
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Co M p u tat i o na L in t e L L i g e nC e  
a n D se a rC h-Ba s e D so f t wa r e eng i n e e r i ng

Computational intelligence generally refers to the ability of a system (hardware and 
software) to learn a specific task from a set of data collected about that task. Some 
classify computational computing as a combination of granular computing (fuzzy sets, 
rough sets, probabilistic reasoning), neuro-computing (neural nets), evolutionary com-
puting (genetic programming, genetic algorithms, and swarm intelligence), and artifi-
cial life (artificial immune systems). These approaches can be used for optimization, 
classification, search, and regression.

In search-based software engineering, computational intelligence–based techniques 
have been used for various sorts of optimizations. For example, there are papers 
[Oun17] using genetic algorithms for multi-objective optimization that quickly search 
the space of all possible code refactorings and recommend the best options, each 
option illustrating some particular trade-offs among the input variables, but still locally 
optimal. It has been shown that these approaches can also be used to build predictive 
models [Mal17].

The merger of data science, machine learning, and search-based software engineer-
ing may lead to exciting breakthroughs in the way software is specified, designed, 
coded, and tested. Time will tell.



639

References

[Abb83] Abbott, R., “Program Design by Informal English Descriptions,” CACM, vol. 26, no. 11, 
November 1983, pp. 892–894.

[Abd16] Abdessalem, R., et al., “Testing Advanced Driver Assistance Systems Using Multi-Objective 
Search and Neural Networks,” Proceedings of the 31st IEEE/ACM International Conference 
on Automated Software Engineering, ACM, 2016, pp. 63–74.

[Abr17] Abreu, L., “UX Design Patterns for Mobile Apps: Which and Why,” 2017, available at https://
www.raywenderlich.com/167174/design-patterns-mobile-apps-which-why.

[ACM12] ACM/IEEE-CS Joint Task Force, Software Engineering Code of Ethics and Professional 
 Practice, 2012, available at https://ethics.acm.org/code-of-ethics/software-engineering-code.

[ACM18] ACM Code of Ethics and Professional Conduct, 2018, available at https://ethics.acm.org/.
[Act18] ActiveWizards, “Top 20 Python Libraries for Data Science in 2018,” February 13, 2018. 

Retrieved October 2018 from ActiveWizards: https://activewizards.com/blog/top-20-python-
libraries-for-data-science-in-2018/.

[Ada16] Adams, B., and S. McIntosh, “Modern Release Engineering in a Nutshell—Why Researchers 
Should Care,” 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and 
Reengineering (SANER), March 2016, pp. 78–90.

[AFC88] Software Risk Abatement, AFCS/AFLC Pamphlet 800-45, U.S. Air Force, September 30, 1988.
[Agi17] Agile Alliance home page, available at https://www.agilealliance.org.
[Air99] Airlie Council, “Performance Based Management: The Program Manager’s Guide Based on 

the 16-Point Plan and Related Metrics,” Draft Report, March 8, 1999.
[Alb10] Alberts, C., et al., “Integrated Measurement and Analysis Framework for Software Security,” 

CMU/SEI-2010-TN-025. Software Engineering Institute, Carnegie Mellon University, 2010, 
available at http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9369.

[Ale02] Alexander, I., “Misuse Cases Help to Elicit Non-Functional Requirements,” 2002, available at 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.9670&rep=rep1&type=pdf.

[Ale03] Alexander, I., “Misuse Cases: Use Cases with Hostile Intent,” IEEE Software, vol. 20, no. 1, 
2003, pp. 58–66.

[Ale11] Alexander, I., “Gore, Sore, or What?” IEEE Software, vol. 28, no. 1, January–February 2011, 
pp. 8–10.

[Ale17] Alebrahim, A., “Phase 1: Context Elicitation & Problem Analysis,” Bridging the Gap between 
Requirements Engineering and Software Architecture, Springer Vieweg, Wiesbaden, 2017, 
 available at https://doi.org/10.1007/978-3-658-17694-5_4.

[Ale77] Alexander, C., A Pattern Language, Oxford University Press, 1977.
[Ale79] Alexander, C., The Timeless Way of Building, Oxford University Press, 1979.
[Alh13] Alhusain, S., “Towards Machine Learning Based Design Pattern Recognition,” Proceedings of 

13th UK Workshop on Computational Intelligence, September 2013, pp. 244–251.
[Ali14] Alice, G., and Mead, N., “Using Malware Analysis to Tailor SQUARE for Mobile Platforms,” 

CMU/SEI-2014-TN-018. Software Engineering Institute, Carnegie Mellon University, 2014, 
available at http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=425994.

[Ali18] Alizadeh, V., M. Kessentini, W. Mkaouer, M. Ocinneide, A. Ouni, and Y. Cai, “An Interactive 
and Dynamic Search-Based Approach to Software Refactoring Recommendations,” IEEE Trans-
actions on Software Engineering, 2018, available at https://ieeexplore.ieee.org/document/8477161.

[All08] Allen, J. H., et al., Software Security Engineering: A Guide for Project Managers, Addison-
Wesley Professional, 2008.

[All14] Alleman, G., Performance-Based Project Management: Increasing the Probability of Project 
Success, AMACOM, 2014.

[Als18] Alshahwan, N., et al., “Deploying Search Based Software Engineering with Sapienz at 
 Facebook,” Search-Based Software Engineering SSBSE 2018. Lecture Notes in Computer 
Science, T.  Colanzi and P. McMinn (eds.), vol. 11036, Springer, 2018.



640 REFERENCES

[Amb02] Ambler, S., and R. Jeffries, Agile Modeling, Wiley, 2002.
[Amb04] Ambler, S., “Examining the Cost of Change Curve,” in The Object Primer, 3rd ed., Cambridge 

University Press, 2004.
[Amb95] Ambler, S., “Using Use-Cases,” Software Development, July 1995, pp. 53–61.
[Amb98] Ambler, S., Process Patterns: Building Large-Scale Systems Using Object Technology, 

 Cambridge University Press/SIGS Books, 1998.
[Amp13] Ampatzoglou, A., et al., “Building and Mining a Repository of Design Pattern Instances: 

 Practical and Research Benefits,” Entertainment Computing, vol. 4, April 2013, pp. 131–142.
[And05] Andreou, A., et al., “Key Issues for the Design and Development of Mobile Commerce 

Services and Applications,” International Journal of Mobile Communications, vol. 3, no. 3, 
March 2005, pp. 303–323.

[And06] Andrews, M., and J. Whittaker, How to Break Web Software: Functional and Security Testing 
of Web Applications and Web Services, Addison-Wesley, 2006.

[And16] Anderson, D., and A. Carmichael, Essential Kanban Condensed, Lean Kanban University 
Press, 2016, available at leankanban.com/guide.

[ANS87] ANSI/ASQC A3-1987, Quality Systems Terminology, 1987.
[App00] Appleton, B., “Patterns and Software: Essential Concepts and Terminology,” February 2000, 

available at www.cmcrossroads.com/bradapp/docs/patterns-intro.html.
[App13] Apple Computer, Accessibility, 2013, available at www.apple.com/accessibility/.
[Arl02] Arlow, J., and I. Neustadt, UML and the Unified Process, Addison-Wesley, 2002.
[Arn11] Arnuphaptrairong, T., “Top Ten Lists of Software Project Risks: Evidence from the Literature 

Survey,” Proceedings International Multi-Conference of Engineers and Computer Scientists, 
vol. I, IMECS 2011, March 2011.

[ISO17] ISO/IEC/IEEE 24765:2017(E), ISO/IEC/IEEE International Standard: Systems and Software 
 Engineering—Vocabulary, available at https://standards.ieee.org/findstds/standard/24765-2017.html.

[Ast04] Astels, D., Test Driven Development: A Practical Guide, Prentice Hall, 2004.
[Baa10] Baaz, A., et al., “Appreciating Lessons Learned,” IEEE Software, vol. 27, no. 4, July–

August, 2010, pp. 72–79.
[Bab09] Babar, M., and I. Groton, “Software Architecture Review: The State of Practice,” IEEE 

 Computer, vol. 42, no. 6, June 2009, pp. 1–8.
[Bab86] Babich, W. A., Software Configuration Management, Addison-Wesley, 1986.
[Bae98] Baetjer, Jr., H., Software as Capital, IEEE Computer Society Press, 1998, p. 85.
[Baj11] Bajdor, P., and L. Dragolea, “The Gamification as a Tool to Improve Risk Management in the 

Enterprise,” Annales Universitatis Apulensis Series Oeconomica, vol. 2, no. 13, 2011, available 
at http://www.oeconomica.uab.ro/upload/lucrari/1320112/38.pdf.

[Bar06] Baresi, L., E. DiNitto, and C. Ghezzi, “Toward Open-World Software: Issues and Challenges,” 
IEEE Computer, vol. 39, no. 10, October 2006, pp. 36–43.

[Bas12] Bass, L., P. Clements, and R. Kazman, Software Architecture in Practice, 3rd ed., Addison-
Wesley, 2012.

[Bat18] Batarseh, F., and A. Gonzalez, “Predicting Failures in Agile Software Development through 
Data Analytics,” A Software Quality Journal, vol. 26, no. 1, March 2018, pp. 49–66.

[Bec99] Beck, K., Extreme Programming Explained: Embrace Change, Addison-Wesley, 1999.
[Bec01] Beck, K., et al., “Manifesto for Agile Software Development,” 2001, available at www. 

agilemanifesto.org/.
[Bec04a] Beck, K., Extreme Programming Explained: Embrace Change, 2nd ed., Addison-Wesley, 2004.
[Bec04b] Beck, K., Test-Driven Development: By Example, 2nd ed., Addison-Wesley, 2004.
[Bee99] Beedle, M., et al., “SCRUM: An Extension Pattern Language for Hyperproductive Software 

Development,” included in Pattern Languages of Program Design 4, Addison-Wesley Long-
man, 1999, available at http://jeffsutherland.com/scrum/scrum_plop.pdf.

[Beg10] Begel, A., R. DeLine, and T. Zimmermann, “Social Media for Software Engineering,” 
Proceedings FoSER 2010, ACM, November 2010.

[Bei90] Beizer, B., Software Testing Techniques, 2nd ed., Van Nostrand-Reinhold, 1990.
[Bei95] Beizer, B., Black-Box Testing, Wiley, 1995.
[Bel17] Bell, L., et al., Agile Application Security, O’Reilly Media, 2017.
[Bel14] Bellomo, S., P. Krutchen, R. Nord, and I. Ozkaya, “How to Agilely Architect an Agile 

Architecture,” Cutter IT Journal, February 2014, pp. 10–15.



REFERENCES  641

[Ben10a] Bennett, S., S. McRobb, and R. Farmer, Object-Oriented Analysis and Design Using UML, 
4th ed., McGraw-Hill, 2010.

[Ben10b] Benaroch, M., and A. Appari, “Financial Pricing of Software Development Risk Factors,” 
IEEE Software, vol. 27, no. 3, September–October 2010, pp. 65–73.

[Ber80] Bersoff, E., V. Henderson, and S. Siegel, Software Configuration Management, Prentice Hall, 
1980.

[Ber93] Berard, E., Essays on Object-Oriented Software Engineering, vol. 1, Addison-Wesley, 1993.
[Bin94] Binder, R., “Testing Object-Oriented Systems: A Status Report,” American Programmer, 

vol. 7, no. 4, April 1994, pp. 23–28.
[Bin99] Binder, R., Testing Object-Oriented Systems: Models, Patterns, and Tools, Addison-Wesley, 

1999.
[Bir98] Biró, M., and T. Remzsö, “Business Motivations for Software Process Improvement,” ERCIM 

News, no. 32, January 1998, available at www.ercim.org/publication/Ercim_News/enw32/biro.html.
[Bis02] Bishop, M., Computer Security: Art and Science, Addison-Wesley Professional, 2002.
[Bjø16] Bjørnson, F., and K. Vestues, “Knowledge Sharing and Process Improvement in Large-Scale 

Agile Development,” Proceedings Scientific Workshop of XP2016 (XP ’16 Workshops). ACM, 
New York, NY, 2016, Article 7.

[Bla10] Blair, S., et al., “Responsibility-Driven Architecture,” IEEE Software, vol. 27, no. 3, March–
April 2010, pp. 26–32.

[Boe01a] Boehm, B., “The Spiral Model as a Tool for Evolutionary Software Acquisition,” CrossTalk, 
May 2001, available at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.642.8250&r
ep=rep1&type=pdf.

[Boe01b] Boehm, B., and V. Basili, “Software Defect Reduction Top 10 List,” IEEE Computer, vol. 34, 
no. 1, January 2001, pp. 135–137.

[Boe08] Boehm, B., “Making a Difference in the Software Century,” IEEE Computer, vol. 41, no. 3, 
March 2008, pp. 32–38.

[Boe81] Boehm, B., Software Engineering Economics, Prentice Hall, 1981.
[Boe88] Boehm, B., “A Spiral Model for Software Development and Enhancement,” Computer, vol. 21, 

no. 5, May 1988, pp. 61–72.
[Boe89] Boehm, B. W., Software Risk Management, IEEE Computer Society Press, 1989.
[Boe96] Boehm, B., “Anchoring the Software Process,” IEEE Software, vol. 13, no. 4, July 1996, 

pp. 73–82.
[Boe98] Boehm, B., “Using the WINWIN Spiral Model: A Case Study,” Computer, vol. 31, no. 7, 

July 1998, pp. 33–44.
[Boh00] Bohl, M., and M. Rynn, Tools for Structured Design: An Introduction to Programming Logic, 

5th ed., Prentice Hall, 2000.
[Boh66] Bohm, C., and G. Jacopini, “Flow Diagrams, Turing Machines and Languages with Only Two 

Formation Rules,” CACM, vol. 9, no. 5, May 1966, pp. 366–371.
[Boi04] Boiko, B., Content Management Bible, 2nd ed., Wiley, 2004.
[Boo05] Booch, G., J. Rumbaugh, and I. Jacobsen, The Unified Modeling Language User Guide, 2nd 

ed., Addison-Wesley, 2005.
[Boo11a] Booch, G., “Dominant Design,” IEEE Software, vol. 28, no. 2, January–February 2011, pp. 8–9.
[Boo11b] Booch, G., “Draw Me a Picture,” IEEE Software, vol. 28, no. 1, January–February 2011, pp. 6–7.
[Bos00] Bosch, J., Design & Use of Software Architectures, Addison-Wesley, 2000.
[Bos11] Bose, B., et al., “Morphing Smartphones into Automotive Application Platforms,” IEEE 

 Computer, vol. 44, no. 5, May 2011, pp. 28–29.
[Bre02] Breen, P., “Exposing the Fallacy of ‘Good Enough’ Software,” informit.com, February 1, 2002, 

available at http://www.informit.com/articles/article.aspx?p=25141&seqNum=3.
[Bri09] Briand, L., “Model-Driven Development and Search-Based Software Engineering: An Oppor-

tunity for Research Synergy,” 2009 1st International Symposium on Search Based Software 
 Engineering, Windsor, 2009.

[Bri13] Briers, B., “The Gamification of Project Management.” PMI® Global Congress 2013—North 
America, New Orleans, LA. Newtown Square, PA: Project Management Institute, 2013, avail-
able at https://www.pmi.org/learning/library/gamification-project-management-5949.

[Bro06] Broy, M., “The ‘Grand Challenge’ in Informatics: Engineering Software Intensive Systems,” 
IEEE Computer, vol. 39, no. 10, October 2006, pp. 72–80.



642 REFERENCES

[Bro10a] Brown, N., R. Nord, and I. Ozkaya, “Enabling Agility through Architecture,” Crosstalk, 
November–December 2010, available at https://apps.dtic.mil/dtic/tr/fulltext/u2/a552111.pdf.

[Bro10b] Broy, M., and R. Reussner, “Software Architecture Review: The State of Practice,” IEEE 
 Computer, vol. 43, no. 10, June 2010, pp. 88–91.

[Bro12] Brown, A., The Architecture of Open Source Applications, lulu.com, 2012.
[Bro98] Brown, W. J., et al., AntiPatterns—Refactoring Software, Architectures, and Projects in Crisis, 

Wiley, 1998.
[Bud96] Budd, T., An Introduction to Object-Oriented Programming, 2nd ed., Addison-Wesley, 1996.
[Bur16] Burns, A., B. Umbaugh, and C. Dunn, “Introduction to the Mobile Software Development 

Lifecycle,” 2016, available at https://docs.microsoft.com/en-us/xamarin/cross-platform/  
get-started/introduction-to-mobile-sdlc.

[Bus07] Buschmann, F., et al., Pattern-Oriented Software Architecture, A System of Patterns, Wiley, 
2007.

[Bus10b] Buschmann, F., and K. Henley, “Five Considerations for Software Architecture, Part 1,” IEEE 
Software, vol. 27, no. 3, May–June 2010, pp. 63–65.

[Bus10c] Buschmann, F., and K. Henley, “Five Considerations for Software Architecture, Part 2,” IEEE 
Software, vol. 27, no. 4, July–August 2010, pp. 12–14.

[Cac02] Cachero, C., et al., “Conceptual Navigation Analysis: A Device and Platform Independent 
 Navigation Specification,” Proceedings of the 2nd International Workshop on Web-Oriented 
Technology, June 2002, available at http://gplsi.dlsi.ua.es/iwad/ooh_project/papers/iwwost02.
pdf.

[Car08] Carrasco, M., “7 Key Attributes of High Performance Software Development Teams,” June 30, 
2008, available at http://www.realsoftwaredevelopment.com/7-key-attributes-of-high- 
performance-software-development-teams/.

[Car90] Card, D., and R. Glass, Measuring Software Design Quality, Prentice Hall, 1990.
[Cav78] Cavano, J., and J. McCall, “A Framework for the Measurement of Software Quality,” Proceed-

ings ACM Software Quality Assurance Workshop, November 1978, pp. 133–139.
[CMM18a] Capability Maturity Model Integration (CMMI), Software Engineering Institute, 2018,  

available at https://cmmiinstitute.com/cmmi.
[CMM18b] People Capability Maturity Model Integration (People CMM), Software Engineering Institute, 

2018, available at https://cmmiinstitute.com/cmmi/pm.
[Cha89] Charette, R., Software Engineering Risk Analysis and Management, McGraw-Hill/Intertext, 

1989.
[Cha92] Charette, R., “Building Bridges over Intelligent Rivers,” American Programmer, vol. 5, no. 7, 

September 1992, pp. 2–9.
[Cha93] de Champeaux, D., D. Lea, and P. Faure, Object-Oriented System Development, Addison-

Wesley, 1993.
[Chi94] Chidamber, S., and C. Kemerer, “A Metrics Suite for Object-Oriented Design,” IEEE Transac-

tions on Software Engineering, vol. SE-20, no. 6, June 1994, pp. 476–493.
[Cho16] Choma, J., et al., “Interaction Patterns for User Interface Design of Large Web Applications,” 

Proceedings 11th Latin-American Conference on Pattern Languages of Programming 
( SugarLoafPLoP ’16), 2016, The Hillside Group, Article 8, 11 pages.

[Chr17] Christensen, E., “How to Create a Customer Journey Map,” 2017, available at https://www.
lucidchart.com/blog/how-to-build-customer-journey-maps.

[Chu09] Chung, L., and J. Leite, “On Non-Functional Requirements in Software Engineering,” in A. 
T. Borgida et al. (eds.), Conceptual Modeling: Foundations and Applications, Springer-Verlag, 
2009.

[Cig07] Cigital, Inc., “Case Study: Finding Defects Earlier Yields Enormous Savings,” 2007.
[Cla05] Clark, S., and E. Baniasaad, Aspect-Oriented Analysis and Design, Addison-Wesley, 2005.
[Cle03] Clements, P., R. Kazman, and M. Klein, Evaluating Software Architectures: Methods and Case 

Studies, Addison-Wesley, 2003.
[Cle10] Clements, P., and L. Bass, “The Business Goals Viewpoint,” IEEE Software, vol. 27, no. 6, 

November–December 2010, pp. 38–45.
[CMM07] Capability Maturity Model Integration (CMMI), Software Engineering Institute, 2007, available 

at www.sei.cmu.edu/cmmi/.
[Coa91] Coad, P., and E. Yourdon, Object-Oriented Analysis, 2nd ed., Prentice Hall, 1991.



REFERENCES  643

[Coc01a] Cockburn, A., and J. Highsmith, “Agile Software Development: The People Factor,” IEEE 
Computer, vol. 34, no. 11, November 2001, pp. 131–133.

[Coc01b] Cockburn, A., Writing Effective Use-Cases, Addison-Wesley, 2001.
[Coc02] Cockburn, A., Agile Software Development, Addison-Wesley, 2002.
[Coh05] Cohn, M., “Estimating with Use Case Points,” Methods & Tools, Fall 2005, available at http://

www.mountaingoatsoftware.com/articles/estimating-with-use-case-points.
[Con02] Conradi, R., and A. Fuggetta, “Improving Software Process Improvement,” IEEE Software,   

July–August 2002, pp. 2–9, available at http://citeseer.ist.psu.edu/conradi02improving.html.
[Con10] Conway, D., The Data Science Venn Diagram, 2010, available at http://drewconway.com/

zia/2013/3/26/the-data-science-venn-diagram.
[Con95] Constantine, L., “What DO Users Want? Engineering Usability in Software,” Windows Tech 

Journal, December 1995, available at http://www.wytsg.org:88/reslib/400/180/110/020/030/ 
050/060/L000000000240585.pdf.

[Cro79] Crosby, P., Quality Is Free, McGraw-Hill, 1979.
[Cro07] Cross, M., Developer’s Guide to Web Application Security, Syngress, 2007.
[Cur09] Curtis, B., and W. Heflley, The People CMM: A Framework for Human Capital Management, 

2nd ed., Addison-Wesley, 2009.
[Cur90] Curtis, B., and D. Walz, “The Psychology of Programming in the Large: Team and Organi-

zational Behavior,” Psychology of Programming, Academic Press, 1990.
[DAC03] “An Overview of Model-Based Testing for Software,” Data and Analysis Center for Software, 

CR/TA 12, June 2003.
[Dah72] Dahl, O., E. Dijkstra, and C. Hoare, Structured Programming, Academic Press, 1972.
[Dak14] Daka, E., and G. Fraser, “A Survey on Unit Testing Practices and Problems,” 2014 IEEE  

25th International Symposium on Software Reliability Engineering, Naples, 2014,  
pp. 201–211.

[Dam17] Dam, R., and T. Siang, “Test Your Prototype: How to Gather Feedback and Maximize Learn-
ing,” October 2017, available at https://www.interaction-design.org/literature/article/test-your-
prototypes-how-to-gather-feedback-and- maximise-learning.

[Dar01] Dart, S., Spectrum of Functionality in Configuration Management Systems, Software Engineer-
ing Institute, 2001, available at www.sei.cmu.edu/legacy/scm/tech_rep/TR11_90/TOC_
TR11_90.html.

[Dar91] Dart, S., “Concepts in Configuration Management Systems,” Proceedings Third International 
Workshop on Software Configuration Management, ACM SIGSOFT, 1991, available at https://
dl.acm.org/citation.cfm?id=111063.

[Das15] Dasanayake, S., et al., “Software Architecture Decision-Making Practices and Challenges: An 
Industrial Case Study,” Proceedings of the 24th Australasian Software Engineering Confer-
ence, SA, Australia, 2015. pp. 88–97.

[Dav93] Davis, A., et al., “Identifying and Measuring Quality in a Software Requirements Specifica-
tion,” Proceedings of the. First International Software Metrics Symposium, IEEE, Baltimore, 
MD, May 1993, pp. 141–152.

[Dav95a] Davis, M., “Process and Product: Dichotomy or Duality,” Software Engineering Notes, ACM 
Press, vol. 20, no. 2, April 1995, pp. 17–18.

[Dav95b] Davis, A., 201 Principles of Software Development, McGraw-Hill, 1995.
[Day99] Dayani-Fard, H., et al., “Legacy Software Systems: Issues, Progress, and Challenges,” IBM 

Technical Report: TR-74.165-k, April 1999.
[Dem86] Deming, W., Out of the Crisis, MIT Press, 1986.
[DeM95] DeMarco, T., Why Does Software Cost So Much? Dorset House, 1995.
[DeM98] DeMarco, T., and T. Lister, Peopleware, 2nd ed., Dorset House, 1998.
[Den73] Dennis, J., “Modularity,” in Advanced Course on Software Engineering, F. L. Bauer (ed.), 

Springer-Verlag, 1973, pp. 128–182.
[Des08] de Sáa, M., and L. Carriocço, “Lessons from Early Stages Design of Mobile Applications,” 

Proceedings of 10th International Conference on Human Computer Human with Mobile 
Services and Devices, 2008, pp. 127–136.

[Des09] de Souza, C., H. Sharp, G. Venolia, and L. Cheng, “Guest Editors’ Introduction: Cooperative 
and Human Aspects of Software Engineering,” IEEE Software, vol. 26, no. 6, 2009,  
pp. 17–19.



644 REFERENCES

[Det11] Deterding, S., et al., “From Game Design Elements to Gamefulness: Defining Gamification,” 
Proceedings of the 2011 Annual Conference Extended Abstracts on Human Factors in Comput-
ing Systems—CHI EA ’11, 2011, p. 2425.

[Dia14] Díaz-Bossini, J., and L. Moreno, “Accessibility to Mobile Interfaces for Older People,” 
Procedia Computer Science, vol. 27, 2014, pp. 57–66.

[Dij65] Dijkstra, E., “Programming Considered as a Human Activity,” Proceedings 1965 IFIP 
Congress, North-Holland Publishing Co., 1965.

[Dij72] Dijkstra, E., “The Humble Programmer,” 1972 ACM Turing Award Lecture, CACM, vol. 15, 
no. 10, October 1972, pp. 859–866.

[Dij76a] Dijkstra, E., “Structured Programming,” in Software Engineering, Concepts and Techniques, 
J. Buxton et al. (eds.), Van Nostrand-Reinhold, 1976.

[Dij76b] Dijkstra, E., A Discipline of Programming, Prentice Hall, 1976.
[Dij82] Dijksta, E., “On the Role of Scientific Thought,” in Selected Writings on Computing: A 

Personal Perspective, Springer-Verlag, 1982.
[Din16] Dingsøyr, T., and C. Lassenius, “Emerging Themes in Agile Software Development: 

Introduction to the Special Section on Continuous Value Delivery,” Information and Software 
Technology, vol. 77, 2016, pp. 56–60.

[Dix99] Dix, A., “Design of User Interfaces for the Web,” Proceedings User Interfaces to Data Systems 
Conference, September 1999, available at www.comp.lancs.ac.uk/computing/users/dixa/topics/
webarch/.

[Don99] Donahue, G., S. Weinschenck, and J. Nowicki, “Usability Is Good Business,” Compuware 
Corp., July 1999, available at www.compuware.com.

[Duc01] Ducatel, K., et al., Scenarios for Ambient Intelligence in 2010, ISTAG-European Commission, 
2001, available at https://www.researchgate.net/publication/262007900_Scenarios_for_ 
ambient_intelligence_in_2010.

[Dun82] Dunn, R., and R. Ullman, Quality Assurance for Computer Software, McGraw-Hill, 1982.
[Dut15] Dutra, E., and G. Santos, “Software Process Improvement Implementation Risks: A Qualitative 

Study Based on Software Development Maturity Models Implementations in Brazil,” in 
Product-Focused Software Process Improvement, PROFES 2015 Lecture Notes in Computer 
Science, P. Abrahamsson et al. (eds.), vol. 9459, Springer, 2015.

[DXL18] DX Lab Design Sprint, “Make Your UX Design Process Agile Using Google’s Methodology,” 
available at https://www.interaction-design.org/literature/article/make-your-ux-design-process-
agile-using-google-s-methodology, 2018.

[Dye15] Dyer, R., et al., “Boa: Ultra-Large-Scale Software Repository and Source-Code Mining,” ACM 
Transactions on Software Engineering Methodology, vol. 25, no. 1, Article 7, December 2015.

[Ebe14] Ebert, C. “Software Product Management,” IEEE Software, vol. 31, no. 3, May–June 2014, 
pp. 21–24.

[Edg95] Edgemon, J., “Right Stuff: How to Recognize It When Selecting a Project Manager,” Applica-
tion Development Trends, vol. 2, no. 5, May 1995, pp. 37–42.

[Eis01] Eisenstein, J., et al., “Applying Model-Based Techniques to the Development of UIs for Mobile 
Computers,” Proceedings of Intelligent User Interfaces, January 2001.

[Eji91] Ejiogu, L., Software Engineering with Formal Metrics, QED Publishing, 1991.
[Elb16] Elbanna, A., and S. Sarker, “The Risks of Agile Development: Learning from Adopters,” IEEE 

Software, vol. 33, no. 5, September–October 2016, pp. 72–79.
[Era09] Erasmus, H., “The Seven Traits of Superprofessionals,” IEEE Software, vol. 26, no. 4, 

 July–August 2009, pp. 4–6.
[Erd10] Erdogmus, H., “Déjà vu: The Life of Software Engineering Ideas,” IEEE Software, vol. 27, 

no. 1, January–February 2010, pp. 2–3.
[Eri15] Ericson, C., Hazard Analysis Techniques for System Safety, 2nd ed., Wiley, 2015.
[Eve09] Everett, G., and B. Meyer, “Point/Counterpoint,” IEEE Software, vol. 26, no. 4, July–August 

2009, pp. 62–65.
[Fag86] Fagan, M., “Advances in Software Inspections,” IEEE Transactions on Software Engineering, 

vol. 12, no. 6, July 1986.
[Fai17] Fairley, R., and M. J. Willshire, “Better Now Than Later: Managing Technical Debt in Systems 

Development,” Computer, vol. 50, no. 5, May 2017, pp. 80–87.
[Fal10] Falessi, D., et al., “Peaceful Coexistence: Agile Developer Perspectives on Software Architec-

ture,” IEEE Software, vol. 27, no. 3, March–April 2010, pp. 23–25.



REFERENCES  645

[Fel07] Feller, J., et al. (eds.), Perspectives on Free and Open Source Software, The MIT Press, 2007.
[Fel18] Feldt, R., et al., “Ways of Applying Artificial Intelligence in Software Engineering,” In 

Proceedings of the 6th International Workshop on Realizing Artificial Intelligence Synergies 
in Software Engineering (RAISE ’18). ACM, New York, NY, 2018, pp. 35–41.

[Fel89] Felican, L., and G. Zalateu, “Validating Halstead’s Theory for Pascal Programs,” IEEE 
Transactions on Software Engineering, vol. SE-15, no. 2, December 1989, pp. 1630–1632.

[Fen91] Fenton, N., Software Metrics, Chapman and Hall, 1991.
[Fen94] Fenton, N., “Software Measurement: A Necessary Scientific Basis,” IEEE Transactions on 

 Software Engineering, vol. SE-20, no. 3, March 1994, pp. 199–206.
[Fer14] Ferrucci F., M. Harman, and F. Sarro, “Search-Based Software Project Management,” in 

Software Project Management in a Changing World, G. Ruhe and C. Wohlin (eds.),  
Springer, 2014.

[Fir13] Firesmith, D., Security and Safety Requirements for Software-Intensive Systems, Auerbach, 
2013.

[Fow00] Fowler, M., et al., Refactoring: Improving the Design of Existing Code, Addison-Wesley, 2000.
[Fow01] Fowler, M., and J. Highsmith, “The Agile Manifesto,” Software Development Magazine, 

August 2001.
[Fow02] Fowler, M., “The New Methodology,” available at www.martinfowler.com/articles/ 

newMethodology.html#N8B, June 2002.
[Fow03] Fowler, M., et al., Patterns of Enterprise Application Architecture, Addison-Wesley, 2003.
[Fow04] Fowler, M., UML Distilled, 3rd ed., Addison-Wesley, 2004.
[Fow16] Fowler, M., and Sutherland, J., The Scrum Guide, 2016, available at, http://www.scrumguides.org/.
[Fow97] Fowler, M., Analysis Patterns: Reusable Object Models, Addison-Wesley, 1997.
[Fra93] Frankl, P., and S. Weiss, “An Experimental Comparison of the Effectiveness of Branch Test-

ing and Data Flow,” IEEE Transactions on Software Engineering, vol. 19, no. 8, August 1993, 
pp. 770–787.

[Fre90] Freedman, D., and G. Weinberg, Handbook of Walkthroughs, Inspections and Technical 
Reviews, 3rd ed., Dorset House, 1990.

[Fri10] Fricker, S., “Handshaking with Implementation Proposals: Negotiating Requirements Under-
standing,” IEEE Software, vol. 27, no. 2, March–April 2010, pp. 72–80.

[Fug14] Fuggetta, A., and E. Di Nitto, “Software Process,” in Proceedings of the on Future of Software 
Engineering (FOSE 2014), ACM, New York, NY, 2014, pp. 1–12.

[Gag04] Gage, D., and J. McCormick, “We Did Nothing Wrong,” Baseline Magazine, March 4, 2004, 
available at http://www.baselinemag.com/c/a/Projects-Processes/We-Did-Nothing-Wrong.

[Gai95] Gaines, B., “Modeling and Forecasting the Information Sciences,” Technical Report, Univer-
sity of Calgary, September 1995, downloadable at https://www.lri.fr/~mbl/ENS/FundHCI/2017/
papers/Gaines-BRETAM99.pdf.

[Gal16] Galster, M., et al., “Variability and Complexity in Software Design,” ACM SIGSOFT Software 
Engineering Notes, vol. 41, no. 6, November 2016, pp. 27–30.

[Gal17] Galster, M., et al., “Variability and Complexity in Software Design: Towards a Research 
Agenda,” SIGSOFT Software Engineering Notes, vol. 41 no. 6, January 2017, pp. 27–30.

[Gam95] Gamma, E., et al., Design Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1995.

[Gar08] GartnerGroup, “Understanding Hype Cycles,” 2008, available at https://www.gartner.com/en/
documents/3887767.

[Gar09a] Garlan, D., et al., “Architectural Mismatch: Way Reuse Is Still So Hard,” IEEE Software, 
vol. 26, no. 4, July–August 2009, pp. 66–69.

[Gar10a] Garcia-Crespo, A., et al., “A Qualitative Study of Hard Decision Making in Managing Global 
Software Development Teams,” Journal of Management Information Systems, vol. 27, no. 3, 
June 2010, pp. 247–252.

[Gar10b] Garrett, J. J., The Elements of User Experience: User-Centered Design for the Web and 
Beyond, 2nd ed., New Riders Publishing, 2010.

[Gar84] Garvin, D., “What Does ‘Product Quality’ Really Mean?” Sloan Management Review, Fall 
1984, pp. 25–45.

[Gar95] Garlan, D., and M. Shaw, “An Introduction to Software Architecture,” Advances in Software 
Engineering and Knowledge Engineering, vol. I, V. Ambriola and G. Tortora (eds.), World 
Scientific Publishing Company, 1995.



646 REFERENCES

[Gas17] Gasparic, M., et al., “GUI Design for IDE Command Recommendations,” Proceedings of the 
22nd International Conference on Intelligent User Interfaces (IUI ’17), 2017, ACM, New 
York, NY, pp. 595–599.

[Gau89] Gause, D., and G. Weinberg, Exploring Requirements: Quality Before Design, Dorset House, 
1989.

[Ger17] Géron, A., Hands-On Machine Learning with Scikit-Learn and TensorFlow, O’Reilly Media, 
2017.

[Gey01] Geyer-Schulz, A., and M. Hahsler, “Software Engineering with Analysis Patterns,” Technical 
Report 01/2001, Institut für Informationsverarbeitung undwirtschaft, Wirschaftsuniversität 
Wien, November 2001, available at https://www.researchgate.net/publication/250241449_ 
Software_Engineering_with_Analysis_Patterns.

[Gha14] Ghazi, P., A. M. Moreno, and L. Peters, “Looking for the Holy Grail of Software Develop-
ment,” IEEE Software, vol. 31, no. 1, January–February 2014, pp. 96.

[Gil06] Gillis, D., “Pattern-Based Design,” tehan + lax blog, September 14, 2006.
[Gil88] Gilb, T., Principles of Software Project Management, Addison-Wesley, 1988.
[Gil95] Gilb, T., “What We Fail to Do in Our Current Testing Culture,” Testing Techniques Newslet-

ter (online edition, ttn@soft.com), Software Research, January 1995.
[Gla02] Gladwell, M., The Tipping Point, Back Bay Books, 2002.
[Gla98] Glass, R., “Defining Quality Intuitively,” IEEE Software, May–June 1998, pp. 103–104, 107.
[Gli07] Glinz, M., and R. Wieringa, “Stakeholders in Requirements Engineering,” IEEE Software, 

vol. 24, no. 2, March–April 2007, pp. 18–20.
[Glu94] Gluch, D., “A Construct for Describing Software Development Risks,” CMU/SEI-94-TR-14, 

Software Engineering Institute, 1994.
[Gna99] Gnaho, C., and F. Larcher, “A User-Centered Methodology for Complex and Customizable 

Web Engineering,” Proceedings of the First ICSE Workshop on Web Engineering, ACM, Los 
 Angeles, May 1999.

[Goa14] Gao, J., et al., “Mobile Application Testing: A Tutorial,” Computer, vol. 47, no. 2, 2014, pp. 46–55.
[Gon04] Gonzales, R., “Requirements Engineering,” Sandia National Laboratories, 2004, a slide  

presentation.
[Gon17] Gonzalez, D., et al., “A Large-Scale Study on the Usage of Testing Patterns That Address 

Maintainability Attributes: Patterns for Ease of Modification, Diagnoses, and Comprehension,” 
Proceedings of the 14th International Conference on Mining Software Repositories (MSR ’17). 
IEEE Press, Piscataway, NJ, 2017, pp. 391–401.

[Goo18] Google, Design Sprint Kit, 2018, available at https://designsprintkit.withgoogle.com/.
[Gor06] Gorton, I., Essential Software Architecture, Springer, 2006.
[Got11] Gotel, O., and S. Morris, “Requirements Tracery,” IEEE Software, vol. 28, no. 5, September–

October 2011, pp. 92–94.
[Got18] Gotterbarn, D., et al., “Thinking Professionally: The Continual Evolution of Interest in 

Computing Ethics,” ACM Inroads, vol. 9, no. 2, April 2018, pp. 10–12.
[Gra18] Gray, C., et al., “The Dark (Patterns) Side of UX Design,” Proceedings 2018 CHI Conference 

on Human Factors in Computing Systems (CHI ’18). ACM, New York, NY, Paper 534, 2018.
[Gra92] Grady, R. G., Practical Software Metrics for Project Management and Process Improvement, 

Prentice Hall, 1992.
[Gru00] Gruia-Catalin, R., et al., “Software Engineering for Mobility: A Roadmap,” Proceedings of 

the 22nd International Conference on the Future of Software Engineering, 2000.
[Gup15] Gupta, S., and V. Suma, “Data Mining: A Tool for Knowledge Discovery in Human Aspect 

of Software Engineering,” 2015 2nd International Conference on Electronics and Communica-
tion Systems (ICECS), Coimbatore, 2015, pp. 1289–1293.

[Gut15] Gutiérrez, J., M. Escalona, and M. Mejías, “A Model-Driven Approach for Functional Test 
Case Generation,” Journal of Systems and Software, vol. 109, 2015, pp. 214–228.

[Hac98] Hackos, J., and J. Redish, User and Task Analysis for Interface Design, Wiley, 1998.
[Hal77] Halstead, M., Elements of Software Science, North-Holland, 1977.
[Hal98] Hall, E. M., Managing Risk: Methods for Software Systems Development, Addison-Wesley, 1998.
[Har11] Harris, N., and P. Avgeriou, “Pattern-Based Architecture Reviews,” IEEE Software, vol. 28, 

no. 6, November–December 2011, pp. 66–71.
[Har12a] Hardy, T., Software and System Safety, Authorhouse, 2012.



REFERENCES  647

[Har12b] Harman, M., “The Role of Artificial Intelligence in Software Engineering,” Proceedings First 
International Workshop on Realizing AI Synergies in Software Engineering (RAISE ’12). IEEE 
Press, Piscataway, NJ, 2012, pp. 1–6.

[Har14] Harman, M., et al., “Search Based Software Engineering for Product Line Engineering: A 
Survey and Directions for Future Work,” Proceedings 18th International Software Product 
Line Conference, SPL14, Florence, Italy, vol. 1, September 2014, pp. 5–18.

[Har98] Harrison, R., S. Counsell, and R. Nithi, “An Evaluation of the MOOD Set of Object-Oriented 
Software Metrics,” IEEE Transactions on Software Engineering, vol. SE-24, no. 6, June 1998, 
pp. 491–496.

[Hee15] Heeager, L., and J. Rose, “Optimising Agile Development Practices for the Maintenance 
 Operation: Nine Heuristics,” Journal of Empirical Software Engineering, vol. 20, no. 6, 2015, 
pp. 1762–1784.

[Hei02] Heitmeyer, C., “Software Cost Reduction,” in Encyclopedia of Software Engineering, J. J. 
 Marciniak (ed.), 2 vols., John Wiley & Sons, 2002, pp. 1374–1380.

[Hel18] Helfrich, J., Security for Software Engineers, Chapman and Hall/CRC, 2018.
[Her06] Hernan, S., et al., “Uncover Security Design Flaws Using the STRIDE Approach,” MSDN 

Magazine, November 2006.
[Het84] Hetzel, W., The Complete Guide to Software Testing, QED Information Sciences, 1984.
[Hig02a] Highsmith, J. (ed.), “The Great Methodologies Debate: Part 2,” Cutter IT Journal, vol. 15, 

no. 1, January 2002.
[Hig95] Higuera, R., “Team Risk Management,” CrossTalk, U.S. Dept. of Defense, January 1995,  

pp. 2–4.
[Hil17] Hill, C., et al., “Gender-Inclusiveness Personas vs. Stereotyping: Can We Have It Both Ways?” 

Proceedings 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17). ACM, 
New York, NY, 2017, pp. 6658–6671.

[Hne11] Hneif, M., and S. Lee, “Using Guidelines to Improve Quality in Software Nonfunctional 
 Attributes,” IEEE Software, vol. 28, no. 5, November–December 2011, pp. 72–73.

[Hoe16] Hoegl, M., and M. Muethel, “Enabling Shared Leadership in Virtual Project Teams: A Prac-
titioners’ Guide,” Project Management Journal, vol. 47, no. 1, February/March 2016, pp. 7–12.

[Hog04] Hoglund, G., and G. McGraw, Exploiting Software: How to Break Code, Addison-Wesley 
Professional, 2004.

[Hol06] Holzner, S., Design Patterns for Dummies, For Dummies Publishers, 2006.
[Hoo12] Hoober, S., and E. Berkman, Designing Mobile Interfaces, O’Reilly Media, 2012.
[Hoo96] Hooker, D., “Seven Principles of Software Development,” September 1996, a summary of 

these principles is available at https://lingualeo.com/pt/jungle/seven-principles-of-software-
development-by-david-hooker-48432#/page/1.

[Hop90] Hopper, M., “Rattling SABRE, New Ways to Compete on Information,” Harvard Business 
Review, May–June 1990.

[Hor03] Horch, J., Practical Guide to Software Quality Management, 2nd ed., Artech House, 2003.
[Hua17] Huang, J., et al., “Cross-Validation Based K Nearest Neighbor Imputation for Software Qual-

ity Datasets: An Empirical Study,” Journal of Systems and Software, 2017, pp. 226–252.
[Hub99] Hubbard, R., “Design, Implementation, and Evaluation of a Process to Structure the Collection 

of Software Project Requirements,” PhD dissertation, Colorado Technical University, 1999.
[Hus15] Hussain, A., et al., “Usability Evaluation of Mobile Game Applications: A Systematic Review,” 

International Journal of Computer and Information Technology, vol. 4, no. 3, May 2015, 
pp. 547–551.

[Hya96] Hyatt, L., and L. Rosenberg, “A Software Quality Model and Metrics for Identifying Project 
Risks and Assessing Software Quality,” NASA SATC, 1996, available at http://articles.adsabs.
harvard.edu/cgi-bin/nph-iarticle_query?1996ESASP.377..209H&amp;data_type=PDF_
HIGH&amp;whole_paper=YES&amp;type=PRINTER&amp;filetype=.pdf.

[IBM13] IBM, Web Services Globalization Model, 2013, downloadable from ftp://public.dhe.ibm.com/
software/globalization/.../webservicesglobalizationmodel.pdf.

[IBM81] “Implementing Software Inspections,” course notes, IBM Systems Sciences Institute, IBM 
 Corporation, 1981.

[IEE05] IEEE Std. 982.1-2005, IEEE Standard Dictionary of Measures of the Software Aspects of 
Dependability, 2005.



648 REFERENCES

[IEE11] IEEE-Std-42010:2011(E), Systems and Software Engineering-Architectural Description, 2011, 
available at https://ieeexplore.ieee.org/document/6129467.

[IEE17] ISO/IEC/IEEE 24765:2017(E), ISO/IEC/IEEE International Standard: Systems and Software 
Engineering—Vocabulary, available at https://standards.ieee.org/findstds/standard/24765-2017.
html.

[ISO08] ISO SPICE 2008, an earlier description is available at https://www.cs.helsinki.fi/u/paakki/
Pyhajarvi.pdf.

[ISO14] ISO/IEC 90003:2014, Second Edition: Software Engineering—Guidelines for the Application 
of ISO 9001:2008 to Computer Software, International Organization for Standardization, 2014.

[ISO18] ISO/IEC/IEEE 90003:2018, Software Engineering—Guidelines for the Application of ISO 
9001:2015 to Computer Software, International Organization for Standardization, 2018.

[ISO15] Plain English Summary of ISO 9001: 2015, 2015, available at http://praxiom.com/iso-9001.htm.
[ISO11] ISO/IEC 25010:2011, Systems and Software Engineering: Systems and Software Quality 

Requirements and Evaluation (SQuaRE)—System and Software Quality Models, 2011, avail-
able at https://www.iso.org/standard/35733.html.

[Ive04] Iversen, J., L. Mathiassen, and P. Nielsen, “Managing Risk in Software Process Improvement: 
An Action Research Approach,” MIS Quarterly, vol. 28, no. 3, September 2004, pp. 395–433.

[Ivo01] Ivory, M., R. Sinha, and M. Hearst, “Empirically Validated Web Page Design Metrics,” ACM 
SIGCHI’01, March 31–April 4, 2001, available at http://webtango.berkeley.edu/papers/chi2001/.

[Jac02a] Jacobson, I., “A Resounding ‘Yes’ to Agile Processes—But Also More,” Cutter IT Journal, 
vol. 15, no. 1, January 2002, pp. 18–24.

[Jac02b] Jacyntho, D., D. Schwabe, and G. Rossi, “An Architecture for Structuring Complex Web 
Applications,” 2002, available at https://www.semanticscholar.org/paper/A-Software- 
Architecture-for-Structuring-Complex-Web-Jacyntho-Schwabe/2809668ede5034ed8d65e7669c
6b0b463e9ee464.

[Jac04] Jacobson, I., and P. Ng, Aspect-Oriented Software Development, Addison-Wesley, 2004.
[Jac92] Jacobson, I., Object-Oriented Software Engineering, Addison-Wesley, 1992.
[Jac98] Jackman, M., “Homeopathic Remedies for Team Toxicity,” IEEE Software, July 1998, pp. 43–45.
[Jac99] Jacobson, I., G. Booch, and J. Rumbaugh, The Unified Software Development Process, 

Addison-Wesley, 1999.
[Jai18] Jain, N., et al., “Digital Consumers, Emerging Markets, and the $4 Trillion Future,” Septem-

ber 18, 2018, available at https://www.bcg.com/en-us/publications/2018/digital-consumers- 
emerging-markets-4-trillion-dollar-future.aspx.

[Jal04] Jalote, P., et al., “Timeboxing: A Process Model for Iterative Software Development,” Journal 
of Systems and Software, vol. 70, no. 2, 2004, pp. 117–127.

[Jam13] James, G., et al., An Introduction to Statistical Learning with Applications in R, Springer, 2013.
[Jan16] Jan, S., et al., “An Innovative Approach to Investigate Various Software Testing Techniques 

and Strategies,” International Journal of Scientific Research in Science, Engineering and 
Technology (IJSRSET), vol. 2, no. 2, March–April 2016, pp. 682–689.

[Jon04] Jones, C., “Software Project Management Practices: Failure Versus Success,” CrossTalk, 
 October 2004, available at http://www.pauldee.org/se-must-have/jones-failure-success.pdf.

[Jon86] Jones, C., Programming Productivity, McGraw-Hill, 1986.
[Jon91] Jones, C., Systematic Software Development Using VDM, 2nd ed., Prentice Hall, 1991.
[Jov15] Jovanovic M., A. Mesquida, and A. Mas, “Process Improvement with Retrospective Gaming 

in Agile Software Development,” Systems, Software and Services Process Improvement, 
EuroSPI 2015 Communications in Computer and Information Science, R. O’Connor, et al. 
(eds.), vol. 543, Springer, 2015.

[Joy00] Joy, B., “The Future Doesn’t Need Us,” Wired, vol. 8, no. 4, April 2000.
[Kan01] Kaner, C., “Pattern: Scenario Testing” (draft), 2001, available at http://www.exampler.com/

testing-com/test-patterns/patterns/pattern-scenario-testing-kaner.html.
[Kan93] Kaner, C., J. Falk, and H. Q. Nguyen, Testing Computer Software, 2nd ed., Van Nostrand-

Reinhold, 1993.
[Kan95] Kaner, C., “Lawyers, Lawsuits, and Quality Related Costs,” 1995, available at www.badsoft-

ware.com/plaintif.htm.
[Kap15] Kapyaho, M., and M. Kauppinen, “Agile Requirements Engineering with Prototyping: A Case 

Study,” Proceedings IEEE 23rd International Requirements Engineering Conference, 
August 2015, ON, Canada, pp. 334–343.



REFERENCES  649

[Kar12] Kar S., S. Das, A. Kumar Rath, and S. K. Kar, “Self-assessment Model and Review Technique 
for SPICE: SMART SPICE,” in Software Process Improvement and Capability Determination, 
A. Mas et al. (eds.), SPICE 2012, Communications in Computer and Information Science, 
vol. 290, 2012, Springer, Berlin, Heidelberg.

[Kar94] Karten, N., Managing Expectations, Dorset House, 1994.
[Kau11] Kaur, A., and S. Goel, “COTS Components Usage Risks in Component Based Software 

Development.” International Journal of Information Technology and Knowledge Management, 
vol. 4, no. 2, July–December 2011, pp. 573–575.

[Kaz98] Kazman, R., et al., The Architectural Tradeoff Analysis Method, Software Engineering Institute, 
CMU/SEI-98-TR-008, July 1998, summarized at http://www.sei.cmu.edu/architecture/tools/
evaluate/atam.cfm.

[Kea07] Keane, “Testing Mobile Business Applications,” a white paper, 2007. A 40-point checklist that 
complements this white paper is available at https://softcrylic.com/blogs/40-point-checklist-
testing-mobile-applications/.

[Kei18] Keith, J., “10 Great Sites for UI Design Patterns,” 2018, available at https://www.interaction-
design.org/literature/article/10-great-sites-for-ui-design-patterns.

[Kei98] Keil, M., et al., “A Framework for Identifying Software Project Risks,” CACM, vol. 41, no. 11, 
November 1998, pp. 76–83.

[Ker17] Kerzner, H., Project Management: A Systems Approach to Planning, Scheduling, and Control-
ling, 12th ed., Wiley, 2017.

[Kho12] Khode, A., “Getting Started with Mobile Apps Testing,” 2012, available at http://www. 
mobileappstesting.com/getting-started-with-mobile-apps-testing/.

[Kim16a] Kim, G., et al., The DevOps Handbook: How to Create World-Class Agility, Reliability, and 
Security in Technology Organizations, Revolution Press, 2016.

[Kim16b] Kim, M., et al., “The Emerging Role of Data Scientists on Software Development Teams,” 
Proceedings 38th International Conference on Software Engineering (ICSE ’16). ACM, New 
York, NY, 2016, pp. 96–107.

[Kir94] Kirani, S., and W. Tsai, “Specification and Verification of Object-Oriented Programs,” Techni-
cal Report TR 94-64, Computer Science Department, University of Minnesota, December 1994.

[Kiz05] Kizza, J., Computer Network Security, Springer, 2005.
[Kna16] Knapp, J., J. Zeratsky, and B. Kowitz, Sprint: How to Solve Big Problems and Test New Ideas 

in Just Five Days, Simon and Schuster, 2016.
[Koe12] Koester, J., “The Seven Deadly Sins of MobileApp Design,” Venture Beat/Mobile, May 31, 

2012, available at http://venturebeat.com/2012/05/31/the-7-deadly-sins-of-mobile-app-design/.
[Kor03] Korpipaa, P., et al., “Managing Context Information in Mobile Devices,” IEEE Pervasive 

 Computing, vol. 2, no. 3, July–September 2003, pp. 42–51.
[Kou14] Kouzes, J., Five Practices of Exemplary Leadership—Technology, Wiley, 2014.
[Kra88] Krasner, G., and S. Pope, “A Cookbook for Using the Model-View Controller User Interface 

Paradigm in Smalltalk-80,” Journal of Object-Oriented Programming, vol. 1, no. 3,   
August–September 1988, pp. 26–49.

[Kra95] Kraul, R., and L. Streeter, “Coordination in Software Development,” CACM, vol. 38, no. 3, 
March 1995, pp. 69–81.

[Kru05] Krutchen, P., “Software Design in a Postmodern Era,” IEEE Software, vol. 22, no. 2,  
March–April 2005, pp. 16–18.

[Kru06] Kruchten, P., H. Obbink, and J. Stafford (eds.), “Software Architectural” (special issue), IEEE 
Software, vol. 23, no. 2, March–April 2006.

[Kru09] Kruchten, P., et al., “The Decision View’s Role in Software Architecture Practice,” IEEE 
Software, vol. 26, no. 2, March–April 2009, pp. 70–72.

[Kub17] Kubat, M., An Introduction to Machine Leaning, 2nd ed., Springer, 2017.
[Kul13] Kulkarni, V., “Model Driven Software Development,” Modelling Foundations and Applica-

tions, ECMFA 2013. Lecture Notes in Computer Science, Van Gorp, et al. (eds.), vol. 7949, 
Springer, 2013.

[Kur05] Kurzweil, R., The Singularity Is Near, Penguin Books, 2005.
[Kur13] Kurzweil, R., How to Create a Mind, Viking, 2013.
[Kyb84] Kyburg, H., Theory and Measurement, Cambridge University Press, 1984.
[Laa00] Laakso, S., et al., “Improved Scroll Bars,” In CHI ’00 Extended Abstracts on Human Factors 

in Computing Systems (CHI EA ’00). ACM, New York, NY, 2000, pp. 97–98.



650 REFERENCES

[Lag10] Lago, P., et al., “Software Architecture: Framing Stakeholders’ Concerns,” IEEE Software, 
vol. 27, no. 6, November–December 2010, pp. 20–24.

[Lai02] Laitenberger, A., “A Survey of Software Inspection Technologies,” in Handbook on Software 
Engineering and Knowledge Engineering, World Scientific Publishing Company, 2002.

[Lam09] Lamsweerde, A., “Goal-Oriented Requirements Engineering: A Guided Tour,” Proceedings of 5th 
IEEE International Symposium on Requirements Engineering, Toronto, August 2009, pp. 249–263.

[Lan01] Lange, M., “It’s Testing Time! Patterns for Testing Software,” June 2001, available at http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.5064&rep=rep1&type=pdf.

[Lar16] Larrucea, X., et al., “Software Process Improvement in Very Small Organizations,” IEEE 
 Software, vol. 33, no. 2, March–April 2016, pp. 85–89.

[Laz11] Lazzaroni, M., et al., Reliability Engineering, Springer, 2011.
[Leh97a] Lehman, M., and L. Belady, Program Evolution: Processes of Software Change, Academic 

Press, 1997.
[Leh97b] Lehman, M., et al., “Metrics and Laws of Software Evolution—The Nineties View,” Proceedings 

4th International Software Metrics Symposium (METRICS ’97), IEEE, 1997, available at www.
ece.utexas.edu/~perry/work/papers/feast1.pdf.

[Let04] Lethbridge, T., and R. Lagraniere, Object-Oriented Software Engineering; Practical Software 
Development Using UML and Java, 2nd ed., McGraw-Hill, 2004.

[Lev01] Levinson, M., “Let’s Stop Wasting $78 billion a Year,” CIO Magazine, October 15, 2001, 
 available at https://www.cio.com/article/2441228/software-development---let-s-stop-wasting-- 
78-billion-a-year.html.

[Lev12] Leveson, N., Engineering a Safer World: Systems Thinking Applied to Safety (Engineering 
 Systems), MIT Press, 2012.

[Li16] Li, W., Z. Huang, and Q. Li, “Three-Way Decisions Based Software Defect Prediction,” 
Knowledge-Based Systems, vol. 91, 2016, pp. 263–274.

[Lin16] Lin, Y., et al., “Interactive and Guided Architectural Refactoring with Search-Based Recom-
mendation,” Proceedings 24th ACM SIGSOFT International Symposium on Foundations of 
 Software Engineering, November 2016, pp. 535–546.

[Lin79] Linger, R., H. Mills, and B. Witt, Structured Programming, Addison-Wesley, 1979.
[Lis88] Liskov, B., “Data Abstraction and Hierarchy,” SIGPLAN Notices, vol. 23, no. 5, May 1988.
[Maa07] Maassen, O., and S. Stelting, “Creational Patterns: Creating Objects in an OO System,” 2007, 

available at www.informit.com/articles/article.asp?p=26452&rl=1.
[Mac10] Maciel, C., et al., “An Integration Testing Approach Based on Test Patterns and MDA 

 Techniques,” Proceedings 8th Latin American Conference on Pattern Languages of Programs 
(SugarLoafPLoP ’10), ACM, New York, NY, Article 14, 2010.

[Mal16] Malhotra, R., “An Empirical Framework for Defect Prediction Using Machine Learning 
Techniques with Android Software,” Applied Software Computing, vol. 49, December 2016, 
pp. 1034–1050.

[Mal17] Malhotra, R., M. Khanna, and R. Raje, “On the Application of Search-Based Techniques for 
Software Engineering Predictive Modeling: A Systematic Review and Future Directions,” 
Swarm and Evolutionary Computation, vol. 32, February 2017, pp. 85–109.

[Man17] Mansoor, U., et al., “Multi-view Refactoring of Class and Activity Diagrams Using a Multi-
Objective Evolutionary Algorithm,” Software Quality Journal, vol. 25, no. 2, 2017, pp. 529–552.

[Man81] Mantai, M., “The Effect of Programming Team Structures on Programming Tasks,” CACM, 
vol. 24, no. 3, March 1981, pp. 106–113.

[Man97] Mandel, T., The Elements of User Interface Design, Wiley, 1997.
[Mao17] Mao, K., M. Harman, and Y. Jia, “Crowd Intelligence Enhances Automated Mobile Testing,” 

Proceedings 32nd IEEE/ACM International Conference on Automated Software Engineering 
(ASE 2017), IEEE Press, Piscataway, NJ, 2017, pp. 16–26.

[Mar00] Martin, R., “Design Principles and Design Patterns,” 2000, available at https://fi.ort.edu.uy/
innovaportal/file/2032/1/design_principles.pdf.

[Mar02] Marick, B., “Software Testing Patterns,” 2002.
[Mar94] Marick, B., The Craft of Software Testing, Prentice Hall, 1994.
[Mat94] Matson, J., et al., “Software Cost Estimation Using Function Points,” IEEE Transactions on 

Software Engineering, vol. 20, no. 4, April 1994, pp. 275–287.
[Max16] Maxim, B. R., and M. Kessentini, “An Introduction to Modern Software Quality Assurance,” 

in Software Quality Assurance, I. Mistrik et al. (eds.), Morgan Kaufman, 2016, pp. 19–46.



REFERENCES  651

[McC09] McCaffrey, J., “Analyzing Risk Exposure and Risk Using PERIL,” MSDN Magazine, 
January 2009, available at http://msdn.microsoft.com/en-us/magazine/dd315417.aspx.

[McC76] McCabe, T., “A Software Complexity Measure,” IEEE Transactions on Software Engineering, 
vol. SE-2, December 1976, pp. 308–320.

[McC77] McCall, J., P. Richards, and G. Walters, “Factors in Software Quality,” three volumes, NTIS 
AD-A049-014, 015, 055, November 1977.

[McC96] McConnell, S., “Best Practices: Daily Build and Smoke Test,” IEEE Software, vol. 13, no. 4, 
July 1996, pp. 143–144.

[McG06] McGraw, G., Software Security: Building Security In, Addison-Wesley Professional, 2006.
[McG91] McGlaughlin, R., “Some Notes on Program Design,” Software Engineering Notes, vol. 16, 

no. 4, October 1991, pp. 53–54.
[McG94] McGregor, J., and T. Korson, “Integrated Object-Oriented Testing and Development 

Processes,” CACM, vol. 37, no. 9, September, 1994, pp. 59–77.
[McK17] McKinney, W., Python for Data Analysis Data Wrangling with Pandas, NumPy, and IPython, 

O’Reilly Media, 2017.
[McT16] McTear, M., Z. Callejas, and D. Griol, The Conversational Interface: Talking to Smart Devices, 

Springer, 2016.
[Mea05] Mead, N., E. Hough, and T. Stehney, “Security Quality Requirements Engineering (SQUARE) 

Methodology” (CMU/SEI-2005-TR-009, ADA452453), Pittsburgh, PA: Software Engineering 
Institute, Carnegie Mellon University, 2005, available at http://www.sei.cmu.edu/publications/
documents/05.reports/05tr009.html.

[Mea16] Mead, N., and C. Woody, Cyber Security Engineering: A Practical Approach for Systems and 
Software Assurance, Addison-Wesley, 2016.

[Mea18] Mead, N., et al., “A Hybrid Threat Modeling Method,” Software Engineering Institute CMU/
SEI Report Number: CMU/SEI-2018-TN-002, March 2018, downloadable at https://resources.
sei.cmu.edu/asset_files/TechnicalNote/2018_004_001_516627.pdf.

[Mei09] Meier, J., et al., Microsoft Application Architecture Guide, 2nd ed., Microsoft Press, 2009, 
available at http://msdn.microsoft.com/en-us/library/ff650706.

[Mei12] Meier, J., et al., “Chapter 19: Mobile Applications,” Application Architecture Guide, 2.0, 2012, 
available at https://guidanceshare.com/wiki/Application_Architecture_Guide_-_Chapter_19_-_
Mobile_Applications.

[Mei18] Meinke, K., and A. Bennaceur, “Machine Learning for Software Engineering: Models, 
Methods, and Applications,” Proceedings of the 40th International Conference on Software 
Engineering: Companion Proceeding (ICSE ’18). ACM, 2018.

[Mel06] Mellado, D., et al., Applying a Security Requirements Engineering Process, Springer, 2006, 
available at https://pdfs.semanticscholar.org/379f/941eaf2878341948fbc30f6da246d90702ab.pdf.

[Men01] Mendes, E., N. Mosley, and S. Counsell, “Estimating Design and Authoring Effort,” IEEE 
Multimedia, vol. 8, no. 1, January–March 2001, pp. 50–57.

[Men13] Menzies, T., and T. Zimmermann, “Software Analytics: So What?” IEEE Software, vol. 30, 
no. 4, July 2013, pp. 31–37.

[Mer93] Merlo, E., et al., “Reengineering User Interfaces,” IEEE Software, January 1993, pp. 64–73.
[Mic04] Microsoft, “Prescriptive Architecture: Integration and Patterns,” MSDN, May 2004, available 

at http://msdn2.microsoft.com/en-us/library/ms978700.aspx.
[Mic09] Microsoft Patterns & Practices Team, Microsoft Application Architecture Guide, 2nd ed., 

 Microsoft Press, 2009.
[Mic10] Microsoft Security Development Lifecycle Version 5.0, 2010, available at http://download.

microsoft.com/download/F/2/0/F205C451-C59C-4DC7-8377-9535D0A208EC/Microsoft%20
SDL_Version%205.0.docx.

[Mic13a] Microsoft Accessibility Technology for Everyone, 2013, available at www.microsoft.com/enable/.
[Mic13b] Microsoft, “Patterns and Practices,” MSDN, 2013, available at http://msdn.microsoft.com/

en-us/library/ff647589.aspx.
[Mic17] Microsoft Corporation, “SDL Threat Modeling Tool,” Security Development Lifecycle, 

November 10, 2017, available at https://www.microsoft.com/en-us/sdl/adopt/threatmodeling.aspx.
[Mic18] The Microsoft Security Development Lifecycle (SDL), available at https://www.microsoft.com/

en-us/securityengineering/sdl/, Microsoft, 2018.
[Mil00] Mili, A., and R. Cowan, “Software Engineering Technology Watch,” April 6, 2000, available at 

https://www.researchgate.net/publication/222828018_Software_engineering_technology_watch.



652 REFERENCES

[Mil04] Miler, J., and J. Gorski, “Risk Identification Patterns for Software Projects,” Foundations of 
Computing and Decision Sciences, vol. 29, no. 1, 2004, pp.  115–131, available at http://iag.
pg.gda.pl/RiskGuide/papers/Miler-Gorski_Risk_Identification_Patterns.pdf.

[Mil72] Mills, H., “Mathematical Foundations for Structured Programming,” Technical Report FSC 
71-6012, IBM Corp., Federal Systems Division, Gaithersburg, MD, 1972.

[Mit14] Mitre Corp., “Common Weakness Ennumeration: A Community-Developed Dictionary of 
 Software Weakness Types,” 2014, available at http://cwe.mitre.org.

[Mob12] “Mobile UI Patterns,” 2012, available at http://mobile-patterns.com/.
[Mof04] Moffett, J., et al., “Core Security Requirements Artefacts,” Technical Report 2004/23. Milton 

Keynes, UK: Department of Computing, The Open University, June 2004, available at http://
computing.open.ac.uk.

[Mol12] Molitor, M., “Software Configuration Management and Continuous Integration,” 2012, 
available at https://sewiki.iai.uni-bonn.de/_media/teaching/labs/xp/2012b/seminar/6-scm.pdf.

[Mor05] Morales, A., “The Dream Team,” Dr. Dobbs Portal, March 3, 2005, available at www.ddj.com/
dept/global/184415303.

[Mor81] Moran, T., “The Command Language Grammar: A Representation for the User Interface of 
Interactive Computer Systems,” International Journal of Man-Machine Studies, vol. 15, 1981, 
pp. 3–50.

[Mun17] Munaiah, N., et al., “Do Bugs Foreshadow Vulnerabilities? An In-depth Study of the Chromium 
Project,” Empirical Software Engineering, vol. 22, 2017, pp. 1305–1347.

[Mus87] Musa, J., A. Iannino, and K. Okumoto, Engineering and Managing Software with Reliability 
Measures, McGraw-Hill, 1987.

[Mye78] Myers, G., Composite Structured Design, Van Nostrand, 1978.
[Mye79] Myers, G., The Art of Software Testing, Wiley, 1979.
[Nan14] Ramanathan, N., A. Lal, and R. Parmar, “State of the Art in Software Quality Assurance,” 

ACM SIGSOFT Software Engineering Notes, vol. 39, 2014, pp. 1–6.
[NAS07] NASA, “Software Risk Checklist, Form LeR-F0510.051,” March 2007, available at https://

www.scribd.com/document/250436/Software-Risk-Checklist-Department-of-Defense- 
NASA-USA.

[Nat15] National Instruments, “7 Steps in Creating a Functional Prototype,” November 2015, available 
at http://www.ni.com/white-paper/10590/en/.

[Nei14] Neil, T., Mobile Design Pattern Gallery: UI Patterns for Smartphone Apps, 2nd ed., O’Reilly 
Media, 2014.

[Nei93] Nielsen, J., Usability Engineering. Morgan Kaufmann Publishers Inc., 1993.
[Net18] Neto, F., et al., “Improving Continuous Integration with Similarity-Based Test Case Selection,” 

Proceedings 13th International Workshop on Automation of Software Test (AST ’18), ACM, 
New York, NY, 2018, pp. 39–45.

[Nie00] Nielsen, J., Designing Web Usability, New Riders Publishing, 2000.
[Nie10] Nielsen, D., “Successfully Building a Software Prototype,” July 2010, http://www.nuwavetech.

com/it-project-blog/bid/43839/successfully-building-a-software-prototype (downloaded 
January 16, 2018).

[Nie13] Nielsen, L., “Personas,” in The Encyclopedia of Human-Computer Interaction, 2nd ed., 
M. Soegaard (ed.), The Interaction Design Foundation, 2013.

[Nie94] Nielsen, J., and J. Levy, “Measuring Usability: Preference vs. Performance,” CACM, vol. 37, 
no. 4, April 1994, pp. 65–75.

[Nie96] Nielsen, J., and A. Wagner, “User Interface Design for the WWW,” Proceedings CHI ’96 Conf. 
on Human Factors in Computing Systems, ACM Press, 1996, pp. 330–331.

[Nor13] Norman, D. A., The Design of Everyday Things, Revised Expanded Edition, Basic Books, 
Inc., 2013.

[Nor70] Norden, P., “Useful Tools for Project Management,” in Management of Production, M. K. 
Starr (ed.), Penguin Books, 1970.

[Nor88] Norman, D., The Design of Everyday Things, Doubleday, 1988.
[Nov05] Novotny, O., “Next Generation Tools for Object-Oriented Development,” The Architecture 

 Journal, January 2005, available at http://msdn2.microsoft.com/en-us/library/aa480062.aspx.
[Num18] NumFOCUS, “Python Data Analysis Library,” 2018. Retrieved from pandas: http://pandas.

pydata.org/.



REFERENCES  653

[Nun11] Nunes, N., L. Constantine, and R. Kazman, “iUCP: Estimating Interactive Software Project Size 
with Enhanced Use Case Points,” IEEE Software, vol. 28, no. 4, July–August 2011, pp. 64–73.

[Nun17] Nunez-Iglesias, J., S. Walt, and H. Dashnow, Elegant SciPy, O’Reilly Media, 2017.
[Nyg11] Nygard, M., “Documenting Architecture Decisions,” 2011, available at http://thinkrelevance.

com/blog/2011/11/15/documenting-architecture-decisions.
[Off02] Offutt, J., “Quality Attributes of Web Software Applications,” IEEE Software, March–April 

2002, pp. 25–32.
[Ols99] Olsina, L., et al., “Specifying Quality Characteristics and Attributes for Web Sites,” Proceed-

ings 1st ICSE Workshop on Web Engineering, ACM, Los Angeles, May 1999.
[OMG03] Object Management Group, OMG Unified Modeling Language Specification, version 1.5, 

March 2003, available at www.rational.com/uml/resources/documentation/.
[Oth17] Othmane, B. L., et al., “Time for Addressing Software Security Issues: Prediction Models and 

Impacting Factors,” Data Science Engineering, vol. 2, no. 2, 2017, pp. 107–124.
[Osb90] Osborne, W. M., and E. J. Chikofsky, “Fitting Pieces to the Maintenance Puzzle,” IEEE 

 Software, January 1990, pp. 10–11.
[OSO12] OpenSource.org, 2012, available at www.opensource.org/.
[Oun17] Ouni, A., M. Kessentini, and M. Cinneide, “MORE: A Multi-Objective Refactoring Recom-

mendation Approach to Introducing Design Patterns and Fixing Code Smells,” Journal of 
 Software: Evolution and Process, 2017, available at https://doi.org/10.1002/smr.1843.

[OWA16] “Open Web Application Security Project—Buffer Overflow,” 2016, available at https://www.
owasp.org/index.php/Buffer_Overflow.

[OWA18] “Open Web Application Security Project—Attack Surface Cheat Sheet,” 2018, available at 
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Attack_Surface_ 
Analysis_Cheat_Sheet.md.

[Pad18] Padhy, N., et al., “Software Reusability Metrics Estimation: Algorithms, Models and Optimi-
zation Techniques,” Computers and Electrical Engineering, vol. 69, July 2018, pp. 653–668.

[Pag85] Page-Jones, M., Practical Project Management, Dorset House, 1985.
[Par11] Pardo, C., et al., “Harmonizing Quality Assurance Processes and Product Characteristics,” 

IEEE Computer, June 2011, pp. 94–96.
[Par15] Parunak, H., and S. Brueckner, “Software Engineering for Self-Organizing Systems,” The 

Knowledge Engineering Review, vol. 30, no. 4, September 2015, pp. 419–434.
[Par72] Parnas, D., “On Criteria to Be Used in Decomposing Systems into Modules,” CACM, vol. 14, 

no. 1, April 1972, pp. 221–227.
[Par96b] Park, R. E., W. B. Goethert, and W. A. Florac, Goal Driven Software Measurement—A Guide-

book, CMU/SEI-96-BH-002, Software Engineering Institute, Carnegie Mellon University, 
August 1996.

[Pas10] Passos, L., et al., “Static Architecture-Conformance Checking: An Illustrative Overview,” IEEE 
Software, vol. 27, no. 5, September–October 2010, pp. 82–89.

[Pau94] Paulish, D., and A. Carleton, “Case Studies of Software Process Improvement Measurement,” 
Computer, vol. 27, no. 9, September 1994, pp. 50–57.

[Ped15] Pedreira, O., et al., “Gamification in Software Engineering—A Systematic Mapping,” Informa-
tion and Software Technology, vol. 57, 2015, pp. 157–168.

[Per74] Persig, R., Zen and the Art of Motorcycle Maintenance, Bantam Books, 1974.
[Pet18] Petke, J., et al., “Genetic Improvement of Software: A Comprehensive Survey,” in IEEE Trans-

actions on Evolutionary Computation, vol. 22, no. 3, June 2018, pp. 415–432.
[Pew18] PEW Research Center, “Mobile Fact Sheet,” 2018, available at http://www.pewinternet.org/

fact-sheet/mobile/.
[Phi02] Phillips, M., “CMMI V1.1 Tutorial,” April 2002, available at www.sei.cmu.edu/cmmi/.
[Pit18] Pitoura, E., et al., “On Measuring Bias in Online Information,” SIGMOD, vol. 46, no. 4, 

 February 2018, pp. 16–21.
[Pol45] Polya, G., How to Solve It, Princeton University Press, 1945.
[Pop08] Popcorn, F., Faith Popcorn’s Brain Reserve, 2008, available at www.faithpopcorn.com/.
[Por18] Port, D., and B. Taber, “Actionable Analytics for Strategic Maintenance of Critical Software: An 

Industry Experience Report,” IEEE Software, vol. 35, no. 1, January–February 2018, pp. 58–63.
[Pre05] Pressman, R., “Adaptable Process Model, Version 2.0,” R. S. Pressman & Associates, 2005, 

available at www.rspa.com/apm/index.html.



654 REFERENCES

[Pre08] Pressman, R., and D. Lowe, Web Engineering: A Practitioner’s Approach, McGraw-Hill, 2008.
[Pre88] Pressman, R., Making Software Engineering Happen, Prentice Hall, 1988.
[Pre94] Premerlani, W., and M. Blaha, “An Approach for Reverse Engineering of Relational Databases,” 

CACM, vol. 37, no. 5, May 1994, pp. 42–49.
[Pri10] Prince, B., “10 Most Dangerous Web App Security Flaws,” eWeek.com, April 19, 2010, available 

at https://www.eweek.com/security/10-most-dangerous-web-app-security-risks.
[Pun17] Punchoojit, L., and N. Hongwarittorrn, “Usability Studies on Mobile User Interface Design 

Patterns: A Systematic Literature Review,” Advances in Human-Computer Interaction, avail-
able at https://www.hindawi.com/journals/ahci/2017/6787504/

[Put78] Putnam, L., “A General Empirical Solution to the Macro Software Sizing and Estimation 
 Problem,” IEEE Transactions on Software Engineering, vol. SE-4, no. 4, July 1978, pp. 345–361.

[Put92] Putnam, L., and W. Myers, Measures for Excellence, Yourdon Press, 1992.
[Pyz14] Pyzdek, T., and P. Keller, The Six Sigma Handbook, 4th ed., McGraw-Hill, 2014.
[Rad02] Radice, R., High-Quality Low Cost Software Inspections, Paradoxicon Publishing, 2002.
[Raj14] Rajagoplan, S., “Review of the Myths on Original Development Model,” International Journal 

of Software Engineering and Applications, vol. 5, no. 6, November 2014, pp. 103–111.
[Ray12] Raymond P., L. Buse, and T. Zimmermann. “Information Needs for Software Development 

Analytics,” Proceedings 34th International Conference on Software Engineering (ICSE ’12), 
IEEE Press, Piscataway, NJ, 2012, pp. 987–996.

[Ree99] Reel, J., “Critical Success Factors in Software Projects,” IEEE Software, May 1999, pp. 18–23.
[Rem14] Rempel, P., et al., “Mind the Gap: Assessing the Conformance of Software Traceability to 

Relevant Guidelines,” Proceedings of the 36th International Conference on Software Engineer-
ing (ICSE 2014). ACM, New York, NY, 2014, pp. 943–954.

[Reu12] Reuveni, D., “Crowdsourcing Provides Answer to App Testing Dilemma,” 2012, available at 
https://www.ecnmag.com/article/2010/02/crowdsourcing-provides-answer-app-testing-
dilemma.

[Ric04] Rico, D., ROI of Software Process Improvement, J. Ross Publishing, 2004, available at http://
davidfrico.com/rico03a.pdf.

[Rob10] Robinson, W., “A Roadmap for Comprehensive Requirements Monitoring,” IEEE Computer, 
vol. 43, no. 5, May 2010, pp. 64–72.

[Rod16] Rodríguez, A., F. Ortega, and R. Concepción, “A Method for the Evaluation of Risk in IT 
Projects,” Expert Systems with Applications, vol. 45, 2016, pp. 273–285.

[Rod17] Rodríguez, P., et al., “Continuous Deployment of Software Intensive Products and Services: 
A Systematic Mapping Study,” Journal of Systems and Software, vol. 123, 2017, pp. 263–291.

[Rod98] Rodden, T., et al., “Exploiting Context in HCI Design for Mobile Systems,” Proceedings of 
Workshop on Human Computer Interaction with Mobile Devices, 1998.

[Roo09] Rooksby, J., et al., “Testing in the Wild: The Social and Organizational Dimensions of Real World 
Practice,” Journal of Computer Supported Work, vol. 18, no. 5–6, December 2009, pp. 559–580.

[Ros17] Rosa, W., and C. Wallshein, “Software Effort Estimation Models for Contract Cost Proposal 
Evaluation,” Proceedings 2017 ICEAA Professional Development & Training Workshop, 
June 2017, pp. 1–8.

[Ros75] Ross, D., J. Goodenough, and C. Irvine, “Software Engineering: Process, Principles and 
Goals,” IEEE Computer, vol. 8, no. 5, May 1975.

[Rot02] Roth, J., “Seven Challenges for Developers of Mobile Groupware,” Proceedings of Computer 
Human Interaction Workshop on Mobile Ad Hoc Collaboration, 2002.

[Rou02] Rout, T. (project manager), SPICE: Software Process Assessment—Part 1: Concepts and 
Introductory Guide, 2002, downloadable at http://www.noginfo.com.br/arquivos/SPICE.pdf.

[Roy70] Royce, W., “Managing the Development of Large Software Systems: Concepts and Techniques,” 
Proceedings WESCON, August 1970.

[Roz11] Rozanski, N., and E. Woods, Software Systems Architecture, 2nd ed., Addison-Wesley, 2011.
[Rya11] Ryan, T., Statistical Methods for Quality Improvement, Wiley, 2011.
[San17] Sancetta, G., et al., “Risk Patterns, Structural Characteristics, and Organizational Configura-

tions,” Strategic Change, 2017, available at https://doi.org/10.1002/jsc.2138.
[Sce02] Sceppa, D., Microsoft ADO.NET, Microsoft Press, 2002.
[Sca15] Scandariato, R., K. Wuyts, and W. Joosen, “A Descriptive Study of Microsoft’s Threat 

Modeling Technique,” Requirements Engineering, vol. 20, no. 2, June 2015, pp. 163–180.



REFERENCES  655

[Sch01a] Schneider, G., and J. Winters, Applying Use Cases, 2nd ed., Que, 2001.
[Sch01b] Schwaber, K., and M. Beedle, Agile Software Development with SCRUM, Prentice Hall, 2001.
[Sch06] Schmidt, D., “Model-Driven Engineering,” IEEE Computer, vol. 39, no. 2, February 2006, 

pp. 25–31.
[Sch09] Schumacher, R. (ed.), Handbook of Global User Research, Morgan-Kaufmann, 2009.
[Sch11] Schilit, B., “Mobile Computing: Looking to the Future,” IEEE Computer, vol. 44, no. 5, 

May 2011, pp. 28–29.
[Sch15] Schell, M., and J. O’Brien, Communicating the UX Vision: 13 Anti-Patterns That Block Ideas, 

Morgan Kaufman, 2015.
[Sch98] Schneider, G., and J. Winters, Applying Use Cases, Addison-Wesley, 1998.
[Sch99] Schneidewind, N., “Measuring and Evaluating Maintenance Process Using Reliability, Risk, 

and Test Metrics,” IEEE Transactions, SE, vol. 25, no. 6, November–December 1999,  
pp. 768–781.

[Sci18] SciPy Developers, SciPy Library, 2018, available at https://scipy.org/scipylib/index.html.
[SEI02] SEI, “Maintainability Index Technique for Measuring Program Maintainability,” 2002.
[SEI08] Software Engineering Institute, “The Ideal Model,” 2008, available at https://resources.sei.cmu.

edu/library/asset-view.cfm?assetid=20208.
[Ser15] Serrador, P., and J. Pinto, “Does Agile Work?—A Quantitative Analysis of Agile Project 

 Success,” International Journal of Project Management, vol. 33, no. 5, 2015, pp. 1040–1051.
[Sha05] Shalloway, A., and J. Trott, Design Patterns Explained, 2nd ed., Addison-Wesley, 2005.
[Sha09] Shaw, M., “Continuing Prospects for an Engineering Discipline of Software,” IEEE Software, 

vol. 26, no. 8, November–December 2009, pp. 64–67.
[Sha15] Shaw, M., and D. Garla, Software Architecture: Perspectives on an Emerging Discipline, 

 Pearson, 2015.
[Sha17] Sharma, S., and B. Coyne, DevOps for Dummies, 3rd ed., Wiley, 2017.
[Shn09] Shneiderman, B., et al., Designing the User Interface, 5th ed., Addison-Wesley, 2009.
[Shn16] Shneiderman, B., et al., Designing the User Interface: Strategies for Effective Human-

Computer Interaction, 6th ed., Pearson, 2016.
[Sho14] Shostack, A., Threat Modeling: Designing for Security. John Wiley & Sons, 2014.
[Shu12] Shull, F., “Designing a World at Your Fingertips: A Look at Mobile User Interfaces,” IEEE 

Software, vol. 29, no. 4, July–August 2012, pp. 4–7.
[Shu13] Shunn, A., et al., Strengths in Security Solutions, Software Engineering Institute, Carnegie Mellon 

University, 2013, available at http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=77878.
[Shu16] Shull, F., Evaluation of Threat Modeling Methodologies, Software Engineering Institute, Carn-

egie Mellon University, 2016, available at http://resources.sei.cmu.edu/library/asset-view.
cfm?assetID=474197.

[Sin00] Sindre, G., and A. Opdahl, “Eliciting Security Requirements by Misuse Cases,” Proceedings 
37th International Conference on Technology of Object-Oriented Languages and Systems 
(TOOLS-37’00), New York, NY: IEEE Press, 2000, pp. 120–131.

[Sin01] Sindre, G., and A. Opdahl, “Templates for Misuse Case Description,” Seventh International 
Workshop on Requirements Engineering: Foundation for Software Quality, 2001, available at 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.8190.

[Sla12] Slattery, K., “Study Shows the Importance of Localization Testing,” 2012. A related article 
can be found at https://www.welocalize.com/6-reasons-localization-qa-testing-important/.

[Smo08] Smolander, K., et al., “Software Architectures: Blueprint, Literature, Language, or Decision?” 
European Journal of Information Systems, vol. 17, 2008, pp. 575–588.

[Sne18] Snee, R., and R. Hoerl, Leading Six Sigma, 2nd ed., Pearson, 2018.
[Sne95] Sneed, H., “Planning the Reengineering of Legacy Systems,” IEEE Software, January 1995, 

pp. 24–25.
[Soa10] Soares, G., et al., “Making Program Refactoring Safer,” IEEE Software, vol. 37, no. 4,   

July–August 2010, pp. 52–57.
[Soa11] SOASTA, White Paper: “Five Strategies for Performance Testing Mobile Applications,” 2011, 

available at http://hosteddocs.ittoolbox.com/whitepapersoastamobile.pdf.
[Som97] Somerville, I., and P. Sawyer, Requirements Engineering, Wiley, 1997.
[Som05] Somerville, I., “Integrating Requirements Engineering: A Tutorial,” IEEE Software, vol. 22, 

no. 1,  January–February 2005, pp. 16–23.



656 REFERENCES

[Sou08] de Sousa, C., and D. Redmiles, “An Empirical Study of Software Developer’s Management of 
Dependencies and Changes,” ICSE Proceedings, May 2008, available at www.ics.uci.
edu/~redmiles/publications/C078-deSR08.pdf.

[Spa11] Spagnolli, B., et al., “Eco-Feedback on the Go: Motivating Energy Awareness,” IEEE 
Computer, vol. 44, no. 5, May 2011, pp. 38–45.

[SPI99] “SPICE: Software Process Assessment, Part 1: Concepts and Introduction,” Version 1.0, ISO/
IEC JTC1, 1999.

[SSO08] Software-Supportability.org, 2008, available at www.software-supportability.org/.
[Ste10] Stephens, M., and D. Rosenberg, Design Driven Testing, Apress, 2010.
[Ste16] Steed, S., et al., “An ‘In the Wild’ Experiment on Presence and Embodiment Using Consumer 

Virtual Reality Equipment,” IEEE Transactions on Visualization and Computer Graphics, 
vol. 22, no. 4, April 2016, pp. 1406–1414.

[Ste18] Steffens, A., H. Lichter, and J. Döring, “Designing a Next-Generation Continuous Software 
Delivery System: Concepts and Architecture,” Proceedings 4th International Workshop on 
Rapid Continuous Software Engineering (RCoSE ’18), ACM, New York, NY, 2018, pp. 1–7.

[Ste74] Stevens, W., G. Myers, and L. Constantine, “Structured Design,” IBM Systems Journal, vol. 
13, no. 2, 1974, pp. 115–139.

[Sto05] Stone, D., et al., User Interface Design and Evaluation, Morgan Kaufman, 2005.
[Sul11] Sullivam, B., and V. Liu, Web Application Security, A Beginner’s Guide, McGraw-Hill, 2011.
[Sun15] Sun X., et al., “What Information in Software Historical Repositories Do We Need to Support 

Software Maintenance Tasks? An Approach Based on Topic Model,” in Computer and Infor-
mation Science, Studies in Computational Intelligence, R. Lee (ed.), vol. 566, Springer, 2015.

[SWE14] Software Engineering Body of Knowledge, version 3, 2014, available at https://www.computer.
org/web/swebok (accessed December 9, 2018).

[Tai12] Taivalsaari, A., and K. Systa, “Mobile Content as a Service: A Blueprint for a Vendor-Neutral 
Cloud of Mobile Devices,” IEEE Software, vol. 29, no. 4, July–August 2012, pp. 28–33.

[Tai89] Tai, K., “What to Do Beyond Branch Testing,” ACM Software Engineering Notes, vol. 14, 
no. 2, April 1989, pp. 58–61.

[Tan01] Tandler, P., “Aspect-Oriented Model-Driven Development for Mobile Context-Aware Comput-
ing,” Proceedings of UbiComp 2001: Ubiquitous Computing, 2001.

[Tao17] Tao, H., and J. Gao, “On Building a Cloud-Based Mobile Testing Infrastructure Service 
System,” Journal of Systems and Software, vol. 124, 2017, pp. 39–55.

[Tay09] Taylor, R., N. Medvidovic, and E. Dashofy, Software Architecture, Wiley, 2009.
[Tho04] Thomas, J., et al., Java Testing Patterns, Wiley, 2004.
[Tho92] Thomsett, R., “The Indiana Jones School of Risk Management,” American Programmer, vol. 

5, no. 7, September 1992, pp. 10–18.
[Tic18] TickIT plus, 2018, available at http://www.tickitplus.org/.
[Tid11] Tidwell, J., Designing Interfaces: Patterns for Effective Interaction Design, 2nd ed., O’Reilly, 

2011.
[Til00] Tillman, H., “Evaluating Quality on the Net,” Babson College, May 30, 2000, available at 

http://www.dronet.org/lineeguida/ligu_pdf/evelqual.pdf.
[Toc18] Tonchia, S., “Project Time Management,” in Industrial Project Management. Management for 

Professionals, Springer, 2018.
[Tog01] Tognozzi, B., “First Principles,” askTOG, 2001, available at www.asktog.com/basics/

firstPrinciples.html.
[Tos17] Tosun, A., A. Bener, and S. Akbarinasaji, “A Systematic Literature Review on the Applications 

of Bayesian Networks to Predict Software Quality,” Software Quality Journal, vol. 25, no. 1, 
March 2017, pp. 273–305.

[Tri03] Trivedi, R., Professional Web Services Security, Wrox Press, 2003.
[Tyr05] Tyree, J., and A. Akerman, “Architectural Decisions: Demystifying Architecture,” IEEE 

 Software, vol. 22, no. 2, March–April 2005.
[Uni03] Unicode, Inc., The Unicode Home Page, 2003, available at www.unicode.org/.
[USA87] U.S. Air Force, “Management Quality Insight,” AFCSP 800-14, January 20, 1987.
[Ute12] UTest, E-book: Essential Guide to Mobile App Testing, 2012, available at http://go.applause.

com/rs/539-CKP-074/images/The-Essential-Guide-to-Mobile-App-Testing.pdf.
[Vac06] Vacca, J., Practical Internet Security, Springer, 2006.



REFERENCES  657

[Vak18] Vakkuri, V., and P. Abrahamsson, “The Key Concepts of Ethics of Artificial Intelligence,” 
2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), 
 Stuttgart, 2018, pp. 1–6, doi:10.1109/ICE.2018.8436265.

[Van16] VanderPlas, J., Python Data Science Handbook Essential Tools for Working with Data, 
O’Reilly Media, 2016.

[Vel16] Veloso, A., and L. Costa, “Heuristics for Designing Digital Games in Assistive Environments: 
Applying the Guidelines to an Ageing Society,” 2016 1st International Conference on Technol-
ogy and Innovation in Sports, Health and Wellbeing (TISHW), Vila Real, 2016, pp. 1–8.

[Ven03] Venners, B., “Design by Contract: A Conversation with Bertrand Meyer,” Artima Developer, 
December 8, 2003, available at www.artima.com/intv/contracts.html.

[Vit03] Vitharana, P., “Risks and Challenges of Component-Based Software Development,” CACM, 
vol. 46, no. 8, August 2003, pp. 67–72.

[Vit17] Vitharana, P., “Defect Propagation at the Project-Level: Results and a Post-Hoc Analysis on 
Inspection Efficiency,” Empirical Software Engineering, vol. 22, no. 1, February 2017, pp. 57–79.

[Voa12] Voas, J., et al., “Mobile Software App Takeover,” IEEE Software, vol. 29, no. 4, July–August 
2012, pp. 25–27.

[Voe14] Voehl, F., H. Harrington, C. Mignosa, and R. Charron, The Lean Six Sigma Black Belt 
 Handbook, Productivity Press, 2014, https://doi.org/10.1201/b15163.

[W3C18] W3C Web Content Accessibility Guidelines (WCAG 2.1), 2018, available at https://www.
w3.org/TR/WCAG21/.

[Wal12] Walker, J., “Computer Programmers Learn Tough Lesson in Sharing,” The Wall Street Journal, 
vol. 260, no. 48, August 27, 2012, p. 1.

[War07] Ward, M., “Using VoIP Software Building zBlocks—A Look at the Choices,” TMNNet, 2007, 
available at www.tmcnet.com/voip/0605/featurearticle-using-voip-software-building-blocks.htm.

[Was10] Wasserman, A., “Software Engineering Issues for Mobile Application Development,” Proceed-
ings of the FSE/SDP Workshop on Future of Software Engineering Research, 2010.

[Web05] Weber, S., The Success of Open Source, Harvard University Press, 2005.
[Web13] Web Application Security Consortium, 2013, available at http://www.webappsec.org/.
[Wee11] Weevers, I., “Seven Guidelines for Designing High Performance Mobile User Experiences,” 

Smashing Magazine, July 18, 2011, available at http://uxdesign.smashingmagazine.
com/2011/07/18/seven-guidelines-for-designing-high-performance-mobile-user-experiences/.

[Wel01] vanWelie, M., “Interaction Design Patterns,” 2001. A related article can be found at https://www.
interaction-design.org/literature/article/10-great-sites-for-ui-design-patterns.

[Whi08] White, J., “Start Your Engines: Mobile Application Development,” April 22, 2008, available 
at http://www.devx.com/SpecialReports/Article/37693.

[Whi12] Whittaker, J., et al., How Google Tests Software, Addison-Wesley, 2012.
[Whi15] Whigham, P. A., C. A. Owen, and S. G. MacDonell, “A Baseline Model for Software Effort 

Estimation,” ACM Transactions on Software Engineering and Methodology, vol. 24, no. 3, 
2015, pp. 1–11.

[Whi97] Whitmire, S., Object-Oriented Design Measurement, Wiley, 1997.
[Wie02] Wiegers, K., Peer Reviews in Software, Addison-Wesley, 2002.
[Wil05] Willoughby, M., “Q&A: Quality Software Means More Secure Software,” Computerworld, 

March 21, 2005, available at https://www.computerworld.com/article/2563708/q-a--quality- 
software-means-more-secure-software.html.

[Wil97] Williams, R., J. Walker, and A. Dorofee, “Putting Risk Management into Practice,” IEEE 
 Software, May 1997, pp. 75–81.

[Wir71] Wirth, N., “Program Development by Stepwise Refinement,” CACM, vol. 14, no. 4, 1971, 
pp. 221–227.

[Wir90] Wirfs-Brock, R., B. Wilkerson, and L. Weiner, Designing Object-Oriented Software, Prentice 
Hall, 1990.

[WMT02] Web Mapping Testbed Tutorial, 2002. A related presentation can be found at http://proceedings.
esri.com/library/userconf/devsummit17/papers/dev_int_114.pdf.

[Woo04] Woody, C., Eliciting and Analyzing Quality Requirements: Management Influences on Soft-
ware Quality Requirements (CMU/SEI-2005-TN-010, ADA441310). Pittsburgh, PA: Software 
 Engineering Institute, Carnegie Mellon University, 2004, available at http://www.sei.cmu.edu/
publications/documents/05.reports/05tn010.html.



658 REFERENCES

[Woo14] Woody, C., R. Ellison, and W. Nichols, Predicting Software Assurance Using Quality and 
Reliability Measures, CMU/SEI-2014-TN-026, Software Engineering Institute, Carnegie 
Mellon University, 2014, http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=428589.

[Woo89] Wood, J., and D. Silver, Joint Application Design: How to Design Quality Systems in 40% 
Less Time, John Wiley & Sons, 1989.

[Wri11] Wright, A., “Lessons Learned: Architects Are Facilitators, Too!” IEEE Software, vol. 28, no. 2, 
January–February 2011, pp. 70–72.

[Xia16] Xiao, L., et al., “Identifying and Quantifying Architectural Debt,” Proceedings of 38th ACM 
International Conference on Software Engineering, May 2016, pp. 488–498.

[Xie18] Xie, T., “Intelligent Software Engineering: Synergy between AI and Software Engineering,” 
Proceedings of the 11th Innovations in Software Engineering Conference (ISEC ’18). ACM, 
New York, NY, Article 1, 2018.

[Yad17] Yadav, H., and D. Yadav, “Early Software Reliability Analysis Using Reliability Relevant 
 Software Metrics,” International Journal of System Assurance Engineering and Management, 
vol. 8, suppl., December 2017, pp. 2097–2108.

[Yau11] Yau, S., and H. An, “Software Engineering Meets Services and Cloud Computing,” IEEE 
Computer, vol. 44, no. 10, October 2011, pp. 47–53.

[Yoo13] Yoo, S., and M. Harman, “Regression Testing Minimization, Selection and Prioritization: 
A Survey,” Journal of Software: Testing, Verification, and Reliability, vol. 22, no. 2, 2013, 
pp. 67–120.

[You01] Young, R., Effective Requirements Practices, Addison-Wesley, 2001.
[You18] Young, S., T. Abdou, and A. Bener, “A Replication Study: Just-in-Time Defect Prediction with 

Ensemble Learning,” Proceedings of the ACM/IEEE Sixth International Workshop on Realizing 
Artificial Intelligence Synergies in Software Engineering, ACM, 2018, pp. 42–47.

[You75] Yourdon, E., Techniques of Program Structure and Design, Prentice Hall, 1975.
[Zah90] Zahniser, R., “Building Software in Groups,” American Programmer, vol. 3, no. 7–8,  

July–August 1990.
[Zah94] Zahniser, R., “Timeboxing for Top Team Performance,” Software Development, March 1994, 

pp. 35–38.
[Zan15] Zanoni, M., Fontana, F., and Stella, F. “On Applying Machine Learning Techniques for Pattern 

Detection,” Journal of Systems and Software, vol. 103, May 2015, pp. 102–117.
[Zan18] Zancan, B. A. G., et al., “Accessibility Guidelines for Virtual Environments,” in M. Antona 

and C. Stephanidis (eds.), Universal Access in Human-Computer Interaction. Virtual, 
Augmented, and Intelligent Environments, UAHCI 2018. Lecture Notes in Computer Science, 
vol. 10908, 2018.

[Zha13] Zhang, D., et al., “Software Analytics in Practice,” IEEE Software, September–October 2013, 
vol. 30, no. 5, pp. 30–37.

[Zim11] Zimmermann, O., “Architectural Decisions as Reusable Design Assets,” IEEE Software, 
vol. 28, no. 1, January–February 2011, pp. 64–69.

[Zus90] Zuse, H., Software Complexity: Measures and Methods, DeGruyter, 1990.
[Zus97] Zuse, H., A Framework of Software Measurement, DeGruyter, 1997.



659

Index

patterns, 187, 192–193, 203–204, 291, 
299–300

preliminary, 59–60
properties of, 164
refining into components, 198–200
representing system in context,  

196–197
spacing in, 194
styles of, 186–193
symmetry in, 194
visibility in, 194
of WebApps, 278–280

Architectural mismatch, 229–230
Architectural patterns, 187, 192–193, 

203–204, 291, 299–300
Architectural reviews, 202–204
Architecture

call-and-return, 189
conformance checking, 204
content, 279
data-centered, 187–188
data-flow, 188
defined, 163–164, 173, 182
erosion of, 204
functional, 226
importance of, 183
information, 235, 279
layered, 189–192
mobile, 273–274
MVC, 189, 191–192, 279–280
object-oriented, 189
refactoring, 561–562
responsibility-driven, 186
testing, 375, 376

Architecture trade-off analysis method 
(ATAM), 201–202

Artificial intelligence (AI)
applications involving, 7
for decision making, 229
integration-level testing and, 403
machine learning and, 294–295, 322
to model reliability, 351–352
software engineering and, 589, 606
software support and, 558
testing, 428–429

Assessment. see also Evaluation; Risk 
assessment

architectural, 202
of quality, 314–315
in software improvement process, 

572–573
of software process, 24–25

Assessment effort, 328
Associations, 144, 154, 613–615

source code, 561
static, 368
task, 243, 247–248
threats, 363
user interface, 243–249
work environment, 248–249

Analysis classes
attributes for, 140
defined, 104–105
identifying, 137–140
manifestations of, 138
selection characteristics for, 139–140
state diagrams for, 150–151

Analysis models and modeling. see also 
Requirements models

building, 118–122
domains of, 93
elements of, 119–121
patterns in, 122
principles of, 129–130
purpose of, 118
rules of thumb for, 128–129
terminology for, 126

Analysis patterns, 122
Analytics, 462–463, 509–511, 558–559
Anchor point milestones, 29
Antibugging, 382
Anti-patterns, 302–304
Anti-requirements, 383
Application domains, 7
Application objects, 251
Application software, 7
Appraisal costs, 317
Archetypes, 196–198
Architectural context diagram  

(ACD), 196
Architectural decision record  

(ADR), 184
Architectural decisions, 184–185,  

194–196
Architectural description (AD), 183–185
Architectural description language 

(ADL), 164
Architectural design

agility and, 60, 185–186
alternatives in, 201–204
archetypes in, 196–198
economy of, 193
elements of, 175
emergence in, 194
functions of, 158, 182
instantiations of system in, 200
metrics for, 466–467
organization and refinement of, 193

Abstraction, 87, 163, 168
Abstraction dimension, 171–172
Abuse cases, 363–364
Acceptance testing, 48, 68–69, 95, 430
Access control, 450
Accessibility, 233, 237, 259–261,  

432–433
Action, defined, 10
Active state, 150
Activity, defined, 9–10
Activity diagrams, 146–148, 151–154, 

223, 622–625
Activity networks, 525–526
Activity state, 627
Actors, 114–115, 131
Adapters, 230
Adaptive maintenance, 70, 553
Aesthetic design, 237, 277
Aesthetic metrics, 472
Aggregation, 614–615
Agile Alliance, 40–41
Agile manifesto, 37, 38, 42
Agile spirit, 41
Agile teams, 40, 41, 78, 495
Agility

application of, 38–39
in change management, 453–458
characteristics of, 38, 40
comparison of techniques for, 52
cost of change and, 39–40
in design, 60, 174, 185–186
development of, 38, 41
DevOps approach to, 50–51
estimation and, 519
Kanban method for, 48–50, 56
principles of, 40–41
process models for, 42–51, 56, 57
in requirements engineering, 58, 104
in reviews, 336
Scrum framework for, 42–45, 56
testing and, 95
XP framework for, 46–48

Algorithms, 62–63, 352, 606
Alpha tests, 430
Ambient intelligence, 590
Analysis

attack surface, 367
boundary value, 389–390
data, 633
errors/defects, 342
gap, 573
hazards, 545
impact, 443
inventory, 563–564



660 INDEX

Atomic modules, 399
Attack patterns, 363–364
Attack surface, 366–367
Attributes

defining, 140–141
of metrics, 462
in software quality assurance, 346

Audits, 342, 452, 458, 579
Audit trails, 445
Authoring, 456
Automated testing tools, 50, 413, 415, 

422, 430
Automation phase of technology 

innovation, 585
Availability, 351

Backlog, 43–45
Backward impact management, 451
Baselines, 441, 442, 450, 481
Basis path testing, 384–386
Bayesian inference, 351–352
Behavioral elements, 120–121
Behavioral modeling

activity diagrams in, 151–154
characteristics of, 127
identifying events with use case in, 

149–150
state diagrams in, 150–151
steps for creation of, 149

Behavioral patterns, 292–293
Behavioral testing, 388–390, 392–393
Beta tests, 430
Big bang approach to integration  

testing, 398
Binary classification problems, 634
Black box metrics, 466
Black-box testing, 388–390, 397
Blueprint metaphor, 183
Bottom-up integration, 399–400
Boundary testing, 381–382
Boundary value analysis (BVA), 389–390
Breadth-first integration, 398
Breakthrough phase of technology 

innovation, 585
Buffer overflow, 367
Bugs, 326. see also Defects
Building blocks, 591–592
Building Security in Maturity Model 

(BSIMM), 370
Business activity monitoring, 123
Business goals, 485
Business risks, 534

Call-and-return architectures, 189
Capability Maturity Model Integration 

(CMMI), 370, 576–579
Capture/playback tools, 403
Casual meetings, 331
Casual reviews, 326, 331
Categorical variables, 633
Certification testing, 414
Change, sources of, 439

Change control, 441, 446, 448–450, 
453–455

Change control authority (CCA), 448, 450
Change costs, 39–40
Change descriptions, 455
Change management

agile, 453–458
process for, 447–452
in SCM, 445
in SQA, 342

Change reports, 448
Change requests, 448
Change sets, 446
Changes to legacy systems, 8
Checklists

mobile product quality, 285
for reviews, 331
risk item, 536
validation requirements, 106

Chunking, 227–228
CK metrics suite, 469–471
Class-based design metrics, 469–470
Class-based elements, 120
Class-based modeling

characteristics of, 127
defining attributes and operations in, 

140–141
identifying analysis classes in, 137–140
UML, 141–144

Class coupling, 218
Class diagrams, 120, 141, 143, 612–615
Classes. see also Analysis classes

attributes, 140
collaborating, 207
defined, 120
dependent, 404
design, 169–171
equivalence, 389
hierarchies, 469, 470
independent, 404
operations, 141
server, 404

Classification problems, 634
Class-responsibility-collaborator (CRC) 

model, 47, 144–146
Class testing, 390–391
Cloud-based testing, 428
Cloud computing, 7, 273–274
Clustering technique, 637
Cluster testing, 404
CMMI-DEV, 24
Code quality, 345
Code refactoring, 561, 564
Coding activity, 48, 95, 96, 367–368
Cognitive walkthroughs, 246, 253
Cohesion, 167, 170, 216–218, 468
Collaboration

benefits of, 89
in development, 595–596
in requirements gathering, 110–113
among stakeholders, 108
teams and, 587

Collaboration diagrams, 220, 406, 621
Collaborators, in CRC modeling, 144
Collection subsystem, 455–456
Command labeling, 260
Common closure principle (CCP), 215
Common reuse principle (CRP), 215
Communication

effectiveness of modes of, 89
by interface, 257
principles of, 88–90
in process framework, 10
in prototyping paradigm, 27
task set for, 23, 24, 500
in teams, 496, 604

Communicational cohesion, 216
Communication diagrams, 189, 190, 

621–622
Compartmentalization, 521, 604
Compatibility testing, 414
Completeness, 468
Complexity, 468, 588–589
Component-based software  

engineering (CBSE),  
228–230, 509

Component diagrams, 177
Component elements of SCM, 440
Component-level design

cohesion in, 216–218
coupling in, 218–219
elements of, 176–177
example of, 210–211
functions of, 158, 206
guidelines for, 215–216
for MobileApps, 226–227
patterns in, 300–301
principles of, 173, 212–215
specialized, 225–230
steps for, 219–225
for traditional components,  

227–228
for WebApps, 226, 282

Component-level testing
black-box, 388–390
elements of, 372
object-oriented, 390–393
planning and recordkeeping in,  

378–380
strategic approach to, 373–378
test case design in, 381–383
white-box, 383–387

Components
class-based, 212–219
defined, 207
elaboration of, 207–209
naming, 215–216
object-oriented view of, 207–209
process-related view of, 211–212
refactoring, 230–231
reuse of, 214–215, 228, 229
traditional view of, 209–211

Composition, 615
Computational intelligence, 638
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Computer-aided software engineering, 9
Concept development projects,  

524–526
Concerns, 165. see also Separation of 

concerns
Condition testing, 386
Condition-transition-consequence (CTC) 

format, 542
Configuration audits, 452
Configuration management, 11, 437, 

445. see also Software 
configuration management

Configuration objects, 441–443,  
445–446, 450, 452, 457–458

Configuration reviews, 408
Configuration status reporting, 452
Connectionism, 636–637
Connectivity and connectivity testing, 

414, 587
Consistency, 87, 240–241, 257
Construction

of interface, 243
as phase of Unified Process, 33
principles of, 95–98
in process framework, 10

Construction elements of SCM, 440
Constructive cost model  

(COCOMO), 511
Content architecture, 279
Content coupling, 218
Content design, 277–278
Content management, 455, 456
Content metrics, 473
Content objects, 277–278
Content repository, 444
Content testing, 420–421
Context-aware apps, 274–275
Context-free questions, 108
Context variables, 427
Contingency planning, 86, 92, 544
Continuous integration (CI), 400–402, 

446–447
Continuous process improvement, 341
Continuous variables, 633
Contracted software, 342
Control coupling, 218
Control structure testing, 386–387
Convergence, 157
Coordination of teams, 496
Corrective maintenance, 69–70, 553
Cost of change, 39–40
Cost of quality, 317–318
Coupling, 167, 170, 174,  

218–219, 468
Coupling between object classes (CBO), 

469–470
Creational patterns, 292
Critical path, 520, 526
Critical practices for project 

management, 502
Crowdsourcing, 423
Customer journey maps, 244–245

Customers, defined, 88
Customer satisfaction, 40–41
Customer testing. see Acceptance testing
Cyclomatic complexity, 385–386

Data abstraction, 163
Data analysis, 633
Data analytics, 509–511
Data-centered architectures, 187–188
Data cleaning, 633
Data collection, 633
Data complexity, 467
Data design, 173, 174
Data-flow architectures, 188
Data flow diagrams (DFDs),  

365, 366
Data flow testing, 381, 386
Data models, 127
Data munging, 630, 633
Data name rationalization, 561
Data patterns, 291
Data processing, 605
Data record standardization, 561
Data redesign, 561
Data refactoring, 561, 564–565
Data science

analysis of data in, 633
characteristics of, 461, 629
cleaning data in, 633
clustering technique in, 637
collecting data in, 633
computational intelligence and, 638
decision trees in, 634–635
dimensional reduction in, 637
language selection for, 629–631
libraries and tools for, 631
machine learning and, 631–637
nearest neighbor technique in,  

635–637
neural networks in, 636–637
search-based software engineering 

and, 638
training set fabrication in, 633
transformation of data in, 633

Data transformation, 633
Debugging, 123
Decision metaphor, 184
Decision trees, 634–635
Decision view, 195
Decomposition, 497–500, 511–519
Defect removal efficiency (DRE),  

482–484, 486
Defects

amplification of, 327
collection and analysis of, 342
cost impact of, 326–327
defined, 478
prediction of, 322
propagation of, 327
tracking, 446

Deficiency lists, 408
Degree of rigor, 524

Degree of structural uncertainty, 506
Dependencies, 154, 216, 442–443,  

445, 614
Dependency inversion principle (DIP), 214
Dependent classes, 404
Deployment

in DevOps approach, 50
in mobile development life cycle, 269
principles of, 98–100
in process framework, 11
prototyping and, 63

Deployment diagrams, 177, 178, 225, 
615–616

Deployment-level design, 177–178
Depth-first integration, 398
Depth of the inheritance tree (DIT),  

469, 475
Descriptor form of deployment 

diagrams, 178
Design

agility in, 60, 174, 185–186
architectural (see Architectural 

design)
component-level (see Component-

level design)
concepts of (see Design concepts)
content, 277–278
in context of software engineering, 

157–159
convergence in, 157
of data, 173, 174
defined, 181
deployment-level, 177–178
diversification in, 157
dominant, 184
evaluation of, 160, 161, 253–256
evolution of, 161–162
importance of, 3, 159
interface (see Interface design)
level, 456
metrics for, 466–473, 475
mobile (see MobileApps)
in mobile development life  

cycle, 268
models (see Design models)
navigation, 280–282
object-oriented approach to, 161, 173
pattern-based (see Pattern-based 

design)
practice, 156
principles, 156
process for, 159–162
quality of, 159–161, 282–285,  

311, 345
refactoring, 48, 168, 225
refinement of, 167–168
task set for, 162
test case, 381–383, 405–407
user interaction, 236
visual, 237, 277
in XP framework, 47–48

Design classes, 169–171
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Design concepts
abstraction, 163, 168
architecture, 163–164
classes, 169–171
functional independence, 167
importance of, 156
information hiding, 166
modularity, 165–166
patterns, 164–165
refactoring, 48, 168, 225
separation of concerns, 165
stepwise refinement, 167–168

Design models
architectural, 175
characteristics represented by, 93
component-level, 176–177
for data, 174
deployment-level, 177–178
dimensions of, 171–172
for interfaces, 175–176
principles for, 173–174
translation from requirements  

models, 158
Design patterns. see Pattern-based design
Design recovery, 564
Design structure quality index (DSQI), 468
Desk checks, 331–332
Determinate software, 7
Developer notes, 195
Development teams, 43–45, 67
Device compatibility testing, 414
DevOps approach, 50–51
Diagrams

activity, 146–148, 151–154, 223,  
622–625

architectural context, 196
class, 120, 141, 143, 612–615
collaboration, 220, 406, 621
communication, 189, 190, 621–622
component, 177
data flow, 365, 366
deployment, 177, 178, 225, 615–616
sequence, 148–149, 618–621
state, 120–121, 150–151, 392, 625–628
swimlane, 151, 153–154
use case, 118, 119, 136, 137, 616–618

Dimensional reduction, 637
Direct measures, 479–480
Distributed debugging, 123
Diversification, 157
Do-activity, 627
Documentation testing, 434
Document restructuring, 564
Domain-specific modeling languages 

(DSMLs), 597
Dominant design, 184
Drivers, 379, 399
Dynamic models, 164
Dynamic testing, 429

Education and training, 342, 573
Efficiency, 257

Effort validation, 521
Egoless programming, 64–65
Elaboration

in communication activity, 23
of components, 207–209
as phase of Unified Process, 33
problem, 497–498
refinement as process of, 167–168, 248
in requirements engineering, 104–105

Elicitation. see also Requirements 
gathering

agile, 104
in communication activity, 23, 24
in requirements engineering,  

104, 109
of security needs, 362
work products produced during, 114

Embedded software, 7
Empirical estimation models, 510–511
Empiricism phase of technology 

innovation, 585
Encapsulation, 475
End users, defined, 88
Engineering. see also Software 

engineering
algorithms, 62–63
feature, 634
forward, 565
reengineering, 554, 562–565
reverse, 553–557, 564
security, 357, 360–363

Engineering change order (ECO), 448, 
450, 452

Engineering software, 7
Ensemble learning environment, 635
Environmental resources, 509
Equivalence classes, 389
Equivalence partitioning, 389
Errors

collection and analysis of, 342
cost of, 317–318
defined, 326, 478
density of, 328, 329
handling systems, 260

Estimation. see also Project planning
for agile development, 519
complexity of projects and, 505–506
data analytics and, 509–511
decomposition techniques, 511–519
empirical models for, 510–511
FP-based, 514–515
LOC-based, 512–513
objectives of, 92
problem-based, 512
process-based, 515–516
quality and, 321
reconciling estimates, 518–519
of resources, 60–61, 505
of risk, 538–541
size of projects and, 506
software sizing, 511
use case, 517–518

Ethics, 607–609
Ethnographic observation, 272
Evaluation. see also Assessment

of design, 160, 161, 253–256
of interface design, 253–256
post-mortem, 336
in prototype development, 64–65,  

68–69, 253–254
in software process improvement, 575

Evolutionary process flow, 22, 23
Evolutionary process models, 29–31, 

56–57, 67
Exceptions, 134–135
Exhaustive testing, 380
Exposure to risk, 540–541
Extensible Markup Language  

(XML), 273
External coupling, 218
External failure costs, 317
Extra-functional properties, 164
Extreme Programming (XP), 46–48, 67

Failure costs, 317
Failure curves, 5–6
Failures in time (FIT), 351
Families of related systems, 164
Fan-in (FIN), 475
Fault-based testing, 405–406
Faults, 326. see also Defects
Feature engineering, 634
Feature vectors, 633
Filters, 188
Financial leverage, 571
Fire-fighting mode, 533
First law of system engineering,  

438–439
Flexibility, 258
Flow graphs, 384
Flow-oriented models, 127
Formal change control, 450
Formal technical reviews (FTRs), 327, 

332–335
Formal use cases, 127, 135
Forward engineering, 565
Forward impact management, 451
FP-based estimation, 514–515
Frameworks

models, 164
pattern-based design, 293
risk management, 364–365
Scrum, 42–45, 56, 66–67
software process, 10–11, 21, 23
software process improvement,  

569–570
Functional architecture, 226
Functional cohesion, 216
Functional independence, 167, 173
Functional modeling, 146–149, 164
Functional testing, 97, 388–390, 397
Function-oriented metrics, 481
Function point (FP), 481, 514–515
Fuzzy logic, 539
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Gamification, 544–545
Gantt charts, 527
Gap analysis, 573
Generalizations, 613
Generative patterns, 291
Generic process models, 21–23
Generic risks, 535
Genetic algorithms, 352, 606
Gesture testing, 415–416
Glass-box testing, 383–387, 397
Globalization, 587–588
Global software development (GSD) 

teams, 80–81
Go, no-go decisions, 65–67
Goal in context, 135
Goals

business, 485
defined, 104
of interface design, 243
of requirements gathering, 24
security, 362
of software quality assurance, 345–346

“Good enough” software, 316
Grammatical parse, 137, 138, 141
Granularity, 92
Graphic design, 237, 277
Graphic design metrics, 472
Graphic icons, 276
Graphic images, 276

Handshaking, 122
Hardware, failure curve for, 5–6
Hazards, 352–353, 545
Help facilities, 260, 434
Heuristic evaluations, 253
Heuristics, 7, 157, 162, 554
High-granularity plans, 92
High-order testing, 377
Historical data, 481
Hooks, 293
Human elements of SCM, 440
Human-focused path, 599
Human interface objects, 258
Human resources, 508
Hype cycle for emerging technologies, 

586–587

Identification
of analysis classes, 137–140
of events with use cases, 149–150
of risk, 535–537
of stakeholders, 107

Idioms, 292
Impact analysis, 443
Impact management, 443, 451
Impact of risk, 540–541
Implementation model, 242
Inception

in communication activity, 23
in mobile development life cycle, 268
as phase of Unified Process, 32
in requirements engineering, 104

Incremental development strategies, 40
Incremental process models, 55–56
Increments. see Software increments
Independent classes, 404
Independent paths, 384–385
Independent test groups (ITGs), 375
Indeterminate software, 7
Indicators, defined, 462
Informal change control, 450
Information architecture, 235, 279
Information delivery, 4
Information domain, 129
Information hiding, 166
Information objectives, 497
Information technology, 605
Inheritance, 216, 475
Inspections, 326, 332
Installation, 574–575
Instance form of deployment  

diagrams, 178
Integrability, 187
Integration

bottom-up, 399–400
breadth-first, 398
continuous, 400–402, 446–447
depth-first, 398
in DevOps approach, 50
top-down, 398–399

Integration-level testing
of architecture, 375, 376
artificial intelligence and, 403
black-box, 397
bottom-up, 399–400
challenges of, 395
in construction activity, 95
fundamentals of, 396–397
objectives of, 398
object-oriented, 404–407
patterns, 409
regression, 403–404
top-down, 398–399
validation, 407–408
white-box, 397
work products, 402

Integrity, 483
Intelligent software engineering, 606
Interaction design, 236
Interaction frames, 620
Interaction mechanisms, 234
Interdependency, 521
Interface analysis, 243
Interface construction, 243
Interface design. see also User 

experience design
elements of, 175–176
evaluation of, 253–256
functions of, 158
goals of, 243
golden rules of, 234, 238–241
guidelines for, 216, 259
metrics for, 471–473
for MobileApps, 261, 270–271

models for, 241–242, 270–271
patterns in, 252–253, 291, 304–305
for placing user in control, 238–239
principles of, 173
process for, 242–243
for reducing user’s memory load, 

239–240
steps for, 251–252
for WebApps, 275–276

Interface segregation principle (ISP), 214
Interface testing, 388, 421
Interface validation, 243
Internal failure costs, 317
Internationalization, 260–261, 423
Inventory analysis, 563–564
ISO 9001:2015, 353–354
Issues lists, 112
Issues tracking, 69, 446
Iterative planning, 91, 92
Iterative process flow, 22, 23

Jelled teams, 76–77, 494
Justification activity, 573–574

Kanban method, 48–50, 56, 67
Key performance indicators (KPIs), 462
Knowledge discovery, 605–606
Known risks, 535

Lack of cohesion in methods (LCOM), 
470, 475

Language metaphor, 183
Languages

architectural description, 164
for data science, 629–631
domain-specific modeling, 597
pattern, 297
UML (see Unified modeling 

language)
Latency reduction, 258
Law of Demeter, 170
Layer cohesion, 216, 217
Layered architectures, 189–192
Layered behavioral model, 75–76
Layout, 277, 431
Leadership, 493–494
Learnability, 258
Legacy software, 8
Level design, 456
Liability, 320
Libraries, 631
Life-cycle security models, 357–359
Linear process flow, 22, 23
Linear sequential model. see Waterfall 

model
Liskov substitution principle (LSP), 214
Listening, 46, 89
Literature metaphor, 184
Load testing, 425–426
Localization, 260, 423
LOC-based estimation, 512–513
LOC-based metrics, 481
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Loop testing, 387
Low-granularity plans, 92

Machine learning, 294–295, 322, 558, 
606, 631–637

Main program/subprogram  
architectures, 189

Maintainability, 483, 553
Maintenance

adaptive, 70, 553
challenges of, 552
corrective, 69–70, 553
defined, 69
importance of, 3, 71
metrics for, 476
perfective, 70, 553
practice principles and, 88
preventive, 70, 553
tasks related to, 554–555

Make facilities, 446
Management. see also Project 

management; Risk management; 
Software configuration 
management

change, 342, 445, 447–452
of complexity, 588–589
configuration, 11, 437, 445
content, 455, 456
impact, 443, 451
quality, 9, 340
release, 550–551
in requirements engineering, 106
reusability, 11
security, 342
vendor, 342
version, 446

Management subsystem, 456–457
Man-in-the-middle attacks, 267
Manufacturer view of quality, 311
Maturity levels, 577, 578
Maturity models, 570–571
Maturity phase of technology 

innovation, 585
Mean time between failure (MTBF), 

350–351
Mean time to change (MTTC), 483
Measurement. see also Metrics

of availability, 351
defined, 461–462
direct, 479–480
as management tool, 461
of productivity, 480, 482
of reliability, 350–351
of security, 368–369
as umbrella activity, 11
usefulness of, 460, 461

Measures, defined, 461
Meetings

casual, 331
Kanban, 50
question-and-answer format for, 109
requirements gathering, 112

review, 332–333
Scrum, 44–45, 56, 66–67
sprint, 44, 45

Melding product and process,  
498, 499

Mental model, 241–242
Menu labeling, 260
Meta-model, 443–444
Metaphors, 258, 276
Meta-questions, 109
Methods, 9
Metrics

aesthetic, 472
attributes of, 462
black-box, 466
class-based, 469–470
content, 473
for conventional software, 465–468
defined, 462
design, 466–473, 475
function-oriented, 481
for interface design, 471–473
key performance indicators, 462
LOC-based, 481
for maintenance, 476
for MobileApps, 465–466
morphology, 467, 468
navigation, 473
for object-oriented software, 468–470
private, 480, 482
process, 476–478
product, 461, 463–464, 469, 480, 482
productivity, 481
program establishment, 485–487
project, 476–478
public, 480
quality, 482–484
for requirements model, 464–466
for reviews, 327–330
size-oriented, 480–481
for small organizations, 486
for software quality assurance, 346
for source code, 473–474
for testing, 474–475
usefulness of, 461
for WebApps, 472, 473

Middleware, 266
Migration, 574–575
Milestones, 521
Mini-specifications, 112
Misuse cases, 363–364
MobileApps (mobile applications)

agile change management for, 453–458
alerts and extraordinary conditions, 417
architecture for, 273–274
best practices for design, 285–287
challenges related to, 265–268
component-level design for, 226–227
context-aware, 274–275
development considerations, 265
gestures and, 415–416
guidelines for design, 271–272

interface design for, 261, 270–271
internationalization of, 423
metrics for, 465–466
mistakes in design of, 272
patterns for, 292, 305–306
performance of, 424–426
prevalence of, 264
quality of, 282–285
real-time applications, 426–428
security of, 424
stages of development, 268–272
technical considerations, 266–268
testing, 413–417, 424–428
tools for, 265, 267
types of, 7
usability of, 257, 258, 415–417
virtual keyboard input and, 416
voice input and recognition, 416–417

Model-based testing (MBT), 429–430
Model-driven software development, 

596–597
Models and modeling. see also Analysis 

models and modeling; 
Requirements models and modeling

behavioral, 127, 149–154
class-based, 127, 137–146
constructive cost, 511
CRC, 47, 144–146
data, 127
design, 93, 158, 171–178
dynamic, 164
empirical estimation, 510–511
flow-oriented, 127
framework, 164
functional, 146–149, 164
for interface design, 241–242, 270–271
maturity, 570–571
principles of, 92–94
process (see Process models)
in process framework, 10
product quality, 313–314
quality in use, 313
scenario-based, 127, 128, 130–137
security, 357–359
structural, 164
system approach, 446
threats, 357, 365–366
user, 241, 245–246

Model-View-Controller (MVC) 
architecture, 189, 191–192, 279–280

Modularity, 87, 90, 165–166
Modules, 165, 209. see also Components
Morphology metrics, 467, 468
Multiclass classification problems, 634
Multilabel classification problems, 634
Multiplicity, 614

Navigation
design of, 280–282
menus for, 276
syntax of, 280
visible, 258
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Navigational nodes (NN), 280
Navigation metrics, 473
Navigation semantic links (NSLs), 281
Navigation semantic units (NSUs),  

280–282
Navigation testing, 421–423
Nearest neighbor technique, 635–637
Negative test cases, 383
Negligence, 320
Negotiation, 23, 90, 105, 122–123
Nested loops, 387
Neural networks, 636–637
90–90 rule, 500
Nomadic networks, 266
Nonfunctional requirements (NFRs), 109
Nongenerative patterns, 291
Notes, 615
Number of children (NOC), 469, 475
Number of root classes (NOR), 475

Object-oriented architectures, 189
Object-oriented design metrics, 468–470
Object-oriented testing, 390–393,  

404–407
OO design metrics, 469–470, 475
Open-closed principle (OCP), 212–213
Open source movement, 592
Open-world software, 589–590
Operations, 141
Ordered Categorical variables, 633

Pair programming, 48, 332
Paper prototypes, 62, 272
Parallel process flow, 22, 23
Pareto principle, 97–98
Partitioning, 130, 389, 497–498
Passive state, 150
Pattern-based architecture review 

(PBAR), 203–204
Pattern-based design

common mistakes in, 298–299
in context, 290, 295–296
defined, 164, 290
describing, 293–294
framework for, 293
machine learning in, 294–295
objectives of, 165
organizing tables in, 298, 299
repository for, 295
tasks in, 297–298
template for, 293–294
thinking in, 296–297
types of, 291–293
use of, 87
for user interfaces, 252–253

Pattern languages, 297
Pattern-organizing tables, 298, 299
Patterns. see also Pattern-based design

analysis of, 122
anti-patterns, 302–304
architectural, 187, 192–193, 203–204, 

291, 299–300

attack, 363–364
behavioral, 292–293
component-level, 300–301
creational, 292
data, 291
of defects, 98
generative, 291
interface design, 252–253, 291,  

304–305
mobile, 292
for MobileApps, 292, 305–306
nongenerative, 291
pipe-and-filter, 188
process, 24
risk, 536
structural, 292
testing, 409
for WebApps, 291–292

Peer reviews, 326
People Capability Maturity Model, 577
People Capability Maturity Model 

(People-CMM), 491
Percent public and protected (PAP), 475
Perfective maintenance, 70, 553
Performance testing, 414, 424–426
Pipe-and-filter pattern, 188
Planning. see also Project planning

contingency, 86, 92, 544
iterative, 91, 92
principles of, 91–92
in process framework, 10
for software quality assurance, 343–

344, 354
for testing, 378–380
in XP framework, 46–47

Platform model, 270
Playability testing, 433–434
Plug points, 293
Postconditions, 214
Postmortem evaluations (PMEs), 336
Practice (software engineering), 12–15, 

85–88
Preconditions, 135, 214
Predictable risks, 535
Predictive technologies, 416
Preparation effort, 328
Prescriptive process models, 25–33
Presentation model, 270
Prevention costs, 317
Preventive maintenance, 70, 553
Primary actors, 115
Primary scenarios, 134
Primitiveness, 468
Priority points, 108
Private metrics, 480, 482
Proactive risk strategies, 534
Proactive software support, 557–560
Probabilistic reasoning, 558
Problem-based estimation, 512
Problem decomposition, 497–498
Problem elaboration, 497–498
Problem solving, 12–13

Procedural abstraction, 163
Process. see Software process
Process adaptation, 11–12
Process-based estimation, 515–516
Process dimension, 171–172
Process elements of SCM, 440
Process flow, 22–23, 25, 31
Process framework, 10–11, 21, 23
Process improvement. see Software 

process improvement
Processing narratives, 138, 141
Process maturity, 570
Process metrics, 476–478
Process migration, 574
Process models

agile, 42–51, 56, 57
comparison of, 33–34
criticisms of, 38
in design, 164
evolutionary, 29–31, 56–57, 67
generic, 21–23
guidelines for use of, 55
incremental, 55–56
prescriptive, 25–33
prototyping, 26–29
reengineering, 563
selection of, 28, 31
spiral, 29–30, 56–57
unified, 31–33
waterfall, 25–26, 55

Process patterns, 24
Producers, 161, 333
Product, relationship to process,  

34–35
Product backlog, 43–45
Production phase of Unified Process, 33
Productivity measures, 480, 482
Productivity metrics, 481
Product-line software, 7, 164, 590
Product metrics, 461, 463–464, 469, 

480, 482
Product quality model, 313–314
Product requests, 110–111
Product scope, 491–492, 497
Product-specific risks, 535–536
Product view of quality, 311
Progressive sign-off, 186
Project complexity, 505–506
Project databases, 441, 442, 445–446
Project feasibility, 507
Projection, risk, 538–541
Project level change control, 450
Project management

characteristics for success, 500–501
critical practices for, 502
people in, 491, 493–496
process and, 492, 498–500
product issues and, 491–492,  

497–498
for quality, 322
spectrum of, 491–492
W5HH principle for, 501
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Project metrics, 476–478
Project planning. see also Estimation

data analytics in, 509–511
objectives of, 506
overview, 504
in process framework, 10
resources in, 507–509
scheduling in, 520–523, 526–529
scope and feasibility in, 507
task networks in, 525–526
task sets in, 507, 523–525

Project risks, 534, 536–537
Project size, 506
Project tables, 527–528
Project velocity, 47
Prototype development

in agile process models, 56
architectural design for, 59–60
evaluation of, 64–65, 68–69,  

253–254
evolutionary model of, 67–68
first prototype construction, 61–63
go, no-go decisions in, 65–67
incremental model for, 55–56
for mobile devices, 272
release stage of, 68–69
scope determination in, 67
spiral model for, 56–57
stakeholders in, 58–59, 61–62
in user experience design, 250

Prototype user interface, 62
Prototyping paradigm, 26–29
Public access to data members  

(PAD), 475
Public metrics, 480
Publishing subsystem, 457
Putnam-Norden-Rayleigh (PNR) curve, 

522–523

Quality
checklist for, 285
of codes, 345
of conformance, 311
cost of, 317–318
definitions of, 311, 312
of design, 159–161, 282–285, 311, 345
dilemmas related to, 315–321
Garvin’s dimensions of, 311
of “good enough” software, 316
guidelines for achievement of, 321–323
importance of, 3
of legacy software, 8
management actions and impact on, 321
McCall’s factors for, 313
metrics for, 482–484
of MobileApps, 282–285
planning for, 92
qualitative assessment of,  

314–315
quantitative assessment of, 315
of requirements model, 345
reviews for, 341–342

risk and, 319–320
security and, 320
standards for, 313–314, 341,  

353–354
of WebApps, 282–285

Quality assurance, 11, 323, 353. see also 
Software quality assurance

Quality control, 322–323, 346
Quality dilemma, 315–321
Quality in use model, 313
Quality management, 9, 340, 349. see 

also Software quality assurance
Quality requirements tree, 283
Question-and-answer sessions, 109

Reactive risk strategies, 533
Readability, 258, 431
Real-time testing, 426–428
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Regression problems, 634
Regression testing, 68, 403–404
Release management, 550–551
Release reuse equivalency principle 

(REP), 214–215
Reliability, 350–353
Remote procedure call architectures, 189
Replicator phase of technology 

innovation, 585
Reporting, 333–334, 402, 448, 452, 458
Repositories, 295, 441, 443–446
Representation State Transfer  

(REST), 273
Requirements

analysis of, 127–130
architectural design and, 59–60
collaboration on, 108
emergent, 590–591
monitoring, 123
multiple viewpoints on, 107–108
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class-based, 127, 137–146
domains of, 93
functional, 146–149
metrics for, 464–466
objectives and philosophy of, 128
principles of, 129–130
quality of, 345
rules of thumb for, 128–129
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peer, 326
purpose of, 325
for quality, 341–342
reporting and recordkeeping for,  
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